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What is Card-Based Protocol?

Card-based protocols achieve
secure multi-party computation (MPC)
using a number of physical cards of 2 colors.
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What is Card-Based Protocol?

Card-based protocols achieve
secure multi-party computation (MPC)

using a numl/\wxf physical cards of 2 colors.
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What is secure multi-party computation?
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What is secure multi-party computation?

private inputs
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With keeping their inputs secret,
all players know only the value of
a function (e.g., AND, MA)).
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Title:
Card-Based Protocols for Any Boolean Function

We propose a general approach to constructing
a card-based protocol for any given function.
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Preliminary Notations
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To deal with Boolean values, this encoding is used:
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A commitment to a bit is a pair of face-down cards
following the encoding.
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Using 2 cards, each player can arrange a
commitment to his/her private input bit.
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Given commitments to private input bits
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along with additional cards, a card-based protocol

produces a commitment to the value of a function
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The simplest protocol: NOT computation

Swapping two cards results in a commitment
to the negation of the bit.
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the order

With keeping the value of x secret, we can get
a commitment to the negation x of x .

» Secure NOT computation is trivial.
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» How about secure AND computation {'J H.} — 1
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a b anb
With keeping the values of & and b secret,
we want to get a commitment to a /A b.



The most efficient existing AND protocol

A commitment to a/A b can be obtained
using 2 additional cards [10].
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additional cards

[10] T. Mizuki and H. Sone, Six-Card Secure AND and Four-Card Secure XOR,
FAW 2009, LNCS 5598, pp. 358-369, 2009. 15
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Turn over the two middle
cards:
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Apply a random bisection cut:
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IS a random bit.
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The Copy Protocol [10] ' @®=0 @@ =1

A commitment can be copied
with 4 additional cards [10].
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[10] T. Mizuki and H. Sone, Six-Card Secure AND and Four-Card Secure XOR,

FAW 2009, LNCS 5598, pp. 358-369, 2009.
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The Copy Protocol [10] WY=0 We=1!
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Secure XOR can be done with no additional card [10].
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Secure AND [10]
2eREele) » 224wy

a b ab
Secure XOR [10]
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[10] T. Mizuki and H. Sone, Six-Card Secure AND and Four-Card Secure XOR,
FAW 2009, LNCS 5598, pp. 358-369, 20009.
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Secure AND [10]
2eREele) » 224wy

Y

a b ab
Secure XOR [10]

Theorem 1 ([10])
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X1 X2 f(xq,x2)
arbitrary function

[10] T. Mizuki and H. Sone, Six-Card Secure AND and Four-Card Secure XOR,
FAW 2009, LNCS 5598, pp. 358-369, 2009. 34




Theorem 1 ([10])
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X1 X2 f(xq,x2)
arbitrary function

Theorem 2 ([13])
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X1 X2 X3 f(xq,%2,x3)

arbitrary function

[13] T. Nishida, Y. Hayashi, T. Mizuki, and H. Sone, Securely computing three-input functions
with eight cards, IEICE Trans. Fundamentals, vol.E98-A, no.6, 2015. 35



Theorem 1 ([10])
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X1 X2 f(xq,x2)
arbitrary function

Theorem 2 ([13])

2eReRR)ele) & 2E)4valvee

X1 X2 X3 f(xq,%2,x3)

arbitrary function

2 additional cards are sufficient forn = 3
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» How about functions having 4 or more variables?

