

Voting with a Logarithmic Number of Cards

<u>Takaaki Mizuki</u>, Isaac Kobina Asiedu, Hideaki Sone Tohoku University

✓ There are 2 candidates and n voters.

2 candidates

election

n voters

- ✓ There are 2 candidates and n voters.
- ✓ Usually, n ballot papers are required.

2 candidates

election

- ✓ There are 2 candidates and n voters.
- ✓ Usually, n ballot papers are required.
- ✓ We show $O(\log n)$ cards conduct an election.

Contents

- 1. Introduction
- 2. Known Protocols
- 3. Voting with a Logarithmic Number of Cards
- 4. New Adder Protocols
- 5. Conclusion

Contents

1. Introduction

- 2. Knol rotocols
- 1.1 Computation Using a Deck of Cards1.2 History of Card-Based Protocols1.3 Our Results
- 4. New Adder Protocols
- 5. Conclusion

a deck cards

In this paper, we use a deck of *cards*.

face-up

turn over

?

?

?

?

?

?

face-down

How to implement voting? The simplest way is as follows.

1. Distribute two cards of different suits to each voter.

n voters

1. Distribute two cards of different suits to each voter.

- 1. Distribute two cards of different suits to each voter.
- 2. Each voter privately commits his/her ballot according to the encoding.

- 1. Distribute two cards of different suits to each voter.
- 2. Each voter privately commits his/her ballot.
- 3. Shuffle all left cards and reveal them.

- 1. Distribute two cards of different suits to each voter.
- 2. Each voter privately commits his/her.
- 3. Shuffle all left cards and reveal them.

- 1. Distribute two cards of different suits to each voter.
- 2. Each voter privately commits his/her.
- 3. Shuffle all left cards and reveal them.

- 1. Distribute two cards of different suits to each voter.
- 2. Each voter privately commits his/her.
- 3. Shuffle all left cards and reveal them.

n voters

✓ Voting can be naively done using 2n cards.

n voters

- ✓ Voting can be naively done using 2n cards.
- ✓ This paper shows that, by applying cardbased cryptographic protocols, O(log n) cards can also conduct voting.

Card-based protocols provide secure computation.

Card-based protocols provide secure computation.

To deal with Boolean values, this encoding is used:

To deal with Boolean values, this encoding is used:

$$= 0$$

A *commitment* to a bit $x \in \{0,1\}$ is

? of two face-down cards

holding the value of \mathcal{X} .

To deal with Boolean values, this encoding is used:

A *commitment* to a bit $x \in \{0,1\}$ is

a pair ? ? of two face-down cards

holding the value of \mathcal{X} .

With keeping the value of x secret, we can get a commitment to the negation \overline{x} of x.

With keeping the value of x secret, we can get a commitment to the negation \overline{x} of x.

Secure NOT operation is trivial.

With keeping the value of x secret, we can get a commitment to the negation \overline{x} of x.

- > Secure **NOT** operation is trivial.
- > How about secure AND operation?

➤ How about secure **AND** operation?

$$\begin{array}{c|c} ? ? \\ \hline a \\ b \\ \hline \end{array}$$

With keeping the values of a and b secret, we want to get a commitment to $a \land b$.

➤ How about secure **AND** operation?

$$| \bullet | = 1$$

$$\begin{array}{c|c} ? ? \\ \hline a \\ b \\ \hline \end{array}$$

With keeping the values of a and b secret, we want to get a commitment to $a \wedge b$.

There have been such four protocols in the literatures.

History of Secure AND protocols

AND	required cards	avg. # of trials
Crepeau-Kilian [CRYPTO '93]	10	6
Niemi-Renvall [TCS, 1998]	12	2.5
Stiglic [TCS, 2001]	8	2
Mizuki-Sone [FAW 2009]	6	1

History of Secure AND protocols

AND	required cards	avg. # of trials	
Crepeau-Kilian [CRYPTO '93]	10	6 Vill be	
Niemi-Renvall [TCS, 1998]	12 intro	oduced in ction 2.2	
Stiglic [TCS, 2001]	8	2	
Mizuki-Sone [FAW 2009]	6	1	

History of Secure XOR protocols

XOR	# of required cards	# of types	avg. # of trials
Crepeau-Kilian [CRYPTO '93]	14	4	6
Mizuki, et. al [AJoC, 2006]	10	2	2
Mizuki-Sone [FAW 2009]	4	2	1

History of Secure XOR protocols

XOR		Will be	in #		
Crepeau-Kilian [CRYPTO '93]	1/	introduced in Section 2.3			
Mizuki, et. al [AJoC. 2006]	10	2	2		
Mizuki-Sone [FAW 2009]	4	2	1		

Existing COPY protocols

Make identical copies of a commitment.

Existing COPY protocols

Make identical copies of a commitment.

