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Abstract. In 1989, den Boer presented the first card-based protocol,
called the “five-card trick” that securely computes the AND function
using a deck of physical cards via a series of actions such as shuffling
and turning over cards. This protocol enables a couple to confirm their
mutual love without revealing their individual feelings. During such a
secure computation protocol, it is important to keep any information
about the inputs secret. Almost all existing card-based protocols are se-
cure under the assumption that all players participating in a protocol are
semi-honest or covert, i.e., they do not deviate from the protocol if there
is a chance that they will be caught when cheating. In this paper, we con-
sider a more malicious attack in which a player as an active adversary
can reveal cards illegally without any hesitation. Against such an ac-
tively revealing card attack, we define the t-secureness, meaning that no
information about the inputs leaks even if at most t cards are revealed
illegally. Subsequently, we design a 1-secure AND protocol. Thus, our
contribution is the construction of the first formal framework to handle
actively revealing card attacks and their countermeasures.

Keywords: Cryptography, Card-based protocols, Active security, Se-
cure multiparty computations

1 Introduction

In 1989, den Boer presented the first card-based protocol, called the five-card
trick that securely computes the AND function using a deck of physical cards [1].
Assuming that Alice has a private bit a ∈ {0, 1} and Bob has a private bit
b ∈ {0, 1}, the five-card trick, which uses five cards ♣ ♣ ♥ ♥ ♥ , proceeds as
follows.

1. According to the encoding rule:

♣ ♥ = 0 and ♥ ♣ = 1, (1)
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Alice commits her private bit a to two face-down cards of different colors
(♣,♥) without anyone seeing the order of the two cards:

? ?︸ ︷︷ ︸
a

.

Such a pair of face-down cards is called a commitment to a. Similarly, Bob
places a commitment to b on the table. Therefore, together with the remain-
ing red card ♥ , the initial sequence of the five cards is

? ?︸ ︷︷ ︸
a

? ?︸ ︷︷ ︸
b

♥ .

2. Move the rightmost red card to the center and turn it over:

? ?︸ ︷︷ ︸
a

♥ ? ?︸ ︷︷ ︸
b

→ ? ?︸ ︷︷ ︸
a

? ? ?︸ ︷︷ ︸
b

.

3. Swap the first and second cards (from the left), namely the two cards consti-
tuting the commitment to a; owing to the encoding (1), this action performs
the NOT operation such that a commitment to the negation a of a can be
obtained:

? ?︸ ︷︷ ︸
a

? ? ?︸ ︷︷ ︸
b

.

It is noteworthy that only when a = b = 1, the three cards in the middle
will be ♥ ♥ ♥ .

4. Apply a random cut, denoted by 〈·〉; it is a shuffle action to cyclically shift
the sequence of cards at random:〈

? ? ? ? ?
〉
→ ? ? ? ? ? .

The shift offset is uniformly distributed on {0, 1, 2, 3, 4}, and nobody knows
the offseti.

5. Open all the five cards.
– If three consecutive red cards ♥ ♥ ♥ (apart from cyclic rotation) ap-

pear, we have a ∧ b = 1.
– If ♥ ♥ ♥ do not appear, we have a ∧ b = 0.

This is the five-card trick, which securely computes the AND function, i.e.,
it reveals only the value of a∧ b. As an application, for instance, this card-based
protocol enables Alice and Bob to confirm their mutual love without revealing
their individual feelings.

During such a secure computation protocol, it is important to keep any in-
formation about the inputs secret. As seen above, the five-card trick preserves

i It is well known that humans can implement a random cut securely [13].
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the secrecy of the inputs a, b by virtue of the face-down cards, and the shuffle
action eliminates the individual values of the inputs aside from the exact value
of a ∧ b. In other words, the five-card trick is secure provided that all players
obey the protocol. Similar to the five-card trick, almost all existing card-based
protocols (e.g., [2, 4, 6, 10, 11]) are secure under the assumption that all players
are semi-honest or covert, i.e., they do not deviate from the protocol if there is
a chance that they will be caught when cheating. In most cases, a card-based
protocol is executed completely publicly with all eyes fixed on how the cards are
manipulated, and hence, any illegal actions by the players (or others) will be
noticed [8]; thus, any semi-honest or covert player always follows the protocol.

