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What is Card-Based Protocol?



What is Card-Based Protocol?

Card-based protocols achieve 
secure multi-party computation (MPC)

using a number of physical cards of 2 colors.

？ ？ ？ ？ ？

face-up

face-down

turn over



What is Card-Based Protocol?

Card-based protocols achieve 
secure multi-party computation (MPC)

using a number of physical cards of 2 colors.

？ ？ ？ ？ ？

face-up

face-down

turn overWhat is secure multi-party computation?



What is secure multi-party computation?

ଵ ଶ ଷ

ଵ ଶ ଷ

ଵ ଶ ଷ

private inputs

With keeping their inputs secret, 
all players know only the value of 
a function (e.g., AND, MAJ).



Title: 
Card-Based Protocols for Any Boolean Function

？？

ଵ

？？

ଶ

？？

ଷ

？？

ଵ ଶ ଷ

We propose a general approach to constructing 
a card-based protocol for any given function.
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？ ？ ？ ？ ？

face-up

face-down

turn over

To deal with Boolean values, this encoding is used:

= 0 = 1

Preliminary Notations
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= 0 = 1

？ ？

x

A commitment to a bit is a pair of face-down cards 
following the encoding.

？ ？

0x ：

？ ？

1x ：



Using 2 cards, each player can arrange a 
commitment to his/her private input bit.

= 0 = 1

ଵ

？ ？

ଶ

？ ？

ଷ

？ ？



Given commitments to private input bits 

= 0 = 1

ଵ

？ ？

ଶ

？ ？

ଷ

？ ？

௡

？ ？

along with additional cards, a card-based protocol 
produces a commitment to the value of a function 

1 2 　

？ ？

௡



The simplest protocol: NOT computation

12

?? ?? ??

Swapping two cards results in a commitment 
to the negation of the bit. 

= 0 = 1

reverse 
the order



xWith keeping the value of      secret, we can get 
a commitment to the negation     of     .xx

 Secure NOT computation is trivial.

= 0

= 1
?? ?? ??

reverse 
the order



？ ？ ？ ？

 How about secure AND computation?

？ ？

With keeping the values of  a and b secret, 
we want to get a commitment to  a∧b.

= 0

= 1

a b a∧b



A commitment to a∧b can be obtained 
using 2 additional cards [10].

= 0

= 1

？ ？ ？ ？

a

？ ？

b a∧b

[10]  T. Mizuki and H. Sone, Six-Card Secure AND and Four-Card  Secure XOR, 
FAW 2009, LNCS 5598, pp. 358–369, 2009. 15

The most efficient existing AND protocol

additional cards
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？？

a
？？

b

？？？？？？

？？？？？？

？？？ ？？[ ]？

？？？？？？

？？？？？？

？？？？

a∧b

？？？？

a∧b

？？？？

a 0

？？

b

= 0 = 1
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？？

a
？？

b

？？？？？？

？？？？？？

？？？ ？？[ ]？

？？？？？？

？？？？？？

？？？？

a∧b

？？？？

a∧b

？？？？

a 0

？？

b

= 0 = 1

Turn over the two middle 
cards:

？ ？？？ ？ ？

a 0 b

？ ？？？

a b
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？？

a
？？

b

？？？？？？

？？？？？？

？？？ ？？[ ]？

？？？？？？

？？？？？？

？？？？

a∧b

？？？？

a∧b

？？？？

a 0

？？

b

= 0 = 1

？ ？？？ ？ ？

？ ？？？ ？ ？

Rearrange the positions:
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？？

a
？？

b

？？？？？？

？？？？？？

？？？ ？？[ ]？

？？？？？？

？？？？？？

？？？？

a∧b

？？？？

a∧b

？？？？

a 0

？？

b

= 0 = 1Apply a random bisection cut:

？ ？ ？ ？？？[ ]
prob. of 1/2

？ ？？？ ？ ？

prob. of 1/2

？ ？？？ ？ ？

(b)(a)



20

？？

a
？？

b

？？？？？？

？？？？？？

？？？ ？？[ ]？

？？？？？？

？？？？？？

？？？？

a∧b

？？？？

a∧b

？？？？

a 0

？？

bRearrange the positions:

