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Abstract. Card-based protocols that are based on a deck of physical
cards achieve secure multi-party computation with information-theoretic
secrecy. Using existing AND, XOR, NOT, and copy protocols, one can
naively construct a secure computation protocol for any given (multivari-
able) Boolean function as long as there are plenty of additional cards.
However, an explicit sufficient number of cards for computing any func-
tion has not been revealed thus far. In this paper, we propose a general
approach to constructing an efficient protocol so that six additional cards
are sufficient for any function to be securely computed. Further, we prove
that two additional cards are sufficient for any symmetric function.

1 Introduction

It is known that secure multi-party computation (MPC) can be achieved using
a number of physical cards such as black @ and red @ cards (with identical
backs ) Several card-based cryptographic protocols have been reported in
the literature: in addition to the elementary computations, namely, the AND [1,
3,7,10,12,15] and XOR [3,10,11] protocols, efficient protocols (i.e., protocols
that require fewer cards) have been designed for specific functions such as the
adder [6] and the 3-variable functions [13]. Whereas previous studies have dealt
with specific functions, this paper proposes a general approach to constructing
an efficient protocol for any given (multivariable) Boolean function.

We start with introducing some preliminary notations for card-based proto-
cols.

1.1 Preliminary Notations

To deal with Boolean values, we use the following encoding rule based on the

order of a pair of cards:
[&[0]=0, [V]&]=1. (1)

* This paper appears in Proceedings of TAMC 2015. The final publication is available
at Springer via http://dx.doi.org/10.1007/978-3-319-17142-5_11.
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For a bit « € {0,1}, a pair of face-down cards that has a value equaling x
according to encoding rule (1) is called a commitment to x and is written as

HE
g
x
“Committed-format” protocols [3,6,10-13,15] produce the output as a commit-

ment; for example, given commitments to bits a and b, we can obtain a commit-
ment

[2]7] or [2]7]
—
alb adb

as the output of an AND or XOR protocol.
Given a pair of bits (x,y), we define two operations, get and shift, as

get’(z,y) =z, get'(z,y)=y;
shift’(z,y) = (z,y), shift'(z,y) = (y, 7).

Using these operations, the AND function can be written as
a A b= get®®"(shift" (0, b)) (2)

for an arbitrary bit € {0, 1} [13]. Hereafter, for two bits « and y, the notation (i)
below implies (ii).

0 [2]z]2l2), G [2]2]2]2].
(z,y) z Yy
1.2 AND Protocol

Next, we introduce the most efficient AND protocol [10] currently known. Given
commitments to bits a and b together with two additional cards, it achieves a
committed-format AND computation as follows.

1. Arrange three commitments to a, 0, and b:

HEUMEEERHHEEE
e A A S

2. Rearrange the sequence of six cards as

HEHBEE
i B 5 [ e
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3. Bisect the sequence of six cards and switch the two portions (each of which
consists of three cards) randomly; we call this a random bisection cut [10]
and denote it by [-]-]:

[BEREEREERERR R
4. Rearrange the sequence as

HEHBHE

Then, we have

HEHBEHE

adr shift” (0,b)

where r is a (uniformly distributed) random bit because of the random bi-
section cut.

5. Reveal the two left-most cards; then, the value of a & r along with Eq. (2)
gives us the position of the desired commitment to a A b:

[l 2 2]z ]2] or [V @] 2] 2] 2] 2]
-~ -~

a/Ab aAb

Since r is random, revealing the commitment to a®r does not cause any infor-
mation about bit a to be leaked, and hence, this protocol achieves an information-
theoretically secure computation.! Note that the two revealed cards can be used
for another computation (we call such an available card a free card).

1.3 Copy Protocol

Given a commitment to bit a together with four additional cards, we can make
two copied commitments to a [10] as follows.

1. Arrange three commitments to a, 0, and 0.

22| [O] ][9] - (2] 2] 2] 2] 2] 2].
—— —— =

a a 0 0

! Security is dependent on physical properties such as cards of the same color being
indistinguishable and a random bisection cut being applied truly randomly. A formal
treatment appears in [8], and the settings of this study are based on the formalization
of card-based protocols. It is also known that one can practically assume a semi-
honest model, i.e., a protocol is always executed properly [9].
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2. Rearrange the sequence, apply a random bisection cut, and rearrange it
again:

HEHBHE HEHBHE
SN EEREIEEE] - XK
HEHBEHE HEHBEEE

Then, we have

HEHEHE

a®dr 0pr O0r

where r is a random bit.
3. Reveal the two left-most cards; then, we know whether » = a or r = a, and
we have

[*[O] 2] 2] 2] 7] or [V ] 2] 2] 2] 7]
—— = ——

a a a a

Hence we obtain two commitments to a.