By contrast, this paper considers a more malicious attack: We assume that
one player (e.g., Alice) is an active adversary who may possibly reveal face-down
cards illegally without any hesitation. For example, if Alice suddenly reveals the
commitment to b at Step 3 during the execution of the five-card trick, Bob’s
private input will be leaked immediately. We call such a malicious attack the
actively revealing card attack.

To prevent face-down cards from being revealed illegally, we may place each
card into an envelope, as indicated by Koch and Walzer [3]. However, using
envelopes is not convenient; hence, we solicit another solution that does not rely
on any additional tools such as envelopes. Thus, we have to devise a method
to keep individual players’ inputs secret even if some of the face-down cards
are revealed maliciously. To this end, we borrow an idea from secret sharing
schemes [12] such that each input commitment will be split into several “share”
commitments. Specifically, as the “revealing-card tolerance,” we introduce the
concept of “t-secureness” in which any information regarding the inputs will
be preserved even if at most t cards are revealed maliciously. Subsequently, we
design a 1-secure AND protocol. Thus, our main contribution is to construct
the first formal framework to handle actively revealing card attacks and their
countermeasures.

This paper focuses on non-committed format protocols that specify the out-
put value by revealing some face-down cards, as shown in the five-card trick (or
in others, e.g., [6]). By contrast, there are committed format protocols that pro-
duce commitments (consisting of face-down cards) as the output (e.g., [2,10,11]):
Because the output is hidden owing to the face-down cards, during such a com-
mitted format protocol, information regarding the input as well as output will
not be leaked. Meanwhile, committed format protocols have been formalized
well; no formal treatment of non-committed format protocols has been reported
(note that because a committed format protocol does not leak any information,
it suffices to consider perfect secrecy; meanwhile, a non-committed format pro-
tocol needs to leak some information regarding the input to reveal the output
value, and hence, a more careful treatment is required). Herein, we first formalize
a non-committed format protocol. This formalization is one of our major results.

It is noteworthy that Mizuki and Shizuya [8] previously adopted a similar
idea to deal with the situation where some of the cards may be flawed, i.e., the
cards may have scuff marks on their backs (undoubtedly, the problem of flawed
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cards is different from that of the actively revealing card attack, but they may
share some common features). Because this previous work [8] considered only
committed format protocols, it is interesting future work to apply the technique
proposed herein to design “scuff-proof” non-committed format protocols.

The remainder of this paper is organized as follows. In Section 2, we briefly
introduce a formal approach for describing a card-based protocol. In Section 3,
we formally define a non-committed format protocol. In Section 4, we define the
t-secureness against the actively revealing card attack. In Section 5, we construct
a 1-secure AND protocol and confirm its security. Finally, the paper is concluded
in Section 6.

2 Preliminaries

In this section, the way to formally describe a card-based protocol is presented.
The computational model of card-based protocols has been formalized via

abstract machine [3, 4, 7, 9]. Roughly speaking, a protocol consists of a series of
three actions: turn, perm, and shuf actions, along with a sequence of cards.

Consider a sequence of d cards. A turn action is specified by a set T ⊆
{1, 2, . . . , d} of positions of cards; the action (turn, T ) turns over every card whose
position is in T . A perm action is specified by a permutation π ∈ Sd, where Sd

denotes the symmetric group of degree d; the action (perm, π) rearranges the
positions of d cards according to π. A shuf action is specified by a set Π ⊆ Sd of
permutations; the action (shuf,Π) probabilistically rearranges the positions of d
cards according to a permutation π uniformly drawn from Π. We call a protocol
using exactly d cards a d-card protocol.

To illustrate, recall the execution of the five-card trick [1] presented in the
previous section. It uses two types of cards, ♣ and ♥ , whose backs are ? .
All cards of the same type are indistinguishable. The five-card trick, which is a
5-card protocol, starts with a sequence of five cards:

? ?︸ ︷︷ ︸
a

? ?︸ ︷︷ ︸
b

♥ . (2)

Step 2 of the five-card trick is formally captured by (perm, (3 4 5)) along with
(turn, {3}). Step 3 is (perm, (1 2)). In Step 4, we apply a random cut that can
be written as (shuf,RC5), where RC5= {(1 2 3 4 5)i | 1 ≤ i ≤ 5}. Step 5 is
(turn, {1, 2, 3, 4, 5}).