？ ？？？ ？ ？ ？ ？？？ ？ ？

？ ？？？ ？ ？ ？ ？？？ ？ ？

(b)(a)
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？？

a
？？

b

？？？？？？

？？？？？？

？？？ ？？[ ]？

？？？？？？

？？？？？？

？？？？

a∧b

？？？？

a∧b

？？？？

a 0

？？

b

？ ？？？ ？ ？

(b)

？ ？？？ ？ ？

(a)

？ ？？？ ？ ？

a 0 b

a 0 b

a b 0-
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？？

a
？？

b

？？？？？？

？？？？？？

？？？ ？？[ ]？

？？？？？？

？？？？？？

？？？？

a∧b

？？？？

a∧b

？？？？

a 0

？？

b

？ ？？？ ？ ？

(b)

？ ？？？ ？ ？

(a)

a 0 b

a b 0-
where r∈{0,1}
is a random bit.

a + r r∧b r∧b

？ ？？？ ？ ？

-
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？？

a
？？

b

？？？？？？

？？？？？？

？？？ ？？[ ]？

？？？？？？

？？？？？？

？？？？

a∧b

？？？？

a∧b

？？？？

a 0

？？

b

r∧b r∧b-
？ ？？？ ？ ？

a + r

= 0 = 1

reveal
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？？

a
？？

b

？？？？？？

？？？？？？

？？？ ？？[ ]？

？？？？？？

？？？？？？

？？？？

a∧b

？？？？

a∧b

？？？？

a 0

？？

b

r∧b r∧b-
？ ？ ？ ？

a + r

= 0 = 1

reveal

a + r = 0, i.e., a = r
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？？

a
？？

b

？？？？？？

？？？？？？

？？？ ？？[ ]？

？？？？？？

？？？？？？

？？？？

a∧b

？？？？

a∧b

？？？？

a 0

？？

b

r∧b
= a∧b

？ ？ ？ ？

a + r

= 0 = 1

reveal

a + r = 0, i.e., a = r
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？？

a
？？

b

？？？？？？

？？？？？？

？？？ ？？[ ]？

？？？？？？

？？？？？？

？？？？

a∧b

？？？？

a∧b

？？？？

a 0

？？

b

r∧b
= a∧b

？ ？ ？ ？

a + r

= 0 = 1

reveal

a + r = 1, i.e., a = r-
-
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？？

a
？？

b

？？？？？？

？？？？？？

？？？ ？？[ ]？

？？？？？？

？？？？？？

？？？？

a∧b

？？？？

a∧b

= 0 = 1

？？？？

a 0

？？

b

Works!



The Copy Protocol [10]
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♥♣ ൌ 0 ൌ 1♣♥

[10]  T. Mizuki and H. Sone, Six-Card Secure AND and Four-Card  Secure XOR, 
FAW 2009, LNCS 5598, pp. 358–369, 2009.

A commitment can be copied 
with 4 additional cards [10].

？ ？

a
？ ？

a

？ ？

a



The Copy Protocol [10]
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?? ?? ??

? ? ? ? ? ?

? ? ? ? ? ?

??????

? ? ? ? ? ?

? ? ? ? ? ?

♥ ♣♥♣ ?? ?? ?? ??

♥♣ ൌ 0 ൌ 1♣♥

?? ??
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?? ?? ?? ♥
♣

?? ??
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?? ?? ?? ♥
♣

?? ??

?? ?? ?? ♥
♣

?? ??
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?? ?? ?? ♥
♣

?? ??

?? ?? ?? ♥
♣

?? ??

?? ?? ♥
♣

??

Secure XOR can be done with no additional card [10].
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?? ?? ♥♣ ?? ♥♣ ♥♣

?? ?? ?? ♥♣

Secure AND [10]

Secure XOR [10]

additional cards free cards

[10]  T. Mizuki and H. Sone, Six-Card Secure AND and Four-Card  Secure XOR, 
FAW 2009, LNCS 5598, pp. 358–369, 2009.
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Theorem 1 ([10]) 

??

ଵ

??

ଶ

♥♣ ??

ଵ ଶ

♥♣ ♥♣

arbitrary function
[10]  T. Mizuki and H. Sone, Six-Card Secure AND and Four-Card  Secure XOR, 

FAW 2009, LNCS 5598, pp. 358–369, 2009.