Note that swapping the two cards that constitute a commitment to a bit
results in a commitment to the negation of the bit (recall encoding rule (1)), i.e.,
the NOT computation is trivial. Therefore, hereafter, we omit detailed descrip-
tions of how a commitment to negation  is transformed into a commitment to
x.

If we start this protocol with commitments to a, b, and 0 in step 1 instead,
commitments to a @ b and a will be obtained [13].

Similarly, given commitments to bits a and b, we easily obtain

HHEBEE
N el
a®r bdr

and hence the existing XOR protocol [10] produces a commitment to a & b
without the use of any additional card.

1.4 Our Results

The existing AND, XOR, and NOT protocols introduced thus far immediately
imply the following theorem.

Theorem 1 ([10]). Given commitments to x1 and o together with two addi-

tional cards E@, we can securely produce a commitment to the value of any
2-variable Boolean function f(x1,x2).

It is also known that the following holds.

Theorem 2 ([13]). Given commitments to x1, T2, xs together with two addi-
tional cards E , we can securely produce a commitment to the value of any
3-variable Boolean function f(x1,x2,x3).
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These two results raise a natural question: what about the case of any general
Boolean function having four or more variables? Of course, by combining the
existing AND, XOR, NOT, and copy protocols, one can securely compute any
(multivariable) Boolean function f(x1,2,...,2,) as long as there are plenty of
additional cards. However, an explicit sufficient number of cards for computing
any function has not been revealed thus far. We investigate this open problem
and propose a general approach to constructing an efficient protocol, showing
sufficient conditions on the numbers of additional cards.

The remainder of this paper is organized as follows. In Section 2, we improve
the existing AND and half-adder protocols. In Section 3, using the improved
AND protocol, we demonstrate the construction of a protocol that securely com-
putes any given n-variable Boolean function with n input commitments and six
additional cards, i.e., we prove that six additional cards are sufficient for this
case. In Section 4, using our improved half-adder protocol, we show that two
additional cards are sufficient for the case of symmetric functions. Finally, the
paper is concluded in Section 5.

2 Building Blocks

In this section, we create two new protocols as building blocks for the main results
(presented in Sections 3 and 4) by modifying the known AND protocol [10]
introduced in Section 1.2. The first new protocol produces a commitment to
a A'b as well as a commitment to b, as described in Section 2.1. The second one
achieves half-adder computation with only two additional cards, as described in
Section 2.2.

2.1 Improved AND Protocol

Recall the AND protocol [10] introduced in Section 1.2. When a commitment to
a A b is obtained as the output of the protocol, the other two face-down cards
will constitute a commitment to @ A b, as known from Eq. (2):

(%[O 2] 2] 2] 2] or [O]&] 2] 7] 2] 2].
—— ——

a/Ab anb anb a/Ab

From this observation and the identity
ab®ab=(a®a)b="b

(where we omit the conjunction symbol A hereafter), we can improve the AND
protocol so that one of the input commitments will be retained, as follows.

1. Arrange three commitments to a, 0, and b.

229l 2] ?) — [2] 2] 2] 2] 2] ?)-
—— —— ===

a b a 0 b
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2. Apply the known AND protocol [10]; then, we have
(%] 2] 2] 2] 2] or [O] ] 2] 2] 2] 2).
| —_— | —_—

ab ab ab ab

3. Rearrange the sequence as

HHEHEE

ab ab 0

4. Apply steps 2 and 3 of the copy protocol [10] introduced in Section 1.3; then,
we have

[®]O1 2] 2] 2] 2] or [O)&] 2] 2] 2] 7).
—~— ——

ab®ab ab ab®ab ab

Since ab ® ab = b, we have
(O 2] 2] 2]7) or (O] ] 2] 2] 2] 2 ).
| —— ~———

b ab b ab

Thus, this protocol allows us to retain a commitment to b. Therefore, the
following lemma holds.

Lemma 3. Given commitments to x1 and x4 together with two additional cards
, we can securely produce commitments to x1x2 and xs.

2.2 Improved Half-Adder Protocol

It is known that half-adder computation can be achieved with eight cards [6], i.e.,
given commitments to a and b together with four additional cards, the existing
protocol produces commitments to a @ b and ab. In this subsection, we improve
the half-adder protocol by applying the improved AND protocol described in the
previous subsection. Our half-adder protocol requires only two additional cards
and proceeds as follows.