To discuss the correctness and security of protocols, we use the concept of
statuses of a protocol. For example, the initial status of the five-card trick (as in
(2)) is described as follows:

♣♥♣♥♥ (p00, 0, 0, 0)
♣♥♥♣♥ (0, p01, 0, 0)
♥♣♣♥♥ (0, 0, p10, 0)
♥♣♥♣♥ (0, 0, 0, p11),
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where pij denotes the probability that input (a, b) is equal to (i, j) for every
(i, j) ∈ {0, 1}2; in other words, (p00, p01, p10, p11) denotes a probability distribu-
tion on the input set {0, 1}2. The status above consists of four entries, each of
which is a pair of a symbol sequence (such as ♣♥♣♥♥) and a probability trace
(such as (p00, 0, 0, 0)); the first entry means that the symbol sequence ♣♥♣♥♥
and the event (a, b) = (0, 0) occur with a probability of p00 (and ♣♥♣♥♥
with (a, b) 6= (0, 0) never occurs), the second entry means that ♣♥♥♣♥ and
(a, b) = (0, 1) occur with a probability of p01, and so on. The initial status (and
succeeding statuses) are transformed into another status by an action as shown
in Figure 1. In particular, the turn action results in ten “leaf” statuses.

The expression of protocols in Figure 1 was established by Koch and Walzer
[3] where a tree structure specifies a protocol. We modify it slightly using the
probability traces introduced by Mizuki and Komano [5]. We call such a tree the
(modified) KWH-tree of a protocol. Borrowing a terminology in graph theory,
we call the bottom statuses in a KWH-tree the leaf statuses.

♣♡♣♡♡ (p00, 0, 0, 0)

♣♡♡♣♡ (0, p01, 0, 0)

♡♣♣♡♡ (0, 0, p10, 0)

♡♣♡♣♡ (0, 0, 0, p11)

♡♣♡♣♡ (p00, 0, 0, 0)

♡♣♡♡♣ (0, p01, 0, 0)

♣♡♡♣♡ (0, 0, p10, 0)

♣♡♡♡♣ (0, 0, 0, p11)

♡♣♡♣♡ (p00

5 , p01

5 , p10

5 , 0) ♣♡♡♡♣ (0, 0, 0, p11

5 )

♣♡♣♡♡ (p00

5 , p01

5 , p10

5 , 0) ♡♡♡♣♣ (0, 0, 0, p11

5 )

♡♣♡♡♣ (p00

5 , p01

5 , p10

5 , 0) ♡♡♣♣♡ (0, 0, 0, p11

5 )

♣♡♡♣♡ (p00

5 , p01

5 , p10

5 , 0) ♡♣♣♡♡ (0, 0, 0, p11

5 )

♡♡♣♡♣ (p00

5 , p01

5 , p10

5 , 0) ♣♣♡♡♡ (0, 0, 0, p11

5 )

♡♣♡♣♡ ( p00

p00+p01+p10
, p01

p00+p01+p10
, p10

p00+p01+p10
, 0)

♣♡♣♡♡ ( p00

p00+p01+p10
, p01

p00+p01+p10
, p10

p00+p01+p10
, 0)

♡♣♡♡♣ ( p00

p00+p01+p10
, p01

p00+p01+p10
, p10

p00+p01+p10
, 0)

♣♡♡♣♡ ( p00

p00+p01+p10
, p01

p00+p01+p10
, p10

p00+p01+p10
, 0)

♡♡♣♡♣ ( p00

p00+p01+p10
, p01

p00+p01+p10
, p10

p00+p01+p10
, 0)

♣♡♡♡♣ (0, 0, 0, 1)

♡♡♡♣♣ (0, 0, 0, 1)

♡♡♣♣♡ (0, 0, 0, 1)

♡♣♣♡♡ (0, 0, 0, 1)

♣♣♡♡♡ (0, 0, 0, 1)

(perm, (3 4 5)), (turn, {3}), (perm, (1 2))

(shuf,RC5)

(turn, {1, 2, 3, 4, 5})

♡♡♡ do not appear ♡♡♡ appear

Fig. 1. The (modified) KWH-tree of the five-card trick

Note that in each of the first three statuses (namely, “non-leaf” statuses)
depicted in Figure 1, the (coordinate-wise) sum of all probability traces is equal
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to (p00, p01, p10, p11); this guarantees that no information regarding the input
(a, b) will be leaked. Regarding the ten leaf statuses, each of them has only
one probability trace, which is either ( p00

p00+p01+p10
, p01

p00+p01+p10
, p10

p00+p01+p10
, 0) or

(0, 0, 0, 1); this implies that any information other than the value of a ∧ b will
not be leaked.

