
Card-based Single-shuffle Protocols for Secure Multiple-input
AND and XOR Computations

Tomoki Kuzuma
Graduate School of Information
Sciences, Tohoku University

Sendai, Japan
tomoki.kuzuma.s1[at]dc.tohoku.ac.jp

Raimu Isuzugawa
Graduate School of Information
Sciences, Tohoku University

Sendai, Japan

Kodai Toyoda
Graduate School of Information
Sciences, Tohoku University

Sendai, Japan

Daiki Miyahara
The University of

Electro-Communications
National Institute of Advanced

Industrial Science and Technology
Tokyo, Japan

Takaaki Mizuki
Cyberscience Center, Tohoku

University
National Institute of Advanced

Industrial Science and Technology
Sendai, Japan

mizuki+acm[at]tohoku.ac.jp

ABSTRACT
In card-based cryptography, the numbers of cards and shuffles are
the complexity measures of protocols for secure computations, and
the smaller these values are, the better. As the state-of-the-art study
to minimize the latter measure, Shinagawa and Nuida showed a
surprising result that any 𝑛-input logical function can be securely
computed with only one shuffle, based on the idea of Yao’s garbled
circuit. When executing their protocol, the number of required
cards is 2𝑛 +24𝑞, where the 𝑛-input logical function to be computed
is represented by 𝑞 gates. For example, when applied to the 𝑛-input
AND and XOR functions, the number of gates is 𝑛 − 1, and hence,
26𝑛 − 24 cards are required. In this paper, we show that the number
of required cards can be reduced by focusing on these two specific
functions. Specifically, we construct a single-shuffle protocol for
the 𝑛-input AND function using 4𝑛−2 cards, and construct a single-
shuffle protocol for the 𝑛-input XOR function using 2𝑛 cards.

CCS CONCEPTS
• Security and privacy→ Cryptography.

KEYWORDS
Card-based cryptography, Secure computation, Real-life hands-on
cryptography, AND protocols, XOR protocols

ACM Reference Format:
Tomoki Kuzuma, Raimu Isuzugawa, Kodai Toyoda, DaikiMiyahara, and Takaaki
Mizuki. 2022. Card-based Single-shuffle Protocols for Secure Multiple-input
AND and XOR Computations. In Proceedings of the 9th ACMASIA Public-Key
Cryptography Workshop (APKC ’22), May 30, 2022, Nagasaki, Japan. ACM,
New York, NY, USA, 8 pages. https://doi.org/10.1145/3494105.3526236

APKC ’22, May 30, 2022, Nagasaki, Japan
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Proceedings of the
9th ACM ASIA Public-Key Cryptography Workshop (APKC ’22), May 30, 2022, Nagasaki,
Japan, https://doi.org/10.1145/3494105.3526236.

1 INTRODUCTION
A method of performing secure computations using a deck of phys-
ical cards is called card-based cryptography (refer to [7, 20] for
surveys). Card-based cryptography uses two types of indistinguish-
able cards with ♣ and ♥ on the front and ? on the back. These
cards are used to represent Boolean values as

♣ ♥ = 0, ♥ ♣ = 1.

According to this encoding rule, when a bit 𝑥 ∈ {0, 1} is rep-
resented by two face-down cards, these two cards are called a
commitment to 𝑥 and is denoted as follows:

? ?︸ ︷︷ ︸
𝑥

.

A sequence of steps to perform secure computations with com-
mitments as input is called a card-based cryptographic protocol. For
example, a protocol starts with commitments to 𝑥1, 𝑥2, . . . , 𝑥𝑛 ∈
{0, 1} for a natural number 𝑛 (≥ 2) along with some additional
cards, and outputs a commitment to the value of some predeter-
mined function 𝑓 (𝑥1, 𝑥2, . . . , 𝑥𝑛) via a series of operations:

? ?︸ ︷︷ ︸
𝑥1

? ?︸ ︷︷ ︸
𝑥2

· · · ? ?︸ ︷︷ ︸
𝑥𝑛

♣ ♥ ♣ ♥ · · ·

→ · · · → ? ?︸ ︷︷ ︸
𝑓 (𝑥1,𝑥2,...,𝑥𝑛)

.

In this research field, the “number of cards” and the “number of
shuffles” are measures of the complexity of a protocol; thus, many
studies have aimed at reducing these factors.

1.1 Known results
Historically, reducing the number of cards required for the three
fundamental functions, i.e., the AND function, the XOR function,
and copying commitments, was focused on from the beginning
(refer to [20]). Then, the number of shuffles has also gradually

https://orcid.org/0000-0002-3162-2158
https://orcid.org/0000-0003-4326-1019
https://orcid.org/0000-0002-4586-4342
https://orcid.org/0000-0002-5818-8937
https://orcid.org/0000-0002-8698-1043
https://doi.org/10.1145/3494105.3526236
https://doi.org/10.1145/3494105.3526236


Table 1: The numbers of required cards for single-shuffle
secure computations of the 𝑛-input AND and XOR functions

𝑛-AND 𝑛-XOR

Applying Shinagawa–Nuida [33] 26𝑛 − 24 26𝑛 − 24

Ours 4𝑛 − 2 2𝑛

attracted attention, and the development of protocols with fewer
shuffles has continued (e.g. [1, 2, 4, 11, 16, 34]).

As generic constructions for arbitrary 𝑛-input logical functions
𝑓 (𝑥1, 𝑥2, . . . , 𝑥𝑛), the state-of-the-art protocols in terms of the afore-
mentioned two measures are as follows.

On the scale of reducing the number of cards, Nishida et al. [24]
showed that any 𝑛-input logical function can be computed with
2𝑛 + 6 cards. This means that additional six cards are sufficient
because input commitments consist of 2𝑛 cards. When executing
this protocol, the number of required shuffles is 𝑂 (2𝑛) because the
target function is first expressed as an AND-XOR expansion and
then the AND and XOR protocols [21] are applied according to the
expansion.

On the other hand, with regard to reducing the number of shuf-
fles, Shinagawa and Nuida [33] showed a surprising result that
any 𝑛-input logical function can be computed with a single shuffle,
based on the idea of Yao’s garbled circuit. Because it is impossible
to securely compute a non-trivial function without any shuffle, this
protocol is optimal in the sense that the number of shuffles is min-
imal. The number of cards required for their protocol is 2𝑛 + 24𝑞
when the 𝑛-input logical function to be computed can be repre-
sented by 𝑞 gates (i.e., 24𝑞 additional cards are required). In their
protocol, for each gate, a truth table is created using 24 cards (as
will be seen in Section 2.4). Reducing the number of 2𝑛 + 24𝑞 cards
while keeping the number of shuffles at one remains open.

