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Abstract. Card-based cryptography typically uses a physical deck com-
prising black and red cards to perform secure computations, where a
one-bit value is encoded using a pair of cards with different colors such
that the order of black to red represents 0 and red to black represents 1.
One of the most fundamental classes of card-based protocols is the class
of “card-minimal” n-input AND protocols, which require 2n face-down
cards as input to securely evaluate the AND value after applying a num-
ber of shuffles; here, the 2n cards are minimally required to describe an
n-bit input. The best n-input AND protocols currently known use two
shuffles for n = 2, five shuffles for n = 3, and n + 1 shuffles for n > 3.
These upper bounds on the numbers of shuffles have not been improved
for several years. In this work, we present a better upper bound for the
n = 3 case by designing a new card-minimal three-input AND proto-
col using only two shuffles. Therefore, our proposed protocol reduces the
number of required shuffles from five to two; we believe that this is a
significant improvement.

1 Introduction

Many card-based protocols have been designed in the history of card-based cryp-
tography to perform secure computations using a deck of physical cards. Typi-
cally, card-based protocols work on two-colored decks comprising black @ and

red @ cards whose backs are denoted by | ? | and indistinguishable. These cards
are used to represent Boolean values as follows:

S0, []8)-1. 0

When two face-down cards represent a bit « € {0,1} according to the above
encoding rule (1), we call them a commitment to x, denoted as
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1.1 Card-Minimal AND Protocols

In 1989, Den Boer [2] designed the first card-based protocol, called the “five-
card trick,” which takes two commitments to x1, 22 € {0,1} and a helping card
@ as input to securely evaluate the AND value 21 A zo (without revealing any
information about x1, xs more than necessary) through a series of actions, such
as shuffling and turning over cards:

@ — - = 11 N\ To.
SN~ Y~~~
1 2

x x

Thus, this is a two-input AND protocol using one helping card.

Since then, a challenging open problem had been to construct a two-input
AND protocol without any helping card. More generally, could we construct an
n-input AND protocol using only 2n cards?

ww w = e = I AT A ATy,

Because 2n cards are necessary for arranging the n input commitments to the
values x1,%2,...,z, € {0,1} (as long as we obey the encoding rule (1)), this
type of AND protocol (using exactly 2n cards) is said to be card-minimal. This
study addresses the class of card-minimal AND protocols.

1.2 Known Results

The first card-minimal AND protocol was proposed by Kumamoto et al. in
2012 [12]:

a1 Az =0 if [2]#]?]9)]

2RBOs | |21 Awz = 0 if [#[Q]2]7]
w1 Awp =1 if [7] ] 7]]

T A To = 1 lf @@

That is, using only four cards, a two-input AND protocol was constructed. This
protocol uses two shuffles; more precisely, it applies a “random bisection cut
(RBC)” twice, which is a kind of shuffling operation (explained later in Sect. 2.3).
See the first protocol listed in Table 1.

How about n-input AND protocols for n > 3?7 This open problem was solved
in 2016 [11]. Specifically, for the case of n = 3, a card-minimal three-input AND
protocol was proposed by Mizuki [11]:
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e 2o 24 1 ANxo Axg =0 otherwise.
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Table 1. Existing card-minimal AND protocols and our proposed protocol (using
random cuts and/or random bisection cuts)

#Inputs #Cards #Shuffles

Kumamoto et al. [12] 2 4 2
Mizuki [11] 3 6 5
Mizuki [11] n(>4) 2n n+1
This paper 3 (] 2

Thus, this six-card protocol uses three random bisection cuts along with two
“random cuts (RCs),” for a total of five shuffles; the random cut is another
common type of shuffling operation, which will be explained in Sect. 2.2. See the
second protocol listed in Table 1.

For the case of n > 4, Mizuki [11] also proposed a card-minimal n-input AND
protocol:

@@?u?u?u?u?y?\«@@l“*’fBCi{iiﬁijﬁﬁfﬁi:if ; %ﬁﬁ]

This protocol takes n input commitments (such that n > 4) and uses n + 1 ran-
dom bisection cuts to securely evaluate their AND value. See the third protocol
shown in Table 1.

1.3 Contribution

In this work, we focus on the number of required shuffles: From Table 1, it
is observed that the number of shuffles used in the second protocol, i.e., 5 in
the three-input AND protocol [11], is somewhat large. Actually, the three-input
protocol [11] is elaborate but rather complicated, and it seems difficult for lay-
people to execute practically. Therefore, our goal is to improve this existing
three-input AND protocol [11].

Specifically, we will construct a new card-minimal three-input AND protocol
using only two shuffles, namely one random bisection cut and one random cut:

(El/\irz/\(Eg,:l if @@@
r1 ANxg ANxz =1 if @@@

e e 75 1 Axo Axz =0 otherwise.