To the best of our knowledge, Figure 1 is the first attempt to depict the
KWH-tree of the five-card trick. Because a formal treatment for non-committed
format protocols does not exist, we will create such a formal framework, as will
be explained in the next section.

3 Formalizing Non-committed Format Protocols

In this section, we formally define a non-committed format protocol for a Boolean
function.

First, we define an n-input protocol.

Definition 1 Let d ≥ 2n for an integer n ≥ 2, and let P be a d-card protocol.
We say that P is an n-input protocol if its initial status consists of the following
2n entries:

2n symbols︷ ︸︸ ︷
♣♥♣♥♣♥ · · ·♣♥♣♥︸ ︷︷ ︸

000 . . . 002

α (p0, 0, 0, . . . , 0, 0)

♣♥♣♥♣♥ · · ·♣♥♥♣︸ ︷︷ ︸
000 . . . 012

α (0, p1, 0, . . . , 0, 0)

...
♥♣♥♣♥♣ · · ·♥♣♥♣︸ ︷︷ ︸

111 . . . 112

α (0, 0, 0, . . . , 0, p2n−1)

where α is any symbol sequence of length d− 2n. Here, pi, 0 ≤ i ≤ 2n− 1, is the
probability that the n-bit input is equal to the binary expression of i. Furthermore,
we call the tuple (p0, . . . , p2n−1) an input distribution.

As shown in Definition 1, we implicitly assume a one-to-one mapping between
{0, 1}n and {0, 1, . . . , 2n − 1}. Thus, throughout this paper, if we write qb for
b ∈ {0, 1}n and a tuple (q0, . . . , q2n−1), we regard the subscription b as the
corresponding decimal number.

Next, we define some properties regarding the statuses.

Definition 2 Let P be an n-input protocol with an input distribution (p0, . . . , p2n−1),
and consider a Boolean function f : {0, 1}n → {0, 1}.

– A status S of P is called an opaque status if the (coordinate-wise) sum of
its probability traces is equal to (p0, . . . , p2n−1).
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– We say that a status S is an output-0 status if the sum of its probability
traces (q0, . . . , q2n−1) satisfiesqb = pb∑

i∈f−1(0)
pi

if f(b) = 0

qb = 0 if f(b) = 1

for every b ∈ {0, 1}n, where f−1(0) is the preimage of 0 under f .
– We say that a status S is an output-1 status if the sum of its probability

traces (q0, . . . , q2n−1) satisfiesqb = 0 if f(b) = 0
qb = pb∑

i∈f−1(1)
pi

if f(b) = 1

for every b ∈ {0, 1}n.

We are now ready to formally define a non-committed format protocol.

Definition 3 Let P be an n-input protocol, and let f : {0, 1}n → {0, 1} be a
Boolean function. We say that P works for f in a non-committed format if the
following holds:

– every leaf status is either an output-0 status or an output-1 status, and all
other statuses are opaque;

– the expected height of its KWH-tree is finite.

One can easily verify that the five-card trick satisfies Definition 3.

4 Defining Revealing-Card Tolerance

As mentioned before, this paper considers an active attack where an adversary
can reveal some cards without obeying a protocol. Because the execution of a
protocol is conducted publicly, it is difficult for an adversary to illegally reveal
many cards simultaneously. Thus, we assume that such a malicious adversary
can reveal at most t cards at most once when the protocol is executed.