These results strongly suggest that there is a trade-off between
the number of cards and the number of shuffles.

1.2 Contributions
In this study, we revisit the Shinagawa–Nuida single-shuffle generic
protocol [33] and examine whether it is possible to reduce the
number of cards from 2𝑛+24𝑞 while keeping the number of shuffles
at one. Specifically, we consider the𝑛-input AND function and the𝑛-
input XOR function as specific functions, and customize the existing
generic protocol to have specialized protocols with fewer cards.

Note that when applying the existing generic protocol to the 𝑛-
input AND and XOR functions, 26𝑛 − 24 cards are required because
the number of gates for both the functions is 𝑛 − 1. We consider
saving the sequence of cards corresponding to a truth table so that
we have a single-shuffle 𝑛-input AND protocol with 4𝑛−2 cards and
a single-shuffle 𝑛-input XOR protocol with 2𝑛 cards, as summarized
in Table 1. Thus, if we restrict ourselves to specific functions, we
have succeeded in reducing the number of cards.

2 PRELIMINARIES
In this section, we first describe the operations used in card-based
cryptography. Next, we describe the existing protocol that uses
Yao’s garbled circuit [33].

2.1 Operations
In card-based cryptography, three main operations, i.e., rearrange,
turn, and shuffle, are usedi, and their computational model has been
established by abstract machine [5, 10, 19].

Rearranging is an operation that rearranges the order of a se-
quence of cards, and is formulated using a permutation. Turning
(over a card) is an operation to change the face of a card. Shuffling is
an operation to randomly change the order of a sequence of cards,
and is formulated using a set of permutations and a probability
distribution on it. There are various shuffling operations, one type
of which is introduced in Section 2.2.

2.2 Pile-scramble Shuffle
A shuffle that divides a sequence of cards into multiple piles with
the same number of cards and changes only the order of these piles
randomly is called a pile-scramble shuffle [3]; this is one of the most
commonly used shuffles in the design of card-based cryptographic
protocols. One of the famous shuffles, the random bisection cut [21],
can be regarded as a special case of a pile-scramble shuffle.

As an example, if we divide the nine cards into three piles and
apply a pile-scramble shuffle, it will transition to one of the six
sequences with equal probability as follows:[ 1

?
2
?

3
?

��� 4
?

5
?

6
?

��� 7
?

8
?

9
?

]

→



1
?

2
?

3
?

4
?

5
?

6
?

7
?

8
?

9
?

7
?

8
?

9
?

1
?

2
?

3
?

4
?

5
?

6
?

4
?

5
?

6
?

7
?

8
?

9
?

1
?

2
?

3
?

1
?

2
?

3
?

7
?

8
?

9
?

4
?

5
?

6
?

4
?

5
?

6
?

1
?

2
?

3
?

7
?

8
?

9
?

7
?

8
?

9
?

4
?

5
?

6
?

1
?

2
?

3
? ,

where we denote a pile-scramble shuffle by [ · | · · · | · ] .
Recently, the pile-scramble shuffle has been often used when

constructing card-based zero-knowledge proof protocols, e.g. [12,
15, 27–31].

2.3 Counting and Combining Shuffles
As mentioned in Section 2.1, a shuffle is represented by a set of
permutations Π and a probability distribution F on it. We allow
any such pair (Π, F ), which includes shuffles that are difficult for
humans to implement. However, since this paper is a theoretical

iThere is another computational model that allows an operation called a private
permutation, e.g. [13, 14, 22, 23, 26, 35].



Table 2: Truth table for AND gate

𝑎 𝑏 𝑎 ∧ 𝑏

0 0 0

0 1 0

1 0 0

1 1 1

Table 3: Truth table for AND gate and corresponding com-
mitments

? ?︸ ︷︷ ︸
𝑎

? ?︸ ︷︷ ︸
𝑏

? ?︸ ︷︷ ︸
0

? ?︸ ︷︷ ︸
0

? ?︸ ︷︷ ︸
0

? ?︸ ︷︷ ︸
0

? ?︸ ︷︷ ︸
1

? ?︸ ︷︷ ︸
0

? ?︸ ︷︷ ︸
1

? ?︸ ︷︷ ︸
0

? ?︸ ︷︷ ︸
0

? ?︸ ︷︷ ︸
1

? ?︸ ︷︷ ︸
1

? ?︸ ︷︷ ︸
1

study that aims to help clarify the computational limitations of card-
based cryptography, any pair (Π, F ) is counted as one shuffleii.

It should be noted that, in this sense, any two consecutive shuffles
(Π1, F1) and (Π2, F2) can be combined into one shuffle [19].

2.4 The Existing Protocol
The single-shuffle generic protocol proposed by Shinagawa and
Nuida [33], which uses Yao’s garbled circuit, represents a target
function (to be computed) as a logic circuit, and performs the secure
computation starting by arranging commitments based on the truth
table of each gate.

Table 2 depicts the truth table for the AND gate. In each of these
0-1 values, the protocol places a commitment based on the truth
table and the commitments to the inputs of the function, as shown
in Table 3, for instance. Now, suppose that we turn over the com-
mitments on the left and in the middle (which are 10 commitments
in total). Check the revealed values of 𝑎 and 𝑏 against the left four
columns of the truth table, and determine the matching row; then,
the corresponding commitment on the right side will be a commit-
ment to 𝑎 ∧ 𝑏. By performing pile-scramble shuffles in key places
as below, we can obtain a commitment to the gate output without
leaking the value while maintaining the above function.

iiPractical implementations of shuffles were discussed in [9, 17, 25, 32], for example.

Regard Table 3 as a matrix with five rows and six columns. For
this card matrix, apply a pile-scramble shuffle to the bottom four
rows. Then, apply a pile-scramble shuffle to the first and second
columns from the left, and the third and fourth columns, respec-
tively. After that, turn over the cards in the first through fourth
columns; then, the cards in the fifth and sixth columns of the row
that match the cards in the original input (first row) will be an
output commitment. In this case, because the commitments to 𝑎

and 𝑏 have an equal probability of being the same or their negation,
no information about the values of 𝑎 and 𝑏 is leaked. In addition, the
rows and values of the commitments corresponding to the values
in the truth table are also shuffled, so that no information about the
values of the output is leaked. Because the commitments to 𝑎 and 𝑏
and the commitments to the values in the truth table are shuffled
simultaneously, the output commitment always represents 𝑎 ∧ 𝑏.
Therefore, the output value can be obtained without leaking the
value of the input by applying pile-scramble shuffles. Shinagawa
and Nuida’s construction [33] is based on such a mechanism.