1 RBC & 1 RC
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The performance of this approach is shown in Table 1 in the last row.

Fig. 1 shows the numbers of required shuffles for all the protocols listed in Ta-
ble 1. As seen from this figure, the previous three-input protocol [11] requires five
shuffles while our proposed three-input protocol uses only two shuffles, thereby
successfully reducing the number of required shuffles significantly from five to
two. As shown later in Sect. 3, our designed protocol is simple enough for lay-
people to execute practically. Therefore, we believe that our new protocol is
important from both theoretical and practical points of view.
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Fig. 1. Numbers of shuffles used in the existing card-minimal n-input AND protocols
(for all n > 2) and our proposed protocol

1.4 Related Work

All the protocols mentioned thus far are not committed-format AND protocols
because their AND values are not obtained as commitments. Contrarily, there
are committed-format protocols, such as committed-format two-input AND pro-
tocols, which produce commitments to the AND values:

- o= 2]2)
M~ N~~~
Xy T

2 T1AT2

Since this output is a (hidden) commitment, it can be used as input to another
computation; thus, by repeatedly executing a committed-format AND protocol
n — 1 times, we can perform an nm-input AND computation. Therefore, card-
minimal committed-format two-input AND protocols are considered useful. Un-
fortunately however, such known AND protocols [4,8,23] require nonuniform or
nonclosed shuffles, which are difficult to implement manually (cf. [17, 18, 25]);
furthermore, Kastner et al. [3] proved that there exist no card-minimal two-
input AND protocols that use only uniform closed shuffles. It should be noted
that both random cuts and random bisection cuts (which all the protocols listed
in Table 1 rely on) are uniform closed shuffles, which are easy to implement (as
shown in Sects. 2.2 and 2.3).

If we allow the use of helping cards, we have a six-card committed-format
AND protocol [15] and a five-card committed-format AND protocol [1] that rely
only on random cuts and/or random bisection cuts; however, of course, they are
not card-minimal.

Apart from the AND computation, because there is a card-minimal committed-
format two-input XOR protocol [15], we can construct a card-minimal n-input
XOR protocol for any n > 2. Recently, Ruangwises and Itoh [24] constructed
a general way of designing card-minimal protocols that securely compute any
doubly symmetric functions.
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In stead of using shuffling operations, there is an alternative approach that
relies on private operations (e.g., [16,19-21,28]); under this somewhat strong
assumption, Manabe and Ono [9,22] showed that card-minimal protocols can be
constructed for many kinds of Boolean functions, such as the AND, half-adder,
full-adder, and symmetric functions.

2 Preliminaries

In this section, we first present a formal treatment of the actions used in card-
based protocols (which has been developed in [3,5,13,14]). Then, we formally
introduce two shuffling operations, namely a random cut and a random bisection
cut.

2.1 Actions in Card-Based Protocols

In card-based protocols, the following three main actions are applied to a se-
quence of cards; below, we assume a sequence of m cards.

Permute. This is denoted by (perm, ), where 7 is a permutation applied to
the sequence of cards as follows:

a1 1) m~1(2) 7 1 (m)

1 2
(perm. ),

Turn. This is denoted by (turn,T'), where T is a set of indexes, indicating that
for every t € T, the t-th card is turned over as follows:

teT m

1 2 teT m 1 2

Shuffle. This is denoted by (shuf, IT, F), where IT is a permutation set and F
is a probability distribution on 17, indicating that = € Il is drawn according
to F and applied to the sequence of cards as follows:

(turn,T)
E—

T 1) 1(2) 7 1(m)

1 2 m

Here, the permutation in IT that is applied remains unknown. If the distri-
bution F is uniform, then its description can be omitted.

(shuf,I1, F)
_—

2.2 Random Cut

A random cut (RC) is the simplest and most easy-to-implement shuffle in card-
based cryptography, denoted by (-), which shifts a sequence of cards cyclically
and randomly. If a random cut is applied to a sequence of m cards, then the
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resulting sequence becomes one of the following n sequences, each of which occurs
with a probability of 1/m:

3
i

1 2 3

S

1 2 3 m—1m
(e - Tam) -

3
&
3
G

m—1m 1 .
m

3
(<] =]
i

This random cut is formally described as
(shuf, {id, 7, 7%, ..., 7™ 1})

for a cyclic permutation 7 = (123 --- m), where id denotes the identity permu-
tation.

Hereinafter, we use RCq 2. to represent {id,m,72,..., 7™ 1}. For exam-
ple, (shuf,RC;23456) is a random cut to a sequence of six face-down cards:

(HEEGHE)

A random cut can be easily performed manually; a secure implementation
called the Hindu cut is a well-known instance [27].