Note that any n-input protocol (defined in Definition 1) cannot be “secure”
against the actively revealing card attack because the adversary can reveal some
cards that constitute the input commitments to obtain the secret values im-
mediately after the protocol starts. Therefore, the input commitments must be
masked. To achieve this, we borrow an idea from secret sharing schemes. Hence,
instead of directly placing commitments to their private bits, Alice places two
commitments to a1, a2 ∈ {0, 1} such that a = a1 ⊕ a2, where Alice’s private bit
a is split into a1 and a2 randomly, and Bob places two commitments similarly:

? ?︸ ︷︷ ︸
a1

? ?︸ ︷︷ ︸
a2

? ?︸ ︷︷ ︸
b1

? ?︸ ︷︷ ︸
b2

.
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For such an input sequence, even if at most one card is revealed illegally, the
values of a and b will not be leaked. By further extending this, we have an
(n, t + 1)-input protocol, as in the following Definition 4. Hereinafter, for b ∈
{0, 1}n, b[i] denotes the i-th bit (of the n-bit sequence b).

Definition 4 Let d ≥ 2n(t + 1) for integers n ≥ 2 and t ≥ 1, and let P be a
d-card protocol. We say that P is an (n, t+ 1)-input protocol if its initial status
consists of all entries in

⋃
b∈{0,1}n Eb such that

Eb =
{

(x1
1 . . . x

t+1
1 x1

2 . . . x
t+1
2 . . . x1

n . . . x
t+1
n α, (0, . . . , 0, pb

n2t
, 0, . . . , 0))∣∣∣⊕t+1

j=1 x
j
i = b[i], 1 ≤ i ≤ n

}
for every b ∈ {0, 1}n, where xj

i ∈ {0, 1} is interpreted as a pair of symbols based
on the encoding: 0 = ♣♥ and 1 = ♥♣, and α is any symbol sequence of length
d− 2n(t+ 1).

We are now ready to define the “t-secureness” as in the following Definition
6 along with Definition 5.

Definition 5 Let P be an (n, t+1)-input protocol, and let f : {0, 1}n → {0, 1} be
a Boolean function. We define opaque, output-0, and output-1 statuses similarly
as in Definition 2. Additionally, we define “working for f” similarly to Definition
3.

Definition 6 Let P be an (n, t+1)-input protocol working for a Boolean function
f in a non-committed format. We say that P is t-secure if any resulting status
from applying any action (turn, T ) with |T |≤ t to every status of P is either an
opaque status, an output-0 status, or an output-1 status.

5 Our 1-Secure AND Protocol

We describe the construction of a 1-secure AND protocol in this section. In
Section 5.1, we present its outline; our protocol consists of the setup, first, second,
and third phases. In Sections 5.2, 5.3, and 5.4, we provide the details of the first,
second, and third phases, respectively.

5.1 Outline of Our Protocol

Because we wish to design a 1-secure AND computation of two variables (namely,
n = 2 and t = 1), we should use a (2, 2)-input protocol. Therefore, Alice and
Bob create a1, a2, b1, b2 ∈ {0, 1} such that a = a1 ⊕ a2 and b = b1 ⊕ b2 as input.
Thus, it suffices to compute (a1 ∧ b1)⊕ (a1 ∧ b2)⊕ (a2 ∧ b1)⊕ (a2 ∧ b2) = a ∧ b.
To this end, our protocol proceeds as follows.
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Setup phase. Satisfying Definition 4, Alice places two commitments to a1, a2,
and Bob places two commitments to b1, b2:

? ?︸ ︷︷ ︸
a1

? ?︸ ︷︷ ︸
a2

? ?︸ ︷︷ ︸
b1

? ?︸ ︷︷ ︸
b2

.

First phase. Make two copied commitments to each of b1 and b2 using the
existing COPY protocol [10]:

? ?︸ ︷︷ ︸
a1

? ?︸ ︷︷ ︸
a2

? ?︸ ︷︷ ︸
b1

? ?︸ ︷︷ ︸
b2

→ ? ?︸ ︷︷ ︸
a1

? ?︸ ︷︷ ︸
a2

? ?︸ ︷︷ ︸
b1

? ?︸ ︷︷ ︸
b1

? ?︸ ︷︷ ︸
b2

? ?︸ ︷︷ ︸
b2

.

