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Abstract. Card-based protocols perform cryptographic functionalities, such as
secure computations, using a deck of cards. Basically, these protocols are sup-
posed to be implemented by humans’ manipulating physical cards. This paper is
the first attempt to make use of a 3D printer for better physical implementations
of card-based protocols: we have designed and fabricated a couple of physical
devices using a 3D printer that are useful for humans to implement protocols.
The first device we created is the “five-card-trick turner,” which can turn over
five cards simultaneously in an amusing manner; this operation appears in the
final step of the five-card trick, which is the most famous card-based protocol.
The second device we created is a special card box for storing a pile of cards,
whose concept was proposed in 2015 but the device had not been created in re-
ality thus far. The special boxes can be used for implementing complex shuffles
that seem difficult to implement only by hand. Furthermore, we propose another
use of these special boxes so that we can efficiently perform secure computations
of symmetric functions.

Keywords: Card-based cryptography · 3D printer · Secure computation · Sym-
metric function

1 Introduction

The development of card-based cryptography, which performs cryptographic function-
alities such as secure computations using a deck of cards, has continued in recent years
(e.g. [7, 8]). Card-based cryptography is a very unconventional type of computation.

Numerous card-based cryptographic protocols have been developed (cf. [3,10,16]),
and many of them are simple enough to be easily implemented by non-experts, includ-
ing high school students. Such protocols are implemented by humans’ manipulating a
physical deck of cards (along with a table on which the cards are placed). This paper
begins with a description of the five-card trick [1] as a concrete example of a practical
card-based protocol.
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Version is subject to the publisher ’s Accepted Manuscript terms of use: https://www.
springernature.com/gp/open-research/policies/accepted-manuscript-terms.
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1.1 The Five-Card Trick

The five-card trick [1] is the first card-based protocol in history; it performs a secure
two-input AND computation using five cards.

Suppose that Alice and Bob want to perform a secure AND computation. That is,
Alice and Bob holding private bits a ∈ {0, 1} and b ∈ {0, 1}, respectively, want to know
only the AND value a ∧ b. Using two cards ♣ r of different colors, whose backs are
both ? , Alice secretly creates a commitment to her private bit a ∈ {0, 1}

? ?︸︷︷︸
a

,

which follows the following encoding rule:

♣ r = 0, r ♣ = 1. (1)

That is, the pair of face-down cards is a commitment to a, and its order is ♣ r when
a = 0 and r ♣ when a = 1. Bob creates a commitment to b ∈ {0, 1} in the same way,
and another red card r is placed in the middle:

? ?︸︷︷︸
a

r ? ?︸︷︷︸
b

.

Given such a sequence of five cards as input i, the five-card trick proceeds as follows.

1. The leftmost two cards are swapped so that the commitment to a is converted to its
negation a:

? ? r ? ?

@R�	
? ?︸︷︷︸

a

r ? ?︸︷︷︸
b

.

2. Turn over the center r card:

? ?︸︷︷︸
a

r ? ?︸︷︷︸
b

→ ? ?︸︷︷︸
a

? ? ?︸︷︷︸
b

.

Note that a ∧ b = 1 if and only if the three cards in the middle are r r r .
3. Apply a random cut (denoted by the symbol ⟨·⟩):〈

? ? ? ? ?
〉
.

A random cut is a cyclic shuffling operation, where the sequence of cards is shifted
by a random number. A random cut can be easily implemented in the real world by
the so-called Hindu cut [20].

i The original paper [1] used ♠ instead of ♣ , and put ♠ in the middle. We place r in the
middle because three heart suits r r r may be more convincing when announcing a∧b = 1.



Card-Based Cryptography Meets 3D Printer 3

4. Turn over all the five cards and obtain the value of a ∧ b as follows:

♣ r r r ♣ r ♣ r ♣ r

r r r ♣ ♣ ♣ r ♣ r r

r r ♣ ♣ r or r ♣ r r ♣
r ♣ ♣ r r ♣ r r ♣ r

♣ ♣ r r r r r ♣ r ♣
a ∧ b = 1 a ∧ b = 0 .