Since we have AND, XOR, NOT, and copy

any Boolean function f(xq, x5, ..., x;;) can
securely computed as long as there are p
additional cards.
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Open Problem

* An explicit sufficient number of additional cards
has not been revealed thus far.
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Our Results

We show sufficient conditions on the numbers
of additional cards.
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2.1 Improved AND Protocol
The existing AND protocol [10]
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[10] T. Mizuki and H. Sone, Six-Card Secure AND and Four-Card Secure XOR,
FAW 2009, LNCS 5598, pp. 358-369, 20009. 41



The existing AND protocol [10]
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Our improved AND protocol
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[10] T. Mizuki and H. Sone, Six-Card Secure AND and Four-Card Secure XOR,
FAW 2009, LNCS 5598, pp. 358-369, 20009. 47




Idea:
(1) Revisit the existing AND protocol

(2) Identity: ab € @b = b
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|dea:
(1) Revisit the existing AND protocol

BEEEUURSEERE LT

Y Y Y

a b ab ab

(2) Identity: ab € ab = b to be

transformed
into b




|dea:

(1) Revisit the existing AND protocol
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(2) Identity: ab €

> 21222l

~

ab ab

Dab = b

J

\
'? ..7 ..7 .?
HF_/ H_J

xDy xDz

b

ab

/




(1)

222z )sle) » 2227 4w

a b ab  ab

2 ab @ ab = b

BEEEUUR. @9 gEgn

ab ab p ab




Full description of improved AND (@® =0 @ =1
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2.2 Improved Half-Adder Protocol
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[6] T. Mizuki, LK. Asiedu, and H. Sone, Voting with a Logarithmic Number of Cards,
UCNC 2013, LNCS 7956, pp.162-173, 2013. 51



2.2 Improved Half-Adder Protocol

The existing half-adder protocol [6]
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a b a®@b ab

[6] T. Mizuki, LK. Asiedu, and H. Sone, Voting with a Logarithmic Number of Cards,
UCNC 2013, LNCS 7956, pp.162-173, 2013.
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2.2 Improved Half-Adder Protocol

The existing half-adder protocol [6]
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a b «db ab

Our improved half-adder protocol
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. Mizuki, LK. Asiedu, and H. Sone, Voting with a Logarithmic Number of Cards,
CCCCCCCC , LNCS 7956, pp.162-173, 2013. 53



Full description of improved HA #¥ =0 (v =1"
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Building Blocks

Improved AND:

BEEEUURESEERE LT

a b ab b

Improved half-adder:
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AND-XOR expression: Shannon expansion

* Any n-variable function f (x4, x,, ..., x,,) can be
expressed as the Shannon expansion

f(x1,%5, ..., %) = X%, - %, (0,0, ...,0)
@ xx, - x,f(1,0,..,0)
@ xyx,--x,f(0,1,...,0)
@ xx,-- %, f(1,1,...,0)

D xix, - x,f(1,1,...,1)

where a product term can be deleted if f(*,*,...,*)=0.
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f(xl,xz, ...,Xn) =T; P T, D P T; @D -

product term

A product term 1; = v; V,--Vn can be manipulated
with 4 additional cards without losing original
commitments, as follows:
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4 additional
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f(x1, %0, X)) =T DT, D DT, P -
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Theorem 6.

* Let f be an n-variable function.
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e Let f(xq,x,,...,x,) be a symmetric funtion.
* The value of f depends on only the number of
variables that take 1., namely x; .
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e Let f(xq,x,,...,x,) be a symmetric funtion.
* The value of f depends on only the number of
variables that take 1., namely x; .

Input commitments

[?]Y[?][?L[?]

X1 X2 Xn
T

binary representation of ) x;

(BERE-EE),

S1 52 S[logz n|+1

n

=1
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This can be done by the improved half-adder
protocol with 2 additional cards.

2 additional cards
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Note that some free cards will arise.
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« If n > 5, then there are at least 6 free cards.
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S1 S2  S|log, n|+1 f S1 S2  Sllog, n|+1

« If n =4, then Y x; is a 3-bit sequence.
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Theorem 8.

« Letn = 4 and let f be an n-variable symmetric function.

2By & 2)3)ev--(4le

~ = ~ J A\ _/ —
X1 X2 Xn f
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Conclusion

0 6 additional cards are sufficient for any function
O 2 additional cards suffice for any symmetric one

~

A (real) deck of cards
available to the first d 2 B2 Al K
several people;
please contact the
speaker.
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