Furthermore, because the multiple pile-scramble shuffles de-
scribed above are applied consecutively, they can be combined into
a single shuffle, as mentioned in Section 2.3.

The example above is a 2-input AND function, and the number
of gates in this function is one; therefore, in addition to the four
cards for gate input commitments, 24 cards are used to construct the
truth table. Thus, more generally, when an 𝑛-input logic function
is represented by a logic circuit with 𝑞 gates, we need a total of
2𝑛 + 24𝑞 cards, where 2𝑛 cards are for the input commitments
and 24𝑞 cards are for the commitments to the 𝑞 truth tables. As
mentioned above, because multiple pile-scramble shuffles applied
(in the whole process) can be combined into one, we can construct
a protocol with a single shuffle using 2𝑛 + 24𝑞 cards for an arbitrary
logical functioniii.

If we apply this generic protocol to the𝑛-input AND function and
the 𝑛-input XOR function, because the number of gates for these
functions is 𝑛 − 1, the number of required cards is 2𝑛 + 24(𝑛 − 1) =
26𝑛 − 24. As has been done in conventional Yao’s garbled circuit
technique (e.g. [36]), it is expected that truth tables can be saved
by specializing in the AND or XOR function; we will propose such
card-based protocols in the following sections.

3 OUR PROPOSED 𝑛-INPUT AND PROTOCOL
In this section, we propose an 𝑛-input AND protocol that uses only
one shuffle. The number of required cards is 4𝑛 − 2. In Sections 3.1
and 3.2, we state the ideas behind our protocol. In Section 3.3, we
describe the single-shuffle protocol and prove its correctness and
security.

3.1 Basic Idea 1: How to Compute AND
Arrange the commitments to 𝑥1, 𝑥2, . . . , 𝑥𝑛 ∈ {0, 1} and 𝑛 − 1 com-
mitments to 0 as follows:

iiiShinagawa and Nuida [33] also devised a method called batching, which can be used
to perform the same computation with two pile-scramble shuffles, although more
additional cards are required for batching.



1 : ? ?︸ ︷︷ ︸
𝑥1

2 : ? ?︸ ︷︷ ︸
0

? ?︸ ︷︷ ︸
𝑥2

3 : ? ?︸ ︷︷ ︸
0

? ?︸ ︷︷ ︸
𝑥3

.

.

.

𝑛 − 1 : ? ?︸ ︷︷ ︸
0

? ?︸ ︷︷ ︸
𝑥𝑛−1

𝑛 : ? ?︸ ︷︷ ︸
0

? ?︸ ︷︷ ︸
𝑥𝑛

(1)

Now, let us turn over the commitment to 𝑥1 on the first line. If its
value is 𝑥1 = 0, then the left commitment of the second line (which
is the commitment to 0) is a commitment to 𝑥1 ∧ 𝑥2, and if its value
is 𝑥1 = 1, then the right commitment (which is the commitment to
𝑥2) is a commitment to 𝑥1 ∧ 𝑥2, because the following relationship
holds:

𝑥1 ∧ 𝑥2 =

{
0 if 𝑥1 = 0,
𝑥2 if 𝑥1 = 1.

Next, let us turn over the commitment to 𝑥1 ∧ 𝑥2 obtained now.
If the value is 0, then the commitment on the left of the third line is
a commitment to 𝑥1 ∧ 𝑥2 ∧ 𝑥3, and if it is 1, then the commitment
on the right is a commitment to 𝑥1 ∧ 𝑥2 ∧ 𝑥3.

Bear this inmind, we can obtain a commitment to 𝑥1∧𝑥2∧· · ·∧𝑥𝑛
? ?︸ ︷︷ ︸

𝑥1∧𝑥2∧···∧𝑥𝑛

by the following Procedure A, starting from the arrangement in
Eq. (1). Note that this arrangement has 2𝑛− 1 commitments in total,
i.e., it consists of 4𝑛 − 2 cards.

[Procedure A]
(1) Suppose that we have 2𝑛 − 1 commitments arranged as in

Eq. (1).
(2) Turn over the commitment on the first line and let its value

be denoted by 𝑣 . Let 𝑖 B 2.
(3) If 𝑣 = 0, then turn over the commitment on the left of the

line 𝑖; if 𝑣 = 1, then turn over the commitment on the right
of the line 𝑖 . Set 𝑣 to the revealed value (overwriting 𝑣).

(4) Let 𝑖 B 𝑖 + 1. If 𝑖 ≤ 𝑛 − 1, then return to (3).
(5) If 𝑣 = 0, then output the commitment on the left of the line 𝑛;

if 𝑣 = 1, then output the commitment on the right.
Again, if we perform procedure Awith the arrangement in Eq. (1)

as input, we will obtain a commitment to 𝑥1 ∧ 𝑥2 ∧ 𝑥3 · · · ∧ 𝑥𝑛 .
However, because the values of 𝑥1, 𝑥1 ∧ 𝑥2, 𝑥1 ∧ 𝑥2 ∧ 𝑥3, . . . , 𝑥1 ∧
𝑥2 ∧ · · · ∧ 𝑥𝑛−1 are leaked each time a commitment is turned over,
it is of course not a secure computation.

3.2 Basic Idea 2: Randomization
Let us focus on the first and second lines in the arrangement in
Eq. (1). If we swap the positions of the two cards that make up the
commitment to 𝑥1 on the first line and at the same time swap the po-
sitions of the commitments on the second line, the first line becomes
a commitment to 𝑥1, and the second line becomes commitments to
𝑥2 and 0 (in this order):

1 : ? ?︸ ︷︷ ︸
𝑥1

2 : ? ?︸ ︷︷ ︸
𝑥2

? ?︸ ︷︷ ︸
0

.

Since swapping of the first and second lines is synchronized, per-
forming procedure A on the whole from this state still yields a
commitment to 𝑥1∧𝑥2∧· · ·∧𝑥𝑛 . Therefore, applying the following
shuffle to the first and second lines in the arrangement in Eq. (1)
does not affect the output of procedure A:

1
?

2
?

3
?

4
?