This AND protocol is very simple and can be easily implemented with five physical
cards by human hand, as shown in the picture in Fig. 1.

Fig. 1. An implementation of the final step of the five-card trick

In this paper, we use a 3D printer to create a device, called the “five-card-trick
turner,” that turns over five cards at once in the final step, as mentioned later.

1.2 Special Boxes for Implementing Complex Shuffles

In the computational model of card-based protocols [9], a “shuffle” is mathematically
defined, and the model includes “complex” shuffles which seem difficult for humans to
implement only by hand. On the other hand, somewhat interestingly, it is known that
making use of such complex shuffles leads to protocols having a smaller number of
cards or shuffles (e.g. [6, 13, 19]). Furthermore, it was pointed out that some of such
complex shuffles could be implemented (in the real world) by using special card boxes
illustrated in Fig. 2a [12–14].

The main feature of this box is that several boxes can be stacked and piles of cards
stored in boxes can be combined into a single pile, as shown in Fig. 2b.

To the best of our knowledge, such a special card box had never been made in the
real world. Thus, we created such physical boxes using a 3D printer for the first time.

1.3 Contribution of This Paper

As mentioned in Sects. 1.1 and 1.2, this paper reports that, using a 3D printer, we de-
signed and created two physical devices useful for implementing card-based protocols:
the five-card-trick turner and the special card boxes for storing and combining piles.
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(a) Special box whose lid and bottom can be slid. (b) Stack boxes and combine piles of cards.

Fig. 2. The special card boxes

Five-card-trick turner
We created a device for flipping five cards simultaneously in an amusing manner
in the final step of the five-card trick; we name it the five-card-trick turner, and our
actually created one is shown in Fig. 3. Due to the page limitation, we omit the
details in this paper. As mentioned above, the five-card trick is very simple, and it
has attracted many lay-people such as high school students; thus, we expect that
this new device will further increase the appeal of the five-card trick.

(a) Flipping five face-down cards (b) Revealed five cards

Fig. 3. The five-card-trick turner

Special card boxes
As mentioned in Sect. 1.2, the special card boxes illustrated in Fig. 2 were consid-
ered to potentially implement complex shuffles (some of which could theoretically
reduce the numbers of required cards or shuffles), but we had not seen any real
implementation. We then actually created special card boxes using a 3D printer, as
shown in Fig. 4.
As a demonstration, using the created boxes, we have actually executed the existing
five-copy protocol [13], which requires a complex shuffle, and confirmed that the
protocol can be executed securely and reliably.
In addition, we propose a novel use of these special card boxes: we show that they
can be used for securely computing any symmetric function efficiently. Specifically,
in terms of the number of times we make a pile of cards, the existing method [15]
requires n2/2 + 3n/2 − 2 times, whereas our method uses only 2n − 2 times. This
result is very interesting from both theoretical and practical perspectives.
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Fig. 4. Created special card boxes for complex shuffles

Let us emphasize that the main scientific contribution of this paper lies in revealing
how new physical devices can enable a novel and efficient protocol.

1.4 Organization of This Paper

The rest of this paper is organized as follows. In Sect. 2, to be familiar with the compu-
tational model of card-based protocols, we show a pseudo-code for the five-card trick.
Next, in Sect. 3, we report on the creation of the special card boxes on a 3D printer and
the actual execution of the five-card copy protocol. Next, in Sect. 4, we show that the
special card boxes provide “sorting functionality,” (whereby we will construct an effi-
cient protocol for any symmetric function in Sect. 6). Next, in Sect. 5, we introduce the
existing protocol for symmetric functions. Then, in Sect. 6, we present our protocol for
symmetric functions based on the special card boxes. Finally, we conclude in Sect. 7.