Second phase. From the commitments to a1, b1, b2, make commitments to
a1 ∧ b1, a1 ∧ b2 using the existing AND protocol [8]; similarly, from the com-
mitments to a2, b1, b2, make commitments to a2 ∧ b1, a2 ∧ b2:

? ?︸ ︷︷ ︸
a1

? ?︸ ︷︷ ︸
b1

? ?︸ ︷︷ ︸
b2

? ?︸ ︷︷ ︸
a2

? ?︸ ︷︷ ︸
b1

? ?︸ ︷︷ ︸
b2

→ ? ?︸ ︷︷ ︸
a1∧b1

? ?︸ ︷︷ ︸
a1∧b2

? ?︸ ︷︷ ︸
a2∧b1

? ?︸ ︷︷ ︸
a2∧b2

.

Third phase. Compute (a1 ∧ b1)⊕ (a1 ∧ b2)⊕ (a2 ∧ b1)⊕ (a2 ∧ b2).

Here, we analyze the security of the setup phase. There are 16 possibilities for
(a1, a2, b1, b2) ∈ {0, 1}4, and hence, the initial status can be written as the first
four columns and the last column in Table 1. (Note that any action (turn, {i})
reveals at most one bit among four bits.) One can easily confirm that any action
(turn, {i}) results in an opaque status.

5.2 First Phase

In this phase, we duplicate the commitments to b1 and b2. To this end, we use
the existing COPY protocol [10], which performs the following (refer to [10] for
the details):

? ?︸ ︷︷ ︸
x

♣ ♣ ♥ ♥ → ? ?︸ ︷︷ ︸
x

? ?︸ ︷︷ ︸
x

♣ ♥ .

By executing the COPY protocol twice, we have

? ?︸ ︷︷ ︸
b1

? ?︸ ︷︷ ︸
b2

♣ ♣ ♥ ♥ → ? ?︸ ︷︷ ︸
b1

? ?︸ ︷︷ ︸
b1

? ?︸ ︷︷ ︸
b2

? ?︸ ︷︷ ︸
b2

♣ ♥ .

During this first phase, any action (turn, {i}) reveals at most one bit among
b1 and b2; hence, similar to the setup phase, any resulting status from an illegal
reveal will be opaque. (We omit the details owing to page limitations.)
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Table 1. Essential truth table for deriving statuses of our protocol.

a1 a2 b1 b2 a1 ∧ b1 a1 ∧ b2 a2 ∧ b1 a2 ∧ b2 a1 ∧ b1 a1 ∧ b2 a2 ∧ b1 a2 ∧ b2 Prob. trace

0 0 0 0 0 0 0 0 0 0 0 0 (p00/4, 0, 0, 0)

0 0 1 1 0 0 0 0 1 1 1 1 (p00/4, 0, 0, 0)

1 1 0 0 0 0 0 0 0 0 0 0 (p00/4, 0, 0, 0)

1 1 1 1 1 1 1 1 0 0 0 0 (p00/4, 0, 0, 0)

0 0 0 1 0 0 0 0 0 1 0 1 (0, p01/4, 0, 0)

0 0 1 0 0 0 0 0 1 0 1 0 (0, p01/4, 0, 0)

1 1 0 1 0 1 0 1 0 0 0 0 (0, p01/4, 0, 0)

1 1 1 0 1 0 1 0 0 0 0 0 (0, p01/4, 0, 0)

0 1 0 0 0 0 0 0 0 0 0 0 (0, 0, p10/4, 0)

0 1 1 1 0 0 1 1 1 1 0 0 (0, 0, p10/4, 0)

1 0 0 0 0 0 0 0 0 0 0 0 (0, 0, p10/4, 0)

1 0 1 1 1 1 0 0 0 0 1 1 (0, 0, p10/4, 0)

0 1 0 1 0 0 0 1 0 1 0 0 (0, 0, 0, p11/4)

0 1 1 0 0 0 1 0 1 0 0 0 (0, 0, 0, p11/4)

1 0 0 1 0 1 0 0 0 0 0 1 (0, 0, 0, p11/4)

1 0 1 0 1 0 0 0 0 0 1 0 (0, 0, 0, p11/4)

5.3 Second Phase

In this phase, we use the existing AND protocol [8]:

? ?︸ ︷︷ ︸
x

? ?︸ ︷︷ ︸
y

? ?︸ ︷︷ ︸
z

♣ ♣ ♥ ♥ → ? ?︸ ︷︷ ︸
x∧y

? ?︸ ︷︷ ︸
x∧z

? ?︸ ︷︷ ︸
x∧y

? ?︸ ︷︷ ︸
x∧z

♣ ♥ .