?? ?? ♥♣ ?? ♥♣ ♥♣

?? ?? ?? ♥♣

Secure AND [10]

Secure XOR [10]

additional cards free cards
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Theorem 1 ([10]) 

??

ଵ

??

ଶ

♥♣ ??

ଵ ଶ

♥♣ ♥♣

arbitrary function

[13] T. Nishida, Y. Hayashi, T. Mizuki, and H. Sone, Securely computing three-input functions 
with eight cards, IEICE Trans. Fundamentals, vol.E98-A, no.6, 2015.

Theorem 2 ([13]) 

??

ଵ

??

ଶ

??

ଷ

♥♣ ??

ଵ ଶ ଷ

♥♣ ♥♣ ♥♣

arbitrary function



36

Theorem 1 ([10]) 

??

ଵ

??

ଶ

♥♣ ??

ଵ ଶ

♥♣ ♥♣

arbitrary function

Theorem 2 ([13]) 

??

ଵ

??

ଶ

??

ଷ

♥♣ ??

ଵ ଶ ଷ

♥♣ ♥♣ ♥♣

arbitrary function

2 additional cards are sufficient for n ≦ 3 
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Since we have AND, XOR, NOT, and copy protocols, 
any Boolean function ଵ ଶ ௡ can be 
securely computed as long as there are plenty of 
additional cards. 

 How about functions having 4 or more variables?



Open Problem

• An explicit sufficient number of additional cards 
has not been revealed thus far. 

38

ଵݔ
??

⋯

௡ݔ
??

ଶݔ
?? ♥♣

݂
??♥♣ ♥♣

⋯

♥♣ ♥♣ ♥♣

⋯

How many?



Our Results
We show sufficient conditions on the numbers 
of additional cards. 

39

ଵݔ
??

⋯
௡ݔ
??

ଶݔ
?? ♥♣

݂
?? ♥♣ ♥♣ ♥♣

⋯

♥♣ ♥♣

cards are enough 

ଵݔ
??

⋯

௡ݔ
??

ଶݔ
?? ♥♣

݂
?? ♥♣ ♥♣ ♥♣

⋯

2 cards are enough 

symmetric function
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2.1  Improved AND protocol
2.2  Improved Half-Adder Protocol



2.1 Improved AND Protocol 
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?? ?? ♥♣ ?? ♣♥♣ ♥

[10]  T. Mizuki and H. Sone, Six-Card Secure AND and Four-Card  Secure XOR, 
FAW 2009, LNCS 5598, pp. 358–369, 2009.

The existing AND protocol [10]
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?? ?? ♥♣ ?? ♣♥♣ ♥

[10]  T. Mizuki and H. Sone, Six-Card Secure AND and Four-Card  Secure XOR, 
FAW 2009, LNCS 5598, pp. 358–369, 2009.

The existing AND protocol [10]

?? ?? ♥♣ ?? ?? ♥♣

Our improved AND protocol

preserved
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Idea: 
(1) Revisit the existing AND protocol

(2) Identity: 
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？？

a
？？

b

？？？？？？

？？？？？？

？？？ ？？[ ]？

？？？？？？

？？？？？？

？？？？

a∧b

？？？？

a∧b

？？？？

a 0

？？

b

= 0 = 1
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？？

a
？？

b

？？？？？？

？？？？？？

？？？ ？？[ ]？

？？？？？？

？？？？？？

？？？？

a∧b

？？？？

a∧b

？？？？

a 0

？？

b

r∧b r∧b-
？ ？？？ ？ ？

a + r

= 0 = 1

reveal
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？？

a
？？

b

？？？？？？

？？？？？？

？？？ ？？[ ]？

？？？？？？

？？？？？？

？？？？

a∧b

？？？？

a∧b

？？？？

a 0

？？

b

a∧b a∧b-
？ ？ ？ ？

= 0 = 1

reveal
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Idea: 
(1) Revisit the existing AND protocol

(2) Identity: 

?? ?? ♥♣ ?? ?? ♥♣

to be 
transformed 

into b
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Idea: 
(1) Revisit the existing AND protocol

(2) Identity: 

?? ?? ♥♣ ?? ?? ♥♣

?? ?? ?? ♥
♣

?? ??
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(1)

(2)

?? ?? ♥♣ ?? ?? ♥♣

?? ?? ♥♣ ?? ??♣
♥



Full description of improved AND
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ܽ
??