2 Pseudo-Code for the Five-Card Trick

In this section, we give a formal description of the five-card trick introduced in Sect. 1.1
using a pseudo-code as shown in Pseudo-code 1. Remember that this protocol uses
five cards r r r ♣ ♣ and each input commitment is placed using two cards ♣ r

according to the encoding rule (1).
Here, (perm, (1 2)) means an action permuting a sequence of cards based on the

cyclic permutation (1 2), and (turn, {3}) means to turn over the third card. The next
action

(shuf, {id, (1 2 3 4 5), (1 2 3 4 5)2, (1 2 3 4 5)3, (1 2 3 4 5)4})
indicates a random cut: one of the five permutations is chosen uniformly at random and
applied, where (1 2 3 4 5) is a cyclic permutation and id denotes the identity. The next
action (turn, {1, 2, 3, 4, 5}) means that all five cards are turned over.

3 Special Card Boxes for Complex Shuffles

In card-based cryptography, complex shuffles have sometimes been used in protocol
construction, especially when designing protocols with extremely small numbers of
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Pseudo-code 1. Five-card trick

Input: ? ?︸︷︷︸
a

r ? ?︸︷︷︸
b

(perm, (1 2))
(turn, {3})
(shuf, {id, (1 2 3 4 5), (1 2 3 4 5)2,

(1 2 3 4 5)3, (1 2 3 4 5)4})
(turn, {1, 2, 3, 4, 5})
if rrr appears then
(result, ”a ∧ b = 1”)

else
(result, ”a ∧ b = 0”)

endif

Pseudo-code 2. Five-card copy

Input: ? ?︸︷︷︸
a

♣ ♣ r

(perm, (1 2 4 5 3))
(shuf, {id, (1 4 2 5 3)})
(perm, (2 5 3))
(turn, {5})
if ♣ appears then
(result, (1, 2), (3, 4))
else
(perm, (1 2))
(turn, {5})
return to the beginning
endif

cards or shuffles. In this section, we report that, using a 3D printer, we actually created
special card boxes for implementing such complex shuffles.

3.1 Complex Shuffles by Special Card Boxes

A card-based protocol is formulated by an abstract machine [9]. Specifically, as seen
in the pseudo-code of the five-card trick shown in Sect. 2, a protocol consists mainly
of a combination of three actions perm, turn, and shuf. Of these, shuf is said to be
the most important action, and a shuffle is formulated as (shuf, Π,F ) using a set of
permutations Π and a probability distribution F on it. That is, a permutation π ∈ Π is
chosen according to the distribution F , and π is applied to the sequence of cards.

Thus, Π and F in a shuffle (shuf, Π,F ) in the computational model of card-based
protocols can be arbitrary. If F is a uniform distribution, the shuffle is said to be uniform
and is sometimes written as (shuf, Π) for short. If the set of permutations Π is closed,
i.e., a subgroup of permutations, we say that the shuffle is closed.

A non-uniform or non-closed shuffle is often called a complex shuffle and is difficult
for humans to implement. The first concrete complex shuffle in the history of card-based
cryptography is (shuf, {id, (1 4 2 5 3)}). This is a shuffle in which the left two cards and
the remaining three cards in a sequence of five cards are considered as piles, and the
two piles are swapped with a probability of 1/2:

1

?
2

?
3

?
4

?
5

? →


1

?
2

?
3

?
4

?
5

?
3

?
4

?
5

?
1

?
2

? .

This shuffle is uniform but not closed (because (1 4 2 5 3)2 , id), and is difficult to
implement with human hands (e.g., if you make a pile of two cards and a pile of three
cards by fixing them with rubber bands and stir them together, the difference in the
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number of cards will tell you whether the two piles have been switched or not). This
shuffle was presented by Eddie Cheung, Christa Hawthorne, and Patrick Lee, students
in D. R. Stinson’s class CS 758: Cryptography /Network Security (Fall Semester, 2013)
project at the University of Waterloo.