5
?

6
?

→

1
?

2
?

3
?

4
?

5
?

6
?

or

2
?

1
?

5
?

6
?

3
?

4
?

(2)

We call this the shuffle S1 (which was used in the Mizuki–Sone
AND protocol [21]).

In a similar way, consider applying the following shuffle S𝑖 to
the lines 𝑖 and 𝑖 + 1 for every 𝑖 , 2 ≤ 𝑖 ≤ 𝑛 − 1:

𝑖 :
1
?

2
?

3
?

4
?

𝑖 + 1 :
5
?

6
?

7
?

8
?

→

1
?

2
?

3
?

4
?

5
?

6
?

7
?

8
?

or

2
?

1
?

4
?

3
?

7
?

8
?

5
?

6
?

(3)

Note that the index starts at ‘1’ for simplicity. Applying these shuf-
fles to the arrangement in Eq. (1) also does not affect the output
of procedure A. These shuffles can be achieved by applying pile-
scramble shuffles and rearranging. In our proposed AND protocol,
we use the shufflesS1,S2, . . . ,S𝑛−1 to randomize the commitments.



3.3 Description
We are now ready to describe our proposed AND protocol. Given 𝑛
commitments along with 2𝑛 − 2 additional cards as input

? ?︸ ︷︷ ︸
𝑥1

? ?︸ ︷︷ ︸
𝑥2

· · · ? ?︸ ︷︷ ︸
𝑥𝑛

♣ ♥ ♣ ♥ · · · ♣ ♥ ,

the protocol proceeds as follows.

(1) Turn over all the 2𝑛 − 2 additional cards to make 𝑛 − 1 com-
mitments to 0 and place them along with the commitments
to 𝑥1, . . . , 𝑥𝑛 , as shown in the arrangement in Eq. (1).

(2) Combine the 𝑛 − 1 shuffles S1,S2, . . . ,S𝑛−1 defined in Sec-
tion 3.2 into a single shuffle (as we mentioned in Section 2.3
that this kind of combining is possible), and apply that shuffle
to the arrangement.

(3) For the obtained arrangement, apply the procedure A defined
in Section 3.1. Its output is a commitment to 𝑥1∧𝑥2∧· · ·∧𝑥𝑛

? ?︸ ︷︷ ︸
𝑥1∧𝑥2∧···∧𝑥𝑛

.

As explained in Sections 3.1 and 3.2, the application of any shuffle
S𝑖 to the arrangement in Eq. (1) does not affect the output of proce-
dure A. Therefore, it is clear that a commitment to 𝑥1 ∧ 𝑥2 · · · ∧ 𝑥𝑛
is correctly obtained in step 3, which guarantees the correctness of
our protocol.

Furthermore, in this protocol, the cards are turned over only
during the execution of procedure A in step 2, and one commitment
value is revealed for each of the lines from the line 1 to 𝑛 − 1. For
example, on the first line, the value of 𝑥1 ⊕ 𝑟1 is revealed, where
𝑟1 is a uniformly distributed random bit generated by the shuffle
S1. Therefore, even if the value of this commitment is revealed,
the value of the input 𝑥1 is not leaked. In the same way, the value
revealed on the line 𝑖 , 2 ≤ 𝑖 ≤ 𝑛 − 1, is (𝑥1 ∧ · · · ∧ 𝑥𝑖 ) ⊕ 𝑟𝑖 , and
because 𝑟𝑖 is a random bit, the value of the input is not leaked.
Hence, our proposed protocol is information-theoretically secure,
and the security of the protocol is confirmed.

4 OUR PROPOSED 𝑛-INPUT XOR PROTOCOL
In this section, we propose an 𝑛-input XOR protocol that uses only
one shuffle. The number of required cards is 2𝑛. In Sections 4.1
and 4.2, we state the ideas behind our protocol. In Section 4.3, we
describe the protocol and show its correctness and security.

4.1 Basic Idea 1: How to Compute XOR
Arrange the commitments to 𝑥1, 𝑥2, · · · , 𝑥𝑛 ∈ {0, 1} as follows:

1 : ? ?︸ ︷︷ ︸
𝑥1

2 : ? ?︸ ︷︷ ︸
𝑥2

3 : ? ?︸ ︷︷ ︸
𝑥3

.

.

.

𝑛 − 1 : ? ?︸ ︷︷ ︸
𝑥𝑛−1

𝑛 : ? ?︸ ︷︷ ︸
𝑥𝑛

(4)

Now, let us turn over the commitment to 𝑥1 on the first line. If
its value is 𝑥1 = 0, then the commitment on the second line (which
is a commitment to 𝑥2) is a commitment to 𝑥1 ⊕ 𝑥2, and if its value
is 𝑥1 = 1, then the negation of the commitment on the second line
(which is a commitment to 𝑥2) is a commitment to 𝑥1 ⊕ 𝑥2, because
the following relationship holds:

𝑥1 ⊕ 𝑥2 =

{
𝑥2 if 𝑥1 = 0,
𝑥2 if 𝑥1 = 1.

Next, let us turn over the commitment to 𝑥1 ⊕ 𝑥2 obtained now.
If the value is 0, the commitment on the third line is a commitment
to 𝑥1 ⊕ 𝑥2 ⊕ 𝑥3, and if it is 1, the negation of the commitment on
the third line is a commitment to 𝑥1 ⊕ 𝑥2 ⊕ 𝑥3.

Bear this inmind, we can obtain a commitment to𝑥1⊕𝑥2⊕· · ·⊕𝑥𝑛
? ?︸ ︷︷ ︸

𝑥1⊕𝑥2⊕···⊕𝑥𝑛

by the following Procedure B. Note that the arrangement in Eq. (4)
has 𝑛 commitments in total, i.e., it consists of 2𝑛 cards.

[Procedure B]
(1) Suppose that we have 𝑛 commitments arranged as in the

arrangement in Eq. (4).
(2) Turn over the commitment on the first line and let its value

be denoted by 𝑣 . Let 𝑖 B 2.
(3) If 𝑣 = 0, then turn over the commitment on the line 𝑖; if 𝑣 = 1,

then swap the cards on the left and right of the commitment
on the line 𝑖 , turn over the commitment, and set 𝑣 to the
revealed value.

(4) Let 𝑖 B 𝑖 + 1. If 𝑖 ≤ 𝑛 − 1, then return to (3).
(5) If 𝑣 = 0, then output the commitment on the line 𝑛; if 𝑣 = 1,

then after swapping the cards on the left and right of the
commitment on the line 𝑛, output the commitment.