1. Arrange three commitments to a, b, and 0.
2Lz 2]z 0] — [2] 2] 2] 2] 2] 7).
—_——— —_——

a b a b 0

2. Apply steps 2 and 3 of the copy protocol [10] introduced in Section 1.3; then,
we have

(9l 2l2] 2 ]2) or [V &) 2] 2] 2] 2]
N~ N~
a®b a F‘Bb a

3. Rearrange the sequence as

HHEUOMHE
—~— ——

a a®b
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4. Apply the improved AND protocol described in the previous subsection;
then, we have

[®[O12] 2] 2] 2] or [O]#] 2] 2] 2] 7).
—— ——

a®b a(adbd) a®db a(?ﬁb)

Since a (a ® b) = aa ® ab = ab, we have

(%] 2] 2] 2] 7] or [Of&] 2] 2] 7] 7).
e e
adb ab adb ab

Thus, this protocol achieves half-adder computation using only two addi-
tional cards. Therefore, the following lemma holds.

Lemma 4. Given commitments to x1 and xo together with two additional cards
@@, we can securely produce commitments to x1 ® x2 and T1T2.

3 Computation of Any Multivariable Function

In this section, we present a general approach to constructing an efficient pro-
tocol for any given n-variable Boolean function by showing that any n-variable
function can be securely computed with n input commitments and six additional
cards.

3.1 Concepts and Sub-Protocol

Remember that XOR computation can be easily achieved [10] as described in
Section 1.3. Hence, XOR computation should be employed to construct an effi-
cient protocol. Therefore, we consider AND-XOR expressions of a given function.
Indeed, it is well known that any n-variable function f(z1,zo,...,z,) can be ex-
pressed as the Shannon expansion (or Boole’s expansion) [14]:

f($1,$2,...,l‘n):jl.fg"'jnf(o,o,...,0)@IlfQ'-'jnf(l,O,...,O)
® T1x2- - Tnf(0,1,...,0) Barzs---Tpnf(1,1,...,0)
@ ®drxa -z, f(L,1,...,1).

ie., f(x1,x2,...,2,) can be expressed uniquely by combining 2" product terms
with XORs, where a product term can be deleted if the corresponding value of
fisO.

Now, we want to handle product terms vyvs - - - v,, where v;, 1 <7 < n,is a
literal (either x; or Z;): given commitments to vy, vs, ..., v, together with four
additional cards, the following sub-protocol securely generates a commitment to
the product term vivs - - - vy,.
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1. Make two copied commitments to v; using the copy protocol [10] introduced
in Section 1.3:

HE

HEHEE

[*[O]&]O] 2] 2] 2]?]--[2] 2] = [2] 2] ][9] 2
= = —~—

V1 Vo Un V1 V1 v2 Un,

2. Apply the AND protocol described in Section 2.1; then, by Lemma 3 we

have
2z 2]z [@] 2] 2] 2] 2] (2] 2).
e | p— ——
vl vy VU2 v3 VUn

3. Similarly, by Lemma 3 we have

Hi

HEHHHHDNE
e

v1 v2 v3 V1U2V3 v4 Un

HEHRE
——

4. Repeat this up to v, so that we have

HEHERHEOMIHE
= =— —~—

U1 V2 Un V1V2: " Un

Thus, four additional cards allow us to generate a commitment to the product
term without losing the input commitments.

Lemma 5. Given commitments to literals vi,vs, ..., v, together with four addi-
tional cards @@@@, we can securely produce commitments to vy, Ve, ..., Uy,
and vivg - - Uy,

3.2 Complete Description of Protocol

Now, we are ready to present our general protocol for securely computing any
function.
Let f be an arbitrary n-variable function. Given n commitments

HEBHERHEA

1 T2 Tn

and six additional cards |&||&||&||@||@”@
duces a commitment to f(x1,za,...,%,).

, the following protocol securely pro-

1. Let Ty & 15 @ --- d Ty be the Shannon expansion of f after removing the
constant-zero terms (where T3, 1 < i < £, is a product term). Generate a
commitment to 73 using the sub-protocol described in Section 3.1. Then, by
Lemma 5 we have

HEEERHAHRUNMUIMER
—— = -~

T1 T Tp Ty
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2. Generate a commitment to 75 by Lemma 5:

HEBHEEHRHDN B
R N R
T To Ty T T>

3. Apply the XOR protocol [10] to the two right-most commitments:

HEHERHBUNMUIMER
e e N~—~—
1 T2 Tn TieT>

4. Generate a commitment to 75 by Lemma 5:

22 2]z] (2] 2] [@] 2] 2] 2] 2]
—_——— = | S —_—
1 T2 Tn T ®T> T3

5. Apply the XOR protocol [10] to the two right-most commitments:

2lz)2]z] 2z lo) @] [2]2] -
NN~ N~—~—
T1 T2 Tn T, ®&T2PT3

6. Repeat this until we get a commitment to 77 & 15 & - - - @ T}, which is equal
to f(x1,xa,...,2,):

lzfz]z) 2]z ]s[0]s]0)  [2]2]
) a— g ~—

1 T2 Tn fz1,22,...,Tn)

The remaining commitments to x1,Ts,...,x, as well as the four free cards

@@@@ can be used for another computation. Thus, we have the following
theorem.