Later in 2015, this shuffle was used to construct a five-card copy protocol [13],
which makes two copied commitments from a given commitment (before this protocol,
the copy protocol using the fewest cards required six cards [11]). A pseudo-code of the
five-card copy protocol is shown in Pseudo-code 2, where (result, (1, 2), (3, 4)) indicates
that the first and second cards are a commitment to a, and so are the third and fourth.

The first mention of how to physically implement the shuffle (shuf, {id, (1 4 2 5 3)})
was made in the paper [13], and it was expected that it could actually be implemented
using two special card boxes like Fig. 2a in Sect. 1. Specifically, a pile of two cards and
a pile of three cards are each placed in a box and switch them randomly:

? ? ? ? ? .

Then, slide the top and bottom of the boxes to merge the two piles into a single pile, as
shown in Fig. 2b in Sect. 1. Although how to implement is shown in this way, to the best
of our knowledge, such a card box has never been physically created and implemented
in the real world.

In the paper [12], the conditions on special card boxes that must be satisfied are
listed on p. 1498. The following is a quote from that part, where this special box-shaped
equipment is referred to as a ‘case.’

“..., we assume physical cases that satisfy the following properties.
1. It is possible to store a pile of cards in a case without changing its order.
2. It is possible to take out a pile of cards from a case without changing its

order.
3. It is possible to take out multiple piles without changing their orders by

opening multiple cases at the same time. No information leak will be
caused by this action.

4. A number of cases that possibly contain piles of cards are indistinguishable
from one another, and we cannot obtain any information about the cards
inside.

Based on the above, we have designed a special card box, as will be described in
Sect. 3.2.

3.2 Design and Creation of Special Boxes

Basically, the special box was designed to meet the requirements described in Sect. 3.1.
In addition, design innovations were added to ease protocol execution. Specifically,
notches are included at the top and bottom of the stacked boxes to prevent dislodging
during operation. In addition, when sliding the bottom or lid of the stacked boxes, the
other slides in tandem with it. The productions are shown in Fig. 4 in Sect. 1.

We added another useful feature: the ejector shown in Fig. 5, which helps securely
eject a pile of cards from boxes. If we flip the card box to eject a pile of cards, then it
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Fig. 5. Ejector device and support equipment Fig. 6. Removing cards using the ejector

may lead to a partial view of the cards and protocol failure. Instead, by using the ejector,
cards can be securely ejected without the need to flip the box. The process of ejecting
piles of cards using these devices is shown in Fig. 6.

3.3 Real Implementation of the Five-Card Copy Protocol

Fig. 7 shows an actual implementation of the complex shuffle (shuf, {id, (1 4 2 5 3)}).
Based on this, we have actually implemented the five-card copy protocol described in
Sect. 3.1. We think that this was the first secure physical implementation of the five-card
copy protocol in history.

Fig. 7. Implementation of the complex shuffle with special boxes

4 Sorting Piles Secretly with Special Boxes

In this section, we consider another use of the special card box: we introduce a new
mechanism for storing a card on top of each box whereby we can sort a sequence of
piles secretly according to the order of some face-down cards.

4.1 Attaching Card on Top of Box

We consider attaching a face-down card to a special card box, as shown in Fig. 8. The
attached card could be fixed with the box using a rubber band or something, but, using
a 3D printer, we introduced a new feature to realize this more easily.
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Fig. 8. Attach a card to the top of the box Fig. 9. Card housing mechanism

Specifically, we have created a card box with a mechanism for storing a card in the
top of the box, as shown in Fig. 9. The card storage mechanism is attached to the top
lid of the box, allowing a single card to be inserted. This structure improves preventing
card removal and other protocol errors when shuffling card boxes.

4.2 Example of Box Use

Here, we give a concrete example of making use of the feature of the special box ex-
plained in Sect. 4.1.