Again, if we perform procedure B with the arrangement in Eq. (4)
as input, we will obtain a commitment to 𝑥1⊕𝑥2⊕· · ·⊕𝑥𝑛 . However,
the values of 𝑥1, 𝑥1 ⊕ 𝑥2, 𝑥1 ⊕ 𝑥2 ⊕ 𝑥3, . . . , 𝑥1 ⊕ 𝑥2 ⊕ · · · ⊕ 𝑥𝑛−1 are
leaked every time when a commitment is revealed.



4.2 Basic Idea 2: Randomization
Let us focus on the lines 𝑖 and 𝑖 + 1 in the arrangement in Eq. (4)
for 1 ≤ 𝑖 ≤ 𝑛 − 1. If we swap the positions of the two cards that
make up the commitment to 𝑥𝑖 on the line 𝑖 and swap the positions
of the two cards that make up the commitment to 𝑥𝑖+1 on the line
𝑖 + 1, the former one becomes a commitment to 𝑥𝑖 and the latter
one becomes a commitment to 𝑥𝑖+1:

𝑖 : ? ?︸ ︷︷ ︸
𝑥𝑖

𝑖 + 1 : ? ?︸ ︷︷ ︸
𝑥𝑖+1

(5)

Because swapping in the lines 𝑖 and 𝑖+1 is synchronized, performing
procedure B on the whole from this state still yields a commitment
to 𝑥1 ⊕ 𝑥2 ⊕ · · · ⊕ 𝑥𝑛 . Therefore, applying the following shuffle to
the lines 𝑖 and 𝑖 + 1 in the arrangement in Eq. (4) does not affect the
output of procedure B:

𝑖 :
1
?

2
?

𝑖 + 1 :
3
?

4
?

→

1
?

2
?

3
?

4
?

or

2
?

1
?

4
?

3
?

(6)

We call this the shuffle T𝑖 (which was used in the Mizuki–Sone XOR
protocol [21]). In our proposed XOR protocol, we use the shuffles
T1,T2, · · · ,T𝑛−1 to randomize the commitments.

4.3 Description
We are now ready to describe our proposed XOR protocol. Given 𝑛
commitments as input

? ?︸ ︷︷ ︸
𝑥1

? ?︸ ︷︷ ︸
𝑥2

· · · ? ?︸ ︷︷ ︸
𝑥𝑛

,

the protocol proceeds as follows.
(1) Place the commitments to 𝑥1, . . . , 𝑥𝑛 as shown in the arrange-

ment in Eq. (4).
(2) Combine the 𝑛 − 1 shuffles T1,T2, . . . ,T𝑛−1 defined in Sec-

tion 4.2 into a single shuffle, and apply that shuffle to the
commitments.

(3) For the obtained arrangement, apply the procedure B defined
in Section 4.1. Its output is a commitment to 𝑥1⊕𝑥2⊕· · ·⊕𝑥𝑛

? ?︸ ︷︷ ︸
𝑥1⊕𝑥2⊕···⊕𝑥𝑛

.

As explained in Sections 4.1 and 4.2, the application of any shuffle
T𝑖 to the arrangement in Eq. (4) does not affect the output of proce-
dure B. Therefore, it is clear that a commitment to 𝑥1 ⊕ 𝑥2 · · · ⊕ 𝑥𝑛

is correctly obtained in step 3, which guarantees the correctness of
our protocol.

Furthermore, in this protocol, the cards are turned over only
during the execution of procedure B in step 2, and one commitment
value is revealed for each of the lines from the lines 1 to 𝑛 − 1. For
example, on the first line, the value of 𝑥1 ⊕ 𝑟1 is revealed, where
𝑟1 is a uniformly distributed random bit generated by the shuffle
T1. Therefore, even if the value of this commitment is revealed,
the value of the input 𝑥1 is not leaked. In the same way, the value
revealed on the line 𝑖 , 2 ≤ 𝑖 ≤ 𝑛 − 1, is (𝑥1 ⊕ · · · ⊕ 𝑥𝑖 ) ⊕ 𝑟𝑖 , and
because 𝑟𝑖 is a random bit, the value of the input is not leaked.
Hence, our proposed protocol is information-theoretically secure,
and the security of the protocol is confirmed.

5 DISCUSSION
In this section, we discuss some issues related to our two single-
shuffle protocols presented in Sections 3 and 4.

5.1 Optimality
Because we need 2𝑛 cards for describing an 𝑛-bit input (as long as
we follow the two-card per-bit encoding), our𝑛-input XOR protocol,
which uses exactly 2𝑛 cards, is optimal in the sense that the number
of required cards is minimum.

By contrast, our𝑛-input AND protocol uses 4𝑛−2 cards (meaning
that it requires 2𝑛 − 2 helping cards). Therefore, we have a natural
question whether there exists a single-shuffle AND protocol using
fewer than 4𝑛 − 2 cards.

Let us consider the case of 𝑛 = 2. Then, our two-input AND
protocol (which is the same as the Mizuki–Sone AND protocol [21])
uses six cards. On the other hand, Koch, Walzer, and Härtel [10]
proved that any finite-runtime two-input AND protocol requires
five cards. Therefore, the gap between the upper and lower bounds
currently known is one: It is open to determine whether a five-
card single-shuffle AND protocol is possible or not. For 𝑛 ≥ 3,
finding/proving optimal single-shuffle 𝑛-input AND protocols will
be an important open problem, as well; a promising technique
to obtain lower bounds on the number of required cards would
be the “backwards calculus” developed by Koch [6]. (In addition,
‘Table 4’ shown in [8] may be useful to narrow down permutations
to consider.)

5.2 Non-committed Output
Our proposed protocols as well as the Shinagawa–Nuida generic
constructions [33] produce as output a commitment to the value of
a predetermined function (such as the AND and XOR functions).
If we allow the output to be any kind of encoding, we have a
(4𝑛 − 3)-card single-shuffle 𝑛-input AND protocol; specifically, in
the arrangement (1), if we replace the 𝑛-th line with

?︸︷︷︸
0

?︸︷︷︸
𝑥𝑛

,

where we adopt the one-card encoding: ♣ = 0, ♥ = 1, then we
can obtain the AND value based on the one-card encoding scheme
above. Thus, by admitting a non-committed output, we can reduce
the number of required cards for AND by one.