Using existing AND/XOR/COPY protocols

Using existing AND/XOR/COPY protocols

Applying a half adder

Using existing AND/XOR/COPY protocols

Devising a tailor-made half adder

Using existing AND/XOR/COPY protocols

Devising a tailor-made half adder

Devising a tailor-made half adder

Contents

1. Introduction

2. Known Protocols

3.

with a Logarithmic

- 2.1 Random Bisection Cuts
- 2.2 Six-Card AND Protocol
- 2.3 Four-Card XOR Protocol
- 2.4 Copy Protocol with a Random Bisection Cut

2.1 Random Bisection Cuts

a random bisection cut

Bisect a given deck of cards, and then randomly switch the resulting two portions:

prob. 1/2
??????
not switched

a random bisection cut

Bisect a given deck of cards, and then randomly switch the resulting two portions:

prob. 1/2
? ? ? ?

not switched

easy-to-implement card shuffling operation

2.2 Six-Card AND Protocol

Secure AND can be done with 6 cards [6].

[6] T. Mizuki and H. Sone, Six-Card Secure AND and Four-Card Secure XOR, FAW 2009, LNCS 5598, pp. 358–369, 2009.

Arrange 2 commitments and 2 additional cards:

Turn over the rightmost two cards:

They become a commitment to 0.

Rearrange the positions:

prob. of 1/2

prob. of 1/2

(b)

Rearrange the positions:

where $r \in \{0,1\}$ is a random bit.

where $r \in \{0,1\}$ is a random bit.

$$=a \wedge b$$

$$a \oplus r = 1$$
, i.e., $a = \overline{r}$

2.3 Four-Card XOR Protocol

Secure XOR can be done with 4 cards [6].

[6] T. Mizuki and H. Sone, Six-Card Secure AND and Four-Card Secure XOR, FAW 2009, LNCS 5598, pp. 358–369, 2009.

2.4 Copy Protocol with a Random Bisection Cut

Making a copy can be done with 4 additional cards [6].

[6] T. Mizuki and H. Sone, Six-Card Secure AND and Four-Card Secure XOR, FAW 2009, LNCS 5598, pp. 358–369, 2009.

Contents

- 1. Introduction
- 2. Known Protocols
- 3. Voting with a Logarithmic Number of Cards
- 4. New Adder Protocols
- 5. Conclusion

Using existing AND/XOR/COPY protocols

Devising a tailor-made half adder

Half adder

Half adder

Remember that

- ✓ AND can be done with 6 cards;
- ✓ XOR can be done with 4 cards;
- ✓ COPY can be done with 4 additional cards.

- ✓ AND can be done with 6 cards;
- ✓ XOR can be done with 4 cards;
- ✓ COPY can be done with 4 additional cards.

- ✓ AND can be done with 6 cards;
- ✓ XOR can be done with 4 cards;
- ✓ COPY can be done with 4 additional cards.

- ✓ AND can be done with 6 cards;
- ✓ XOR can be done with 4 cards;
- ✓ COPY can be done with 4 additional cards.

- ✓ AND can be done with 6 cards;
- ✓ XOR can be done with 4 cards;
- ✓ COPY can be done with 4 additional cards.

- ✓ XOR can be done with 4 cards;
- ✓ COPY can be done with 4 additional cards.

- ✓ AND can be done with 6 cards;
- ✓ XOR can be done with 4 cards;
- ✓ COPY can be done with 4 additional cards.

Using existing AND/XOR/COPY protocols

Devising a tailor-made half adder

Using existing AND/XOR/COPY protocols

Devising a tailor-made half adder

 $2\lceil \log n \rceil + 8 \text{ cards}$

encoding for candidates

Apply a half adder

binary representation of $x_1 + x_2$

of $x_1 + x_2$

Apply a half adder (and XOR)

binary representation of $x_1 + x_2 + x_3$

For example, if $x_1 = x_2 = x_3 = 1$, then

binary representation of $x_1 + x_2 + x_3$

of
$$x_1 + x_2 + x_3$$

•••

$2\lceil \log n \rceil$ cards

binary representation

of
$$x_1 + \cdots + x_{n-1}$$

$2\lceil \log n \rceil$ cards

binary representation

of
$$x_1 + \cdots + x_{n-1}$$

$2\lceil \log n \rceil + 2 \text{ (or } 2\lceil \log n \rceil \text{) cards}$

binary representation

of
$$x_1 + \cdots + x_n$$

Using existing AND/XOR/COPY protocols

Devising a tailor-made half adder

Contents

- 1. Introduction
- 2. Known Protocols
- 3. Voting with a Logarithmic Number of Cards
- 4. New Adder Protocols
- 5. Conclusion

Using existing AND/XOR/COPY protocols

Devising a tailor-made half adder

Using existing AND/XOR/COPY protocols

Devising a tailor-made half adder

Using existing AND/XOR/COPY protocols

Devising a tailor-made half adder

Using existing AND/XOR/COPY protocols

Devising a tailor-made half adder

Contents

- 1. Introduction
- 2. Known Protocols
- 3. Voting with a Logarithmic Number of Cards
- 4. New Adder Protocols
- 5. Conclusion

We gave a 8-card secure half adder protocol.

It enables us to conduct voting with $2\lceil \log n \rceil + 6$ cards.

I hope card-based protocols would help you with

- intuitive explanation of crypto. to non-specialists
- education in classroom.

That's all. Thank you for your attention.

A (real) deck of cards available to the first several people; please contact the speaker.