Given commitments to x1, x2 ∈ {0, 1}

? ?︸︷︷︸
x1

? ?︸︷︷︸
x2

along with r , we want to “sort” the commitment to x1 and the face-down r according
to the value of x2 while keeping the value of x2 secret. That is, we want the following
to be:

if x2 = 0 : ? ?︸︷︷︸
x1

r

? , if x2 = 1 :
r

? ? ?︸︷︷︸
x1

.

This can be done as follows.

1. Open the tops of two special card boxes, insert the commitment to x1 and the face-
down r card, and close the tops:

? ?︸︷︷︸
x1

r

? → ? ? ? .

2. Place the left card of the commitment to x2 on top of the left box (by the storage
mechanism) and the right card to the top of the right box:

? ?
.
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3. Shuffle the two special boxes until they are no longer clear which is which:

〈 ? ∣∣∣∣∣∣
? 〉

.

4. Take out the cards at the tops of the boxes and turn them over; then, one is ♣ and
the other r. Stack the two boxes so that the r box is under the ♣ box, and pull out
the middle dividers to merge the two piles inside the boxes into a single pile.

This procedure accomplishes the above.

4.3 General Description

Here, we generalize the method mentioned in Sect. 4.2. That is, we now demonstrate
that we can sort k piles (of possibly different sizes) based on face-down numbered cards
ranging from 1 to k.

Assume that there are k piles of arbitrary sizes, and that we have k face-down num-
bered cards arranged by the numbers from 1 to k in a specific order.

1. Place each pile in a special box:

? ? · · · ? ? ? · · · ? · · · ? ? · · · ? .

2. Place the face-down numbered card on top of each special box (without changing
the order):

?
? ? · · · ?

?
? ? · · · ? · · ·

?
? ? · · · ? .

3. Shuffle the k special boxes, take out the numbered cards, turn them over, and sort
the boxes in ascending order based on the revealed numbered cards:

1
? ? · · · ?

2
? ? · · · ? · · ·

k

? ? · · · ? .

4. All the special boxes are concatenated and the partitions are pulled out to obtain a
sorted sequence of cards:

? ? ? ? · · · ? .

For piles of the same size, the sort sub-protocol proposed in [5] can be used, but for
piles of irregular sizes, the method described in this paper is effective.

As seen later, our method above will provide an efficient addition of commitments,
by which we can construct an efficient protocol for any symmetric function. To compare
our protocol with the existing one, we first introduce the existing protocol in Sect. 5,
followed by our protocol presented in Sect. 6.
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5 Secure Computation of Symmetric Function: Existing Method

Ruangwises and Itoh [15] proposed a generic protocol for any symmetric function f :
{0, 1}n → R such that its range R can be an arbitrary set. In this section, we introduce
this existing protocol. Note that a function is said to be symmetric if it is invariant under
permutations of its variables.

5.1 Preliminaries

We first introduce the pile-shifting shuffle [12, 18]. Suppose that there are k piles B1,
· · · , Bk of the same size. Applying a pile-shifting shuffle to this results in

〈 B1︷        ︸︸        ︷
? ? · · · ?

∣∣∣∣∣ · · · ∣∣∣∣∣
Bk︷        ︸︸        ︷

? ? · · · ?
〉
→

B1+r︷        ︸︸        ︷
? ? · · · ? · · ·

Bk+r︷        ︸︸        ︷
? ? · · · ? ,

where r ∈ {0, 1, · · · , k − 1} is random and if the subscript exceeds k, the value shall
return to 1. The pile-shifting shuffle can be implemented by fixing piles with envelopes,
rubber bands, or sleeves and applying the Hindu cut to them.

We next explain how to express a non-negative integer as a sequence of cards [15].
Let k ≥ 2; then, using k−1 ♣ cards and a r card, we represent an integer i, 0 ≤ i ≤ k−1,
by placing r at the (i + 1)-th position:

♣
1
♣
2
... r

i+1
... ♣

k
.

Hereinafter, such a sequence of face-down cards is denoted by Erk (i). If we reverse the
colors, we denote the resulting sequence by E♣k (i).