It should be noted that, from the non-committed four-card AND
protocol given in [18], we can have a four-card non-committed
single-shuffle AND protocol by combining the two shuffles used
there; therefore, for the case of 𝑛 = 2, this single-shuffle AND
protocol is optimal in terms of required cards.

5.3 Two Pile-scramble Shuffles with Batching
As seen in Sections 3 and 4, we have constructed our single-shuffle
protocols by combining a bunch of pile-scramble shuffles, so that
the resulting single shuffle is very complicated and is no longer
practical. If we want to stick to the pile-scramble shuffles, there is a
nice solution: the batching technique developed also by Shinagawa
and Nuida [33].

Briefly, the batching technique enables us to implement a number
of “pair-wise disjoint” pile-scramble shuffles by applying one pile-
scramble shuffle with the help of additional cards. This technique
can be applied to our two protocols, as follows. Remember the
shuffles S1,S2, . . . ,S𝑛−1 appearing our AND protocol; because the
shufflesS1,S3,S5, . . . are pair-wise disjoint, the batching technique
enables us to implement these shuffles by a single pile-scramble
shuffle. The same is true forS2,S4,S6, . . .. Therefore, we can obtain
an AND protocol using only two pile-scramble shuffles; in this case,
we need (4𝑛 + 2⌊𝑛2 ⌋ ⌈log2 ⌊

𝑛
2 ⌋⌉) cards in total. Similarly, we can

obtain an XOR protocol which uses only two pile-scramble shuffles
if we accept (2𝑛 + 2⌊𝑛2 ⌋ ⌈log2 ⌊

𝑛
2 ⌋⌉) cards in total.

6 CONCLUSION
Shinagawa and Nuida [33] showed that, surprisingly, an arbitrary
function can be computed with only one shuffle, based on the
idea of Yao’s garbled circuit. In this study, by focusing on specific
functions, we tried to reduce the number of required cards while
keeping the number of shuffles at one, and showed that the 𝑛-input
AND function and the 𝑛-input XOR function can be computed with
4𝑛− 2 cards and 2𝑛 cards, respectively. Because the existing generic
protocol requires 26𝑛 − 24 cards to perform the same computations,
in a sense, we succeeded in reducing the number of cards.

It is natural in a sense that the number of cards can be reduced
by losing the advantage of being generic, but the problem of how
far the number of cards can be reduced under the condition that
applying a shuffle is allowed only once is considered to be one of
the most important themes in clarifying the computational limits
of card-based cryptography.

In the future, it is expected that our technique will be extended
to functions other than AND and XOR. Because there is a gap
between the AND and XOR computations in regard to the number
of cards required by our protocols as discussed in Section 5, it is
also worthwhile to examine whether this gap is inherent or not.

ACKNOWLEDGMENTS
We thank the anonymous referees, whose comments have helped
us to improve the presentation of the paper. This work was sup-
ported in part by JSPS KAKENHI Grant Numbers JP19J21153 and
JP21K11881.

REFERENCES
[1] Yuta Abe, Yu-ichi Hayashi, Takaaki Mizuki, and Hideaki Sone. 2021. Five-Card

AND Computations in Committed Format Using Only Uniform Cyclic Shuffles.

New Gener. Comput. 39 (2021), 97–114. Issue 1. https://doi.org/10.1007/s00354-
020-00110-2

[2] Yuta Abe, Takaaki Mizuki, and Hideaki Sone. 2021. Committed-format AND
protocol using only random cuts. Nat. Comput. 20, 4 (2021), 639–645. https:
//doi.org/10.1007/s11047-021-09862-2

[3] Rie Ishikawa, Eikoh Chida, and Takaaki Mizuki. 2015. Efficient Card-Based
Protocols for Generating a Hidden Random PermutationWithout Fixed Points. In
Unconventional Computation and Natural Computation (Lecture Notes in Computer
Science, Vol. 9252), Cristian S. Calude and Michael J. Dinneen (Eds.). Springer,
Cham, 215–226. https://doi.org/10.1007/978-3-319-21819-9_16

[4] Raimu Isuzugawa, Kodai Toyoda, Yu Sasaki, Daiki Miyahara, and Takaaki Mizuki.
2021. A Card-Minimal Three-Input AND Protocol Using Two Shuffles. In Com-
puting and Combinatorics (Lecture Notes in Computer Science, Vol. 13025), Chi-Yeh
Chen, Wing-Kai Hon, Ling-Ju Hung, and Chia-Wei Lee (Eds.). Springer, Cham,
668–679. https://doi.org/10.1007/978-3-030-89543-3_55

[5] Julia Kastner, Alexander Koch, Stefan Walzer, Daiki Miyahara, Yu-ichi Hayashi,
Takaaki Mizuki, and Hideaki Sone. 2017. The Minimum Number of Cards in
Practical Card-Based Protocols. In Advances in Cryptology – ASIACRYPT 2017
(Lecture Notes in Computer Science, Vol. 10626), Tsuyoshi Takagi and Thomas
Peyrin (Eds.). Springer, Cham, 126–155. https://doi.org/10.1007/978-3-319-70700-
6_5

[6] Alexander Koch. 2018. The Landscape of Optimal Card-based Protocols. Cryp-
tology ePrint Archive, Report 2018/951. https://eprint.iacr.org/2018/951.

[7] Alexander Koch. 2021. The Landscape of Security from Physical Assumptions.
In 2021 IEEE Information Theory Workshop (ITW). IEEE, Los Alamitos, CA, USA,
1–6. https://doi.org/10.1109/ITW48936.2021.9611501

[8] Alexander Koch, Michael Schrempp, and Michael Kirsten. 2021. Card-based
cryptography meets formal verification. New Gener. Comput. 39, 1 (2021), 115–
158. https://doi.org/10.1007/s00354-020-00120-0

[9] Alexander Koch and Stefan Walzer. 2020. Foundations for Actively Secure Card-
Based Cryptography. In Fun with Algorithms (LIPIcs, Vol. 157), Martin Farach-
Colton, Giuseppe Prencipe, and Ryuhei Uehara (Eds.). Schloss Dagstuhl, Dagstuhl,
Germany, 17:1–17:23. https://doi.org/10.4230/LIPIcs.FUN.2021.17

[10] Alexander Koch, Stefan Walzer, and Kevin Härtel. 2015. Card-Based Crypto-
graphic Protocols Using a Minimal Number of Cards. In Advances in Cryptol-
ogy – ASIACRYPT 2015 (Lecture Notes in Computer Science, Vol. 9452), Tetsu
Iwata and Jung Hee Cheon (Eds.). Springer, Berlin, Heidelberg, 783–807. https:
//doi.org/10.1007/978-3-662-48797-6_32