2.3 Random Bisection Cut

A random bisection cut (RBC) is another major shuffle action, which was in-
vented in 2009 [15]. This shuffle, denoted by [- | -], bisects a sequence of 2m cards
and randomly swaps the two halves; the resulting sequence becomes one of the
following two sequences, with a probability of 1/2:

1 mm+41 2m
1 m | om41 2m 21 ---[21[2] ---[2
[‘ }_> 1 2],

2m 1 m
That is, the resulting sequence either remains unchanged compared with the

original or is obtained such that the two halves are swapped, with a probability
of 1/2. The random bisection cut can be expressed as follows:

(shuf, {id, (1 m+1)(2 m+2)---(m 2m)}).

Secure implementations of a random bisection cut were shown in [26].
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3 Our Proposed Protocol

In this section, we present the new card-minimal three-input AND protocol:

r1 ANxoANxg =1 if @@@
HHIHHIAE

$1/\£L’2/\(E3:1 if @@@
e 2o 24 x1 Axo Axs =0 otherwise.

1 RBC & 1 RC

This protocol uses one random bisection cut and one random cut.

We present the description of our protocol in Sect. 3.1 as well as its pseu-
docode in Sect. 3.2. We also present an intuitive explanation in Sect. 3.3 as
to why the proposed protocol works correctly. Formal proofs of the correctness
and security of our proposed protocol (based on the so-called KWH-tree [8]) are
omitted owing to length limitations.

3.1 Description
Our card-minimal three-input AND protocol proceeds, as follows.

1. Apply (shuf,{id, (12)(36)}) by performing operations (a)—(c) noted below.

(a) Swap the second and third cards as well as the fourth and sixth cards:

(b) Apply a random bisection cut to the four cards on the extreme left:

=121 =12 B2 - R

(¢) Swap the second and third cards as well as the fourth and sixth cards
again:

HAHEHEIHEAHE]

2. Turn over the first card to check its color. If the card is @, swap the first
and second cards as well as the third and sixth cards:

1 2 3 4 5 6 2 1 6 4 5 3

(wlzlz]z]2]?] = [z]a] 2] 2] 2] 7).

If the card color is @, proceed to Step 3 directly.
3. After turning over the revealed card in a face-down manner, apply a random
cut to the entire sequence:

(zz]z)z)z)) ~ )]
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4. Turn over the first, third, and fifth cards. If these are [O]&[Q] or

(apart from cyclic rotation), then x1 A x9 A 23 = 0; if the cards are

or (e[ ], then 21 A zy A g =1:

O 2]l 2] 2] [#]2]O) 7] 7]
Ozl zIs]2] (b2 ]s]?]O) 7]
(#1202l 7] [O] 2] 7] %] 7]

1 Axg ANaxg =0,

O[Ol 2] 7] (]2 ]#]2]#]2]

1 Nxg ANas = 1.

3.2 Pseudocode

J[ee

The pseudocode for our protocol is depicted in Algorithm 1, where (result, 4, j, k)

specifies the output positions.

Algorithm 1 Our proposed protocol

input set:

2?7 0?2 7?7 7?7 ? 2?7 2 7?7 7 7 2 0?2 2 7?7 ?
{(;767;a67336)3 (2767;7676a;)3 336767;7;76

2 2 7?7 7 ? ? 9?2 2 7?2 7?7 ? o2 0?2 2?2 7?2 ?
;76763;767;)7 67;7;767;36)7 67;7;76767;
2?2 7?7 7 ? ? 9?2 2 7?2 7?7 ?
67;761;7;76 ’ 67;767;767; }

1. (shuf, {id, (1 2)(3 6)})

2. (turn,{1})

3. if visible sequence = (&, 7,7,7,7,7) then

4. (perm, (1 2)(3 6))

5. (turn,{2})

6. else if visible sequence = (©,7,7,7,7,7) then

7. (turn,{1})

8.

9.