5.2 Addition of Non-Negative Integers

Ruangwises and Itoh [15] proposed a method for performing addition, given two face-
down sequences representing non-negative integers. (This method is based on the idea
of Shinagawa et al. [17].)

1. Given E♣k (a) and Erk (b) representing two non-negative integers a, b, for the sake of
explanation, we name each card in each sequence as follows:

E♣k (a) : ?
x0

?
x1

· · · ?
xk−1

, Erk (b) : ?
y0

?
y1

· · · ?
yk−1

.

2. Rearrange the cards as follows:

?
x0

yk−1

? ?
x1

yk−2

? · · · ?
xk−1

y0

? .

3. Apply a pile-shifting shuffle, where r is a random number:[
?
x0

yk−1

?
∣∣∣∣∣ ?

x1

yk−2

?
∣∣∣∣∣ · · · ∣∣∣∣∣ ?

xk−1

y0

?
]
→ ?

x0+r

yk−1−r

? ?
x1+r

yk−2−r

? · · · ?
xk−1+r

y0−r

? .
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4. Rearrange the cards as in the original:

E♣k (a − r) : ?
x0+r

?
x1+r

· · · ?
xk−1+r

, Erk (b + r) : ?
y0−r

?
y1−r

· · · ?
yk−1−r

.

Here, the random value r is subtracted from a and r is added to b.
5. Turn over the cards in Erk (b + r), and the sequence of E♣k (a − r) is cyclically shifted

to the right by the revealed number s = b + r:

E♣k (a − r) : ?
x0+r

?
x1+r

· · · ?
xk−1+r

→ E♣k (a + b) : ?
x0+r−s

?
x1+r−s

· · · ?
xk−1+r−s

.

This allows a secure computation of (a− r)+ (b+ r) = a+ b without leaking the values
of a and b. That is, E♣k (a + b) is obtained.

Although the addition method has been explained for E♣k (a) and Erk (b), it can also
be performed for other color combinations such as Erk (a) and E♣k (b).

5.3 Secure Computation of Symmetric Function

Let f : {0, 1}n → R be a symmetric function. We want to construct a protocol that
outputs only the value of f (x1, . . . , xn), given n commitments to x1, . . . , xn:

? ?︸︷︷︸
x1

? ?︸︷︷︸
x2

. . . ? ?︸︷︷︸
xn

→ · · · → f (x1, . . . , xn) ,

where each commitment follows the encoding rule (1).
Since f is symmetric, it is well known that the output value of f (x1, . . . , xn) de-

pends only on the sum
∑n

i=1 xi. That is, there exists a function g : {0, 1, . . . , n} → {0, 1}
such that f (x1, . . . , xn) = g

(∑n
i=1 xi

)
. Therefore, if we want to calculate the symmetric

function f , we only need to find the sum
∑n

i=1 xi.
Thus, it suffices to obtain a sequence E♣n+1(x1 + · · · + xn) or Ern+1(x1 + · · · + xn) from

the input commitments. Using the addition of non-negative integers described in Sect.
5.2, we can generate Ern+1(x1 + · · · + xn) with two additional cards [15]. Although the
details are omitted, the value of f (x1, . . . , xn) can be obtained by dividing, shuffling, and
turning over cards, based on the above function g [15].

Remember that when applying a pile-shifting shuffle, we have to make a pile of
cards using an envelope or something. During an execution of the existing protocol, the
number of times making piles is n2/2+3n/2−2. In practice, making a pile, i.e., fixing a
number of cards using an envelope, is a time-consuming operation, and hence, we want
to reduce this repetition. To this end, the special card boxes will be used for reducing the
number of times making piles in our proposed protocol presented in the next section.