Theorem 6. Let f be an n-variable function. Given commitments to x1,xs,. . .,
T, together with siz additional cards |&||&||&||(7||(9”@ , we can securely produce
commitments to x1,xa, ..., Ty, and the value f(x1,xo,...,T,).

Note that our improved AND protocol (Lemma 3) plays an important role
in reducing the number of required cards; without it, two more cards would
be required to run the sub-protocol, and consequently, the above protocol. Fur-
thermore, although we used the Shannon expansion in step 1, one may use any
AND-XOR expression instead, which can be obtained by applying some simpli-
fication algorithm [14].

4 Case of Symmetric Functions

The previous section described the construction of a protocol that securely pro-
duces a commitment to the value of any function using n input commitments
and six additional cards. In this section, we focus our attention on symmetric
functions because practically important functions in MPC are often symmetric.
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Specifically, we prove that two additional cards are sufficient for the case of
symmetric functions.

Let f be an n-variable symmetric function. Then, the value f(z1,zo,...,2,)
depends on only the number of variables that take 1, namely Y ., z;. For in-
stance, the 3-input majority MAJs, which is a 3-variable symmetric function,
can be expressed using a function g : {0,1,2,3} — {0,1} as

1 otherwise.

MAJg(Il,IQ,Ig) = g(in) = {

Thus, for any n-variable symmetric function f : {0,1}"™ — {0, 1}, there exists a
unique function g : {0,1,...,n} — {0,1} such that f(x1,za,...,2,) =g (> ;).

Given commitments to z1,z9,...,T,, it is obvious that the half-adder com-
putation described in Section 2.2 enables us to securely generate a sequence
of commitments corresponding to the binary representation of Y z;; Lemma 4
implies that two additional cards are sufficient for this purpose.

Lemma 7. Given commitments to x1,xo,...,T, together with two additional
cards @@, we can securely produce a (|logy n|+1)-bit sequence of commitments
corresponding to > | x;.

Note that after generating a sequence of commitments to Y x; from com-
mitments to x1,x2, ..., T, (and two additional cards), some free cards will arise;
more specifically, we will have a total of 2 (n — |logy n|) free cards.

Now, we are ready to present our main result of this section, i.e., only two
additional cards are sufficient for the case of symmetric functions.

Theorem 8. Let n > 4 and let f be an n-variable symmetric function. Given
commitments to x1,Ta,..., T, together with two additional cards @@, we can
securely produce a commitment to the value f(x1,xa,...,Zy).

Proof. Let g : {0,1,...,n} — {0,1} be the function such that g (> z;) =
f(z1,22,...,2,). By Lemma 7, we obtain a (|log, n| 4+ 1)-bit sequence of com-
mitments corresponding to Y x; and 2 (n — |logyn|) free cards. If n > 5, then
2 (n — [logyn]) > 6, and hence there are at least 6 free cards, and consequently,
we can securely generate a commitment to the value g (> «;) by Theorem 6 (by
regarding the domain of g as {0, 1}11°827+1) Similarly, if n = 4, then there are a
3-bit sequence of commitments and 4 free cards, and hence Theorem 2 completes
the proof. a

5 Conclusion

We proposed a general approach to designing an efficient card-based protocol
for any given function. Specifically, using two-level AND-XOR representations,
we can construct a protocol that requires only six additional cards to securely
produce a commitment to the value of any m-variable function, regardless of
how large n is (Theorem 6). Further, we showed that two additional cards are
sufficient for the case of symmetric functions (Theorem 8).
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As mentioned above, six additional cards are sufficient for general functions,
and two additional cards are sufficient for symmetric functions. Determining
whether they are necessary is an open problem; for example, is there a symmetric
function that needs at least two additional cards? Note that to prove such a
lower bound, one has to follow the formal computational model for card-based
protocols [8].

Cryptography and playing cards share a deep connection (e.g., [2,4,5, 16]).
One benefit of considering such a connection is that it enables us to easily demon-
strate the underlying concepts of MPC and cryptography to non-specialists. In
addition, we have already confirmed that ordinary people such as high-school
students can use card-based protocols in their daily activities.
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