77777

(result, 1,3,5)

3.3 Why Our Protocol Works Correctly

Herein, we intuitively explain why our proposed protocol works correctly. Note
that the input sequence has eight possibilities depending on the input values
(71, 22,23) € {0,1}3, as shown in the second column of Table 2. The idea behind
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Table 2. Resulting sequences after applying (perm,(12)(36)) and Step 2

Input Input Sequence Apply (perm,(12)(36))  After Step 2

000 [#[O[#[V#][]  [O[#[O[O]s]&]  [V]S]]O] S]]
0.0.1) [&[O[&[V[O]&]  [O]S]#[O[O[&]  [V]]#[O]O]S]
(0.1,0) [#[O[O][#[]  [O]#[O[#][#][O]  [O]&]V]&]&]]
0.11) [$[O[O]#[V]%]  [O]s]4]&[O]O]  [V]s]%]#]0]0]
(1,0.0) [O]#[#[V]#]V]  [S[O[O]O[&[&] [V]]#][V]H]?]
(1L0.) [O]#[&[V[V] %] [#[O]S]O[O[&]  [V]&]#][O]O]S]
(1LL0) [O]#[V]#[#]V]  [#[O[O#[&[V]  [V]]]%]H]0]
ALY [O&[Oe[O[a]  [S[O]&[#]0[]  [V]S]]][O] 4]

our protocol is to assign each possible input to one of two sequence patterns
without leaking the input value. One of the two patterns is an alternating pattern
of (& and [7)], i.e., either (%[O &[]][] or [O]&]D[&]V]/d], which is a possible
input sequence when (x1,z9,23) = (0,0,0),(1,1,1); we call this an alternating
sequence. The other pattern corresponds to the remaining sequences, which we
call non-alternating sequences.

Suppose that we apply the permutation (12)(36) to the input sequence; this
appears in the shuffle applied in Step 1 and permutation in Step 2. The resulting
sequence is the one shown in the third column of Table 2. Note that the second
column (i.e., input sequence) and third column of Table 2 are equivalent to the
transition possibilities after applying (shuf, {id, (12)(36)}) to the input sequence
in Step 1. In the third column of Table 2, among the four sequences from the
top (which are obtained when x; = 0), the sequences corresponding to (0,0, 1),
(0,1,0), and (0,1,1) are still non-alternating, and the sequence corresponding
to (0,0,0) is converted to a non-alternating sequence. If we combine the four
sequences from the top in the third column with the four sequences from the
bottom in the second column, we obtain the eight sequences shown in the fourth
column of Table 2, where only the sequence corresponding to (1,1,1) is alter-
nating. To achieve this, we apply the permutation (12)(36) when the first cards
in the sequences in the second and third columns of Table 2 are @ This is the
reason behind performing (shuf, {id, (12)(36)}) in Step 1 and (perm,(12)(36))
in Step 2 if the first card revealed is @

By applying a random cut to the sequence of cards in Step 3, the resulting
sequence is one among the following four sequences (up to cyclic rotation):

(2) [DIO[H[#[O]&]. if 0,0,0) or (1,0,0);

(b) WRCIORD], if (0,0,1), (0,1,0), (1,0,1), or (1,1,0);
(©) QYO | ]&]. it (0,1,1);

(@) [DIS[O#[O]&]. if (1,1.1).
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Here, when the input is either (0,0, 0) or (1,0,0), the resulting sequence is equal
to that in (a); when the input is (0,0,1), (0,1,0), (1,0,1), or (1,1,0), the se-
quence is equal to that in (b); when the input is (0,1, 1), the sequence is equal to
that in (c); when the input is (1,1, 1), the sequence is equal to that in (d). Now,
if we revealed all the cards in the sequence, then we could obtain the value of
x1 A x2 A x3; however, information about the input would be leaked because the
revealed sequence depends on the input values. Therefore, we need an alternative
approach to obtain the output value.

Let us focus on the cards at the odd-numbered positions. If we reveal only
these cards, then the revealed cards in every sequence of (a), (b), and (c¢) will
have the same pattern, i.e., either [O] &[] or [%]P]d] up to cyclic rotation. By
contrast, if (d) occurs, then the revealed cards will be either [Q]Q[Q] or |G/ ds]dh]-
Hence, the sequences of (a), (b), and (c¢) become indistinguishable, and we can
obtain only the value of 1 A x5 A z3.

4 Conclusion

In this work, we proposed a card-minimal three-input AND protocol using only
two shuffles. The minimality means that the protocol uses exactly six cards. The
shuffles used in our protocol are one random cut and one random bisection cut.
Since the existing three-input protocol [11] requires five shuffles, our proposed
protocol successfully reduces the number of required shuffles from five to two.
We believe that this is a significant improvement and that our protocol is simple
enough for easy execution by lay-people.

An interesting open problem is improving the numbers of shuffles for card-
minimal n-input AND computations for n > 4. It is also an intriguing problem to
seek lower bounds on the numbers of shuffles using the “formal method approach”
recently developed by Koch, Schrempp, and Kirsten [6,7].

This work considers the number of shuffies as the quality metric for evaluating
a protocol because the shuffle action is the most time-consuming step (cf. [10]).
However, considering the other actions for a more fine-grained analysis would be
an interesting line of investigation in the future.
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