0
??

ܾ
??

? ? ? ? ? ?

? ? ? ? ? ?

??????

? ? ? ? ? ?

? ? ? ? ? ?

♥♣

ܾܽ
??

തܾܽ
??

♣♥

തܾܽ
??

ܾܽ
??

ܾܽ
??

തܾܽ
??

0
??

? ? ? ? ? ?

? ? ? ? ? ?

??????

? ? ? ? ? ?

? ? ? ? ? ?

♥♣

♣♥
ܾ
??

ܾܽ
??

തܾ
??

ܾܽ
??

♥♣ ൌ 0 ൌ 1♣♥
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2.2 Improved Half-Adder Protocol 

[6] T. Mizuki, I.K. Asiedu, and H. Sone, Voting with a Logarithmic Number of Cards, 
UCNC 2013, LNCS 7956, pp.162-173, 2013.

a
b

s = a + b

c = a∧b

○
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?? ?? ♥♣ ♥♣ ?? ?? ♥♣ ♥♣
ܽ ⊕ ܾ

2.2 Improved Half-Adder Protocol 

The existing half-adder protocol [6]

[6] T. Mizuki, I.K. Asiedu, and H. Sone, Voting with a Logarithmic Number of Cards, 
UCNC 2013, LNCS 7956, pp.162-173, 2013.
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?? ?? ♥♣ ?? ♥♣??

2.2 Improved Half-Adder Protocol 

The existing half-adder protocol [6]

Our improved half-adder protocol

[6] T. Mizuki, I.K. Asiedu, and H. Sone, Voting with a Logarithmic Number of Cards, 
UCNC 2013, LNCS 7956, pp.162-173, 2013.

?? ?? ♥♣ ♥♣ ?? ?? ♥♣ ♥♣
ܽ ⊕ ܾ
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ܽ
??

ܾ
??

0
??

? ? ? ? ? ?

? ? ? ? ? ?

??????

? ? ? ? ? ?

? ? ? ? ? ?

♥♣ ??

ܽ
??

♣♥

ܽ ⊕ܾ
??

ܽ ⊕ܾ
ܽ ⊕ܾ

തܽ
??

ܽ
??

0
?? ??

? ? ? ? ? ?

? ? ? ? ? ?

??????

? ? ? ? ? ?

? ? ? ? ? ?

♥♣

ܾܽ
??

തܽ തܾ
??

♣♥ ??

ܾܽ
??

ܾܽ
?? ??

0
??

? ? ? ? ? ?

? ? ? ? ? ?

??????

? ? ? ? ? ?

? ? ? ? ? ?

♥♣

♣♥

??

ܾܽ
??

??

ܾܽ
??

ܽ ⊕ ܾ

♥♣ ൌ 0 ൌ 1♣♥Full description of improved HA

തܽ തܾ

തܽ തܾ ܽ ⊕ ܾ



Building Blocks
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?? ?? ♥♣ ?? ♥♣??

?? ?? ♥♣ ?? ?? ♥♣

Improved half-adder:

Improved AND:
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AND-XOR expression: Shannon expansion
• Any -variable function ଵ ଶ ௡ can be 

expressed as the Shannon expansion

where a product term can be deleted if f(*,*,...,*)=0.

57

ଵ ଶ ௡ ଵ ଶ ௡

ଵ ଶ ௡

ଵ ଶ ௡

ଵ ଶ ௡

ଵ ଶ ௡
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ଵ ଶ ௡ ଵ ଶ ௜

product term

A product term can be manipulated 
with 4 additional cards without losing original 
commitments, as follows: 

௜ 1 2 ௡
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♥♣ ♥♣

ଵݒ

??

ଶݒ

?? ⋯

௡ݒ

??

ଷݒ

??

ଵݒ

?? ♥♣

ଵݒ

??

ଶݒ

?? ⋯

௡ݒ

??

ଷݒ

??

ଵݒ

??

ଶݒ

?? ♥♣

ଶݒଵݒ

?? ⋯

௡ݒ

??

ଷݒ

??

ଵݒ

??

ଶݒ

?? ⋯

௡ݒ

??

ଷݒ

?? ♥♣

݅ ଵ ଶ ௡

??

Copy

Improved AND

Improved AND
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♥♣ ♥♣

ଵݒ

??