We destroy the commitments to x ∧ y and x ∧ z by shuffling each of them.
By executing the AND protocol twice, we have

? ?︸ ︷︷ ︸
a1

? ?︸ ︷︷ ︸
b1

? ?︸ ︷︷ ︸
b2

? ?︸ ︷︷ ︸
a2

? ?︸ ︷︷ ︸
b1

? ?︸ ︷︷ ︸
b2

♣ ♣ ♥ ♥

→ ? ?︸ ︷︷ ︸
a1∧b1

? ?︸ ︷︷ ︸
a1∧b2

? ?︸ ︷︷ ︸
a2∧b1

? ?︸ ︷︷ ︸
a2∧b2

♣ ♣ ♣ ♥ ♥ ♥ .

During this second phase, any action (turn, {i}) reveals at most one bit among
a1, a2, b1, b2, a1 ∧ b1, a1 ∧ b2, a2 ∧ b1, a2 ∧ b2, a1 ∧ b1, a1 ∧ b2, a2 ∧ b1, a2 ∧ b2; Table
1 implies that any illegal resulting status will be opaque.

5.4 Third Phase

In this phase, we compute (a1 ∧ b1)⊕ (a1 ∧ b2)⊕ (a2 ∧ b1)⊕ (a2 ∧ b2) from the
commitments to a1 ∧ b1, a1 ∧ b2, a2 ∧ b1, a2 ∧ b2. Our “4-bit XOR subprotocol”
proceeds as follows.
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1. Negate the commitment to a1 ∧ b1 by (perm, (1 2)):

1
?

2
?︸ ︷︷ ︸

a1∧b1

3
?

4
?︸ ︷︷ ︸

a1∧b2

5
?

6
?︸ ︷︷ ︸

a2∧b1

7
?

8
?︸ ︷︷ ︸

a2∧b2

→
2
?

1
?︸ ︷︷ ︸

a1∧b1

3
?

4
?︸ ︷︷ ︸

a1∧b2

5
?

6
?︸ ︷︷ ︸

a2∧b1

7
?

8
?︸ ︷︷ ︸

a2∧b2

.

2. Rearrange the sequence of the eight cards by (perm, (2 5 3)(4 6 7)):

1
?

2
?

3
?

4
?

5
?

6
?

7
?

8
? →

1
?

3
?

5
?

7
?

2
?

4
?

6
?

8
? .

3. Apply a random bisection cut [10], denoted by [ · | · ], which is the shuffle
action (shuf, {id, (1 5)(2 6)(3 7)(4 8)}):

[ ? ? ? ? | ? ? ? ? ] → ? ? ? ? ? ? ? ? .

4. Apply (perm, (2 3 5)(4 7 6)), which is the inverse permutation of Step 2:

1
?

2
?

3
?

4
?

5
?

6
?

7
?

8
? →

1
?

5
?

2
?

6
?

3
?

7
?

4
?

8
? .

5. Apply a random cut, namely (shuf,RC8), where RC8 is defined similarly to
RC5: 〈

? ? ? ? ? ? ? ?
〉
→ ? ? ? ? ? ? ? ? .

6. Reveal all the cards by (turn, {1, 2, 3, 4, 5, 6, 7, 8}). Count the commitmentsii:
– If the number of commitments to 1 is odd, a ∧ b = 0.
– If the number of commitments to 1 is even, a ∧ b = 1.

Owing to page limitations, we omit the KWH-tree of our XOR subprotocol,
which implies the correctness and secrecy.

6 Conclusion

In this paper, we first described the KWH-tree of the five-card trick and formally
defined non-committed protocols. Against the actively revealing card attack, we
defined the t-secureness and presented a 1-secure AND protocol.
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ii We can specify the boundary between commitments by the color of consecutive cards.
For example, if we obtain a sequence ♣♣♥♣♥♣♥♥, we can place delimiters in the
middle of each of ♣♣ and ♥♥ as ♣|♣♥♣♥♣♥|♥; hence, we have ♣♥|♣♥|♣♥|♥♣.
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