6 Secure Computation of Symmetric Function: Our Method

In this section, making use of the special card boxes described in Sect. 4, we propose
a generic protocol for any symmetric function f : {0, 1}n → R. Our protocol uses only
one additional card and two special boxes; the number of piles made is 2n − 2.
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6.1 Adding Commitments with Special Boxes

As explained in Sect. 5.3, to securely compute a symmetric function, it suffices to obtain
E♣n+1(x1 + · · · + xn) or Ern+1(x1 + · · · + xn). Therefore, we give only a procedure for
generating the sum E♣n+1(x1 + · · · + xn) from input commitments.

Note that a commitment to x1 can be regarded as E♣2 (x1) :

? ?︸︷︷︸
x1

= ? ?︸︷︷︸
E♣2 (x1)

.

Note furthermore that placing a face-down r card to the right of it results in E♣3 (x1) :

? ?︸︷︷︸
x1

r → ? ? ?︸  ︷︷  ︸
E♣3 (x1)

,

and placing a face-down r card to the left results in E♣3 (x1 + 1) :

r ? ?︸︷︷︸
x1

→ ? ? ?︸  ︷︷  ︸
E♣3 (x1+1)

.

Therefore, notice that the example described in Sect. 4.2 is actually a procedure which
produces E♣3 (x1 + x2):

? ?︸︷︷︸
x1

? ?︸︷︷︸
x2

r → · · · → ? ? ?︸  ︷︷  ︸
E♣3 (x1+x2)

.

We extend this idea; given n commitments along with one additional card, using
two special boxes, we obtain E♣n+1(x1 + · · · + xn) as follows.

1. Add two commitments to x1 and x2 using the method described in Sect. 4.2, and
obtain E♣3 (x1 + x2):

? ?︸︷︷︸
x1

? ?︸︷︷︸
x2

r → ? ? ?︸  ︷︷  ︸
E♣3 (x1+x2)

♣ r .

2. Place E♣3 (x1 + x2) obtained in Step 1 in the left box and the r card in the right box,
place the commitment to x3 on tops of the boxes, and apply the addition in a similar
way:

?
? ? ?

?
? ♣ → · · · → ? ? ? ?︸      ︷︷      ︸

E♣4 (x1+x2+x3)

♣ ♣ r .

3. Repeat such an operation until xn is reached:

? ? ? ?︸      ︷︷      ︸
E♣4 (x1+x2+x3)

♣ ♣ r → ? ? ? ? ?︸          ︷︷          ︸
E♣5 (x1+x2+x3+x4)

♣ ♣ ♣ r

→ · · · → ? ? · · · ?︸        ︷︷        ︸
E♣n+1(x1+x2+ ···+xn)

♣ ♣ · · · ♣︸        ︷︷        ︸
n−1 cards

r .
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This is our protocol.
The existing protocol [15] requires two additional cards, while our protocol uses

only one additional card, i.e., it reduces the number of cards by one by using two special
boxes.

Also, the number of times to make piles (namely, the number of times a pile is
placed in a sleeve or envelope) is n2/2 + 3n/2 − 2 times in the existing protocol [15],
while the number of times to make piles (namely, the number of times we place cards
in a special box) is 2n − 2 times. In terms of this, our protocol is very efficientii.

Table. 1 summarizes their performances.

Table 1. The existing protocol and our protocol for symmetric functions

# of cards # of making a pile

Ruangwises–Itoh [15] 2n + 2 n2/2 + 3n/2 − 2

Ours 2n + 1 2n − 2

7 Conclusion

In this paper, we reported that, using a 3D printer, we created the five-card-trick turner
and the special card boxes useful for implementing card-based protocols. We also pro-
posed another use of the special card boxes so that we can efficiently perform secure
computations of symmetric functions. Specifically, our protocol needs only 2n−2 times
for making piles while the existing protocol needs n2/2 + 3n/2 − 2 times.

In order for secure computations or other cryptographic technologies to be widely
used in society, it is necessary for a wide range of stakeholders to understand the mean-
ing and significance of these cryptographic functionalities [2]. We hope that card-based
cryptography and its implementation will help in this regard.
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