ଶݒ

?? ⋯

௡ݒ

??

ଷݒ

??

ଵݒ

?? ♥♣

ଵݒ

??

ଶݒ

?? ⋯

௡ݒ

??

ଷݒ

??

ଵݒ

??

ଶݒ

?? ♥♣

ଶݒଵݒ

?? ⋯

௡ݒ

??

ଷݒ

??

ଵݒ

??

ଶݒ

?? ⋯

௡ݒ

??

ଷݒ

?? ♥♣

݅ ଵ ଶ ௡

??

4 additional 
cards 

2 free cards 
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ଵ ଶ ௡ ଵ ଶ ௜

ଵݔ

?? ⋯

௡ݔ

??

ଶݔ

??

ଵݔ

?? ⋯

௡ݔ

??

ଶݔ

??

ଵ

?? ♥♣+ 4 cards 

ଵݔ

?? ⋯

௡ݔ

??

ଶݔ

??

ଵ

?? ♥♣ + 2 cards 

ଵݔ

?? ⋯
௡ݔ

??

ଶݔ

??

ଶ

?? ♥♣

ଵ

??

ଵݔ

?? ⋯

௡ݔ

??

ଶݔ

?? ♥♣

ଵ ଶ

?? ♥♣

4 free cards 
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ଵ ଶ ௡ ଵ ଶ ௜

ଵݔ

?? ⋯

௡ݔ

??

ଶݔ

??

ଵݔ

?? ⋯

௡ݔ

??

ଶݔ

??

ଵ

?? ♥♣+ 4 cards 

ଵݔ

?? ⋯

௡ݔ

??

ଶݔ

??

ଵ

?? ♥♣ + 2 cards 

ଵݔ

?? ⋯
௡ݔ

??

ଶݔ

??

ଶ

?? ♥♣

ଵ

??

ଵݔ

?? ⋯

௡ݔ

??

ଶݔ

?? ♥♣

ଵ ଶ

?? ♥♣

4 free cards 

6 additional cards 
are sufficient



Theorem 6. 

• Let be an -variable function. 

63

ଵ

??

௡

??

ଶ

?? ♥♣ ♥♣ ♥♣

ଵ

??

௡

??

ଶ

???? ♥♣ ♥♣
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• Let ଵ ଶ ௡ be a symmetric funtion.
• The value of depends on only the number of 

variables that take ., namely ௜ .

65



• Let ଵ ଶ ௡ be a symmetric funtion.
• The value of depends on only the number of 

variables that take ., namely ௜ .

66

binary representation of ௜

??

ଵ

??

௡

??

ଶ

??

ଵ

??

୪୭୥మ ௡ ାଵ

??

ଶ

௜

௡

௜ୀଵ

input commitments



This can be done by the improved half-adder 
protocol with 2 additional cards. 

67

??

ଵ

??

௡

??

ଶ

♥♣

ܽ
??

ܾ
?? ♥♣

ܾܽ
?? ♥♣??

ܽ ⊕ ܾ

??

ଵ

??

୪୭୥మ ௡ ାଵ

??

ଶ

௜

௡

௜ୀଵ

2 additional cards



Note that some free cards will arise.  

68

??

ଵ

??

୪୭୥మ ௡ ାଵ

??

ଶ

♥♣♥♣

??

ଵ

??

௡

??

ଶ

♥♣

Reuse



• If , then there are at least 6 free cards.

69

??

ଵ

??

ଶ

??

ଷ

♥♣ ?? ♥♣ ♥♣ ♥♣

ଵݏ
??

⋯

ݏ ୪୭୥మ ௡ ାଵ

??

ଶݏ
?? ♥♣ ♥♣ ♥♣

ଵݏ
??

⋯

ݏ ୪୭୥మ ௡ ାଵ

??

ଶݏ
??

݂
?? ♥♣ ♥♣

• If , then ௜ is a -bit sequence. 

Theorem 6

Theorem 2



Theorem 8. 

• Let and let be an -variable symmetric function. 

70

??

ଵ

??

௡

??

ଶ

♥♣ ?? ♥♣♥♣
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A (real) deck of cards 
available to the first 
several people; 
please contact the 
speaker.

 6 additional cards are sufficient for any function
 2 additional cards suffice for any symmetric one

Conclusion