[11] Hiroto Koyama, Kodai Toyoda, Daiki Miyahara, and Takaaki Mizuki. 2021. New
Card-Based Copy Protocols Using Only Random Cuts. In ASIA Public-Key Cryp-
tography Workshop (Hong Kong) (APKC ’21). ACM, New York, NY, USA, 13–22.
https://doi.org/10.1145/3457338.3458297

[12] Pascal Lafourcade, Daiki Miyahara, Takaaki Mizuki, Léo Robert, Tatsuya Sasaki,
and Hideaki Sone. 2021. How to Construct Physical Zero-Knowledge Proofs for
Puzzles with a “Single Loop” Condition. Theor. Comput. Sci. 888 (2021), 41–55.
https://doi.org/10.1016/j.tcs.2021.07.019

[13] Yoshifumi Manabe and Hibiki Ono. 2021. Secure Card-Based Cryptographic
Protocols Using Private Operations Against Malicious Players. In Innovative
Security Solutions for Information Technology and Communications, Diana Maimut,
Andrei-George Oprina, and Damien Sauveron (Eds.). Springer, Cham, 55–70.
https://doi.org/10.1007/978-3-030-69255-1_5

[14] Yoshifumi Manabe and Hibiki Ono. 2022. Card-Based Cryptographic Protocols
with Malicious Players Using Private Operations. New Gener. Comput. (2022),
27 pages. https://doi.org/10.1007/s00354-021-00148-w in press.

[15] Daiki Miyahara, Hiromichi Haneda, and Takaaki Mizuki. 2021. Card-Based
Zero-Knowledge Proof Protocols for Graph Problems and Their Computational
Model. In Provable and Practical Security (Lecture Notes in Computer Science,
Vol. 13059), Qiong Huang and Yu Yu (Eds.). Springer, Cham, 136–152. https:
//doi.org/10.1007/978-3-030-90402-9_8

[16] Daiki Miyahara, Itaru Ueda, Yu-ichi Hayashi, Takaaki Mizuki, and Hideaki Sone.
2021. Evaluating card-based protocols in terms of execution time. Int. J. Inf. Secur.
20, 5 (2021), 729–740. https://doi.org/10.1007/s10207-020-00525-4

[17] Kengo Miyamoto and Kazumasa Shinagawa. 2021. Graph Automorphism Shuffles
from Pile-Scramble Shuffles. CoRR abs/2109.00397 (2021), 16 pages. https:
//arxiv.org/abs/2109.00397

[18] Takaaki Mizuki, Michihito Kumamoto, and Hideaki Sone. 2012. The Five-Card
Trick Can Be Done with Four Cards. In Advances in Cryptology – ASIACRYPT
2012 (Lecture Notes in Computer Science, Vol. 7658), Xiaoyun Wang and Kazue
Sako (Eds.). Springer, Berlin, Heidelberg, 598–606. https://doi.org/10.1007/978-
3-642-34961-4_36

[19] Takaaki Mizuki and Hiroki Shizuya. 2014. A formalization of card-based cryp-
tographic protocols via abstract machine. Int. J. Inf. Secur. 13, 1 (2014), 15–23.
https://doi.org/10.1007/s10207-013-0219-4

[20] Takaaki Mizuki and Hiroki Shizuya. 2017. Computational Model of Card-Based
Cryptographic Protocols and Its Applications. IEICE Trans. Fundamentals E100.A,
1 (2017), 3–11. https://doi.org/10.1587/transfun.E100.A.3

[21] Takaaki Mizuki and Hideaki Sone. 2009. Six-Card Secure AND and Four-Card
Secure XOR. In Frontiers in Algorithmics (Lecture Notes in Computer Science,

https://doi.org/10.1007/s00354-020-00110-2
https://doi.org/10.1007/s00354-020-00110-2
https://doi.org/10.1007/s11047-021-09862-2
https://doi.org/10.1007/s11047-021-09862-2
https://doi.org/10.1007/978-3-319-21819-9_16
https://doi.org/10.1007/978-3-030-89543-3_55
https://doi.org/10.1007/978-3-319-70700-6_5
https://doi.org/10.1007/978-3-319-70700-6_5
https://eprint.iacr.org/2018/951
https://doi.org/10.1109/ITW48936.2021.9611501
https://doi.org/10.1007/s00354-020-00120-0
https://doi.org/10.4230/LIPIcs.FUN.2021.17
https://doi.org/10.1007/978-3-662-48797-6_32
https://doi.org/10.1007/978-3-662-48797-6_32
https://doi.org/10.1145/3457338.3458297
https://doi.org/10.1016/j.tcs.2021.07.019
https://doi.org/10.1007/978-3-030-69255-1_5
https://doi.org/10.1007/s00354-021-00148-w
https://doi.org/10.1007/978-3-030-90402-9_8
https://doi.org/10.1007/978-3-030-90402-9_8
https://doi.org/10.1007/s10207-020-00525-4
https://arxiv.org/abs/2109.00397
https://arxiv.org/abs/2109.00397
https://doi.org/10.1007/978-3-642-34961-4_36
https://doi.org/10.1007/978-3-642-34961-4_36
https://doi.org/10.1007/s10207-013-0219-4
https://doi.org/10.1587/transfun.E100.A.3


Vol. 5598), Xiaotie Deng, John E. Hopcroft, and Jinyun Xue (Eds.). Springer, Berlin,
Heidelberg, 358–369. https://doi.org/10.1007/978-3-642-02270-8_36

[22] Takeshi Nakai, Yuto Misawa, Yuuki Tokushige, Mitsugu Iwamoto, and Kazuo
Ohta. 2021. How to Solve Millionaires’ Problem with Two Kinds of Cards. New
Gener. Comput. 39, 1 (2021), 73–96. https://doi.org/10.1007/s00354-020-00118-8

[23] Takeshi Nakai, Satoshi Shirouchi, Yuuki Tokushige, Mitsugu Iwamoto, and Kazuo
Ohta. 2022. Secure Computation for Threshold Functions with Physical Cards:
Power of Private Permutations. New Gener. Comput. (2022), 19 pages. https:
//doi.org/10.1007/s00354-022-00153-7 in press.

[24] Takuya Nishida, Yu-ichi Hayashi, Takaaki Mizuki, and Hideaki Sone. 2015. Card-
Based Protocols for Any Boolean Function. In Theory and Applications of Models of
Computation (Lecture Notes in Computer Science, Vol. 9076), Rahul Jain, Sanjay Jain,
and Frank Stephan (Eds.). Springer, Cham, 110–121. https://doi.org/10.1007/978-
3-319-17142-5_11

[25] Akihiro Nishimura, Takuya Nishida, Yu-ichi Hayashi, Takaaki Mizuki, and
Hideaki Sone. 2018. Card-based protocols using unequal division shuffles. Soft
Comput. 22 (2018), 361–371. https://doi.org/10.1007/s00500-017-2858-2

[26] Hibiki Ono and Yoshifumi Manabe. 2021. Card-Based Cryptographic Logical
Computations Using Private Operations. New Gener. Comput. 39 (2021), 19–40.
Issue 1. https://doi.org/10.1007/s00354-020-00113-z

[27] Léo Robert, Daiki Miyahara, Pascal Lafourcade, Luc Libralesso, and Takaaki
Mizuki. 2021. Physical zero-knowledge proof and NP-completeness proof of
Suguru puzzle. Inf. Comput. (2021), 14 pages. https://doi.org/10.1016/j.ic.2021.
104858 in press.

[28] Léo Robert, Daiki Miyahara, Pascal Lafourcade, and Takaaki Mizuki. 2022. Card-
Based ZKP for Connectivity: Applications to Nurikabe, Hitori, and Heyawake.
New Gener. Comput. (2022), 23 pages. https://doi.org/10.1007/s00354-022-00155-5
in press.

[29] Suthee Ruangwises. 2022. Two Standard Decks of Playing Cards are Sufficient
for a ZKP for Sudoku. New Gener. Comput. (2022), 17 pages. https://doi.org/10.
1007/s00354-021-00146-y in press.

[30] Suthee Ruangwises and Toshiya Itoh. 2020. Physical Zero-Knowledge Proof for
Numberlink Puzzle and k Vertex-Disjoint Paths Problem. New Gener. Comput. 39
(2020), 3–17. https://doi.org/10.1007/s00354-020-00114-y

[31] Suthee Ruangwises and Toshiya Itoh. 2021. Physical zero-knowledge proof for
Ripple Effect. Theor. Comput. Sci. 895 (2021), 115–123. https://doi.org/10.1016/j.
tcs.2021.09.034

[32] Takahiro Saito, Daiki Miyahara, Yuta Abe, Takaaki Mizuki, and Hiroki Shizuya.
2020. How to Implement a Non-uniform or Non-closed Shuffle. In Theory and
Practice of Natural Computing (Lecture Notes in Computer Science, Vol. 12494), Car-
los Martín-Vide, Miguel A. Vega-Rodríguez, and Miin-Shen Yang (Eds.). Springer,
Cham, 107–118. https://doi.org/10.1007/978-3-030-63000-3_9

[33] Kazumasa Shinagawa and Koji Nuida. 2021. A single shuffle is enough for secure
card-based computation of any Boolean circuit. Discrete Appl. Math. 289 (2021),
248–261. https://doi.org/10.1016/j.dam.2020.10.013

[34] Kodai Toyoda, Daiki Miyahara, and Takaaki Mizuki. 2021. Another Use of the
Five-Card Trick: Card-Minimal Secure Three-Input Majority Function Evaluation.
In Progress in Cryptology – INDOCRYPT 2021 (Lecture Notes in Computer Science,
Vol. 13143), Avishek Adhikari, Ralf Küsters, and Bart Preneel (Eds.). Springer,
Cham, 536–555. https://doi.org/10.1007/978-3-030-92518-5_24

[35] Kenji Yasunaga. 2020. Practical Card-Based Protocol for Three-Input Majority.
IEICE Trans. Fundamentals E103.A, 11 (2020), 1296–1298. https://doi.org/10.1587/
transfun.2020EAL2025

[36] Samee Zahur, Mike Rosulek, and David Evans. 2015. Two Halves Make a Whole.
In Advances in Cryptology - EUROCRYPT 2015 (Lecture Notes in Computer Science,
Vol. 9057), Elisabeth Oswald and Marc Fischlin (Eds.). Springer, Berlin, Heidelberg,
220–250. https://doi.org/10.1007/978-3-662-46803-6_8

https://doi.org/10.1007/978-3-642-02270-8_36
https://doi.org/10.1007/s00354-020-00118-8
https://doi.org/10.1007/s00354-022-00153-7
https://doi.org/10.1007/s00354-022-00153-7
https://doi.org/10.1007/978-3-319-17142-5_11
https://doi.org/10.1007/978-3-319-17142-5_11
https://doi.org/10.1007/s00500-017-2858-2
https://doi.org/10.1007/s00354-020-00113-z
https://doi.org/10.1016/j.ic.2021.104858
https://doi.org/10.1016/j.ic.2021.104858
https://doi.org/10.1007/s00354-022-00155-5
https://doi.org/10.1007/s00354-021-00146-y
https://doi.org/10.1007/s00354-021-00146-y
https://doi.org/10.1007/s00354-020-00114-y
https://doi.org/10.1016/j.tcs.2021.09.034
https://doi.org/10.1016/j.tcs.2021.09.034
https://doi.org/10.1007/978-3-030-63000-3_9
https://doi.org/10.1016/j.dam.2020.10.013
https://doi.org/10.1007/978-3-030-92518-5_24
https://doi.org/10.1587/transfun.2020EAL2025
https://doi.org/10.1587/transfun.2020EAL2025
https://doi.org/10.1007/978-3-662-46803-6_8

	Abstract
	1 Introduction
	1.1 Known results
	1.2 Contributions

	2 Preliminaries
	2.1 Operations
	2.2 Pile-scramble Shuffle
	2.3 Counting and Combining Shuffles
	2.4 The Existing Protocol

	3 Our Proposed n-input AND Protocol
	3.1 Basic Idea 1: How to Compute AND
	3.2 Basic Idea 2: Randomization
	3.3 Description

	4 Our proposed n-Input XOR Protocol
	4.1 Basic Idea 1: How to Compute XOR
	4.2 Basic Idea 2: Randomization
	4.3 Description

	5 Discussion
	5.1 Optimality
	5.2 Non-committed Output
	5.3 Two Pile-scramble Shuffles with Batching

	6 Conclusion
	Acknowledgments
	References

