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Abstract—Imagine two cryptographers wishing to securely
compute the AND value of their secret input bits. They are
in the kitchen, where all they have are three saucepans with
Borscht soup and some kinds of ingredients. Interestingly, by
secretly putting ingredients in the saucepans depending on their
inputs, they can find only the AND value from the taste of the
cooked Borscht. Because cooking for secure computations is not
so convenient, let us regard ingredients and saucepans (with
Borscht soup) as balls and bags, respectively, which are easy
to handle and also familiar tools for learning Probability in high
school. Then, our problem is generalized as: Can we realize secure
maultiparty computations (MPCs) with balls and bags?

There are techniques to realize MPCs with everyday objects,
such as physical cards, coins, and a PEZ dispenser. We encode
the input bits with such objects and securely compute some
predetermined function using them. In this paper, we present
a novel technique based on the physical properties of balls and
bags. That is, our challenges are how to utilize an interesting
feature that the balls become disordered immediately after they
are put into a bag, namely they are “aufomatically shuffled.” We
give the first framework of MPCs using balls and bags (namely,
ball-based cryptography), and propose secure AND computation
and general MPCs. Our protocols are realizations of usable
security which helps people with understanding the principles
of MPCs as well as solving social problems in daily life.

Index Terms—Secure multiparty computation, Real-life hands-
on cryptography, Urn problem

1. INTRODUCTION

Three cryptographers are just cooking Borscht soup at the
kitchen. Each of them has brought typical ingredients for
Borscht soup such as carrots and onions. They might be
paying for the ingredients, or some of them might be funded
by NFSA (National Fictional Security Agency). The three
cryptographers respect each other’s ideology to have a relation
to NFSA, but they wonder if they eat food funded by NFSA.
All they have in the kitchen are the ingredients (namely, carrots
and onions) and saucepans with Borscht soup. Then, they
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decide to resolve their uncertainty by conducting a secure
AND computation with the ingredients and saucepans, to make
sure whether they all paid or not. We call this the Cooking
Cryptographers Problem, which is named in honor of the
Dining Cryptographers Problem [1].

A. Cooking Cryptographers

For simplicity, let us consider the Cooking Cryptographers
Problem with two players. Assume that Alice and Bob have
private inputs a,b € {0, 1}, respectively (the individual input
is 0 if he/she was supported by NFSA; otherwise, it is 1).
Our goal is to compute the two-input logical AND function
f(a,b) = a A b without revealing any information except for
the output value. Remembering that they are in the kitchen, let
us construct a secure protocol for this function using cooking
tools and ingredients. Interestingly, we can give an example
of the computation using two carrots, four onions, and three
saucepans, as follows.

1) There are three saucepans filled with Borscht soup
(containing no ingredient yet) on kitchen countertops as
well as two carrots and four onions on a tray. Each of
Alice and Bob picks one carrot and two onions from the
tray.

2) If a = 0, Alice puts the carrot into the second saucepan
and the onions into the other saucepans privately (so that
Bob cannot learn which saucepan contains the carrot).
If a = 1, she puts the carrot into the first saucepan and
the onions into the other saucepans.
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The ingredients go to the bottom so that nobody sees
them directly in any saucepans.

3) If b = 0, Bob privately puts the carrot into the third

saucepan and the onions into the other saucepans. If

b =1, he puts the carrot into the first saucepan and the
onions into the other saucepans.
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Note that the two carrots are in the same saucepan if
and only if a = b = 1.
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4) Alice and Bob shuffle the three saucepans so that the
resulting order of the three saucepans becomes unknown
to them.

5) After simmering the Borscht soup in the three saucepans,
they enjoy eating the cooked Borscht soup in the three
saucepans; if there is a saucepan of Borscht soup only
with carrots, we have f(a,b) = a A b = 1 (meaning
that none of Alice and Bob was supported by NFSA);
otherwise, a A b = 0.

B. Contribution

In this paper, we formalize the above two-party protocol
with a general setting. Because it is not so easy or realistic
to cook Borscht soup whenever people want to perform a
secure computation, let us replace ingredients and saucepans
(with Borscht soup) by colored balls (such as red and white
balls) and non-transparent bags, respectively. Assume that a
bag possibly includes balls but the colors of the balls are
invisible from the outside. Balls and bags are easy to prepare,
and they are also familiar tools for learning Probability in
high school. Therefore, basing on balls and bags will be more
human-friendly than cooking soup for secure computations.

Then, our problem is reformulated as: Can we realize
secure multiparty computations (MPCs) [2] with such balls
and bags? As will be reviewed in Section I-D, there are
MPC protocols with familiar tools, such as a deck of physical
cards [3]-[5]. Unlike these existing protocols, we attempt
to construct the first protocol using colored balls and bags
together with simple actions: putting balls into a bag, shuffling
the order of bags, and taking balls from a bag. Notice that,
similar to ingredients in Borscht soup, balls in a bag have
an interesting property that a collection of balls automatically
becomes disordered once they are put into a bag, namely
automatic shuffle.!

We positively answer the above question; we construct sim-
ple protocols to establish MPCs of the logical AND function
with more than two inputs as well as general MPCs. We also
give a formal treatment for our protocols and their security
(namely, ball-based cryptography). Proposed ball-based proto-
cols are described in both formal and informal ways. To easily

i Although we believe that this automatic shuffle works well, shaking a bag
after putting balls into it would be another way to achieve this.

confirm correctness and security of a protocol, we construct
a diagram showing probability traces of the protocol, which
was proposed in [6] for card-based protocols. We believe that
ball-based cryptography is a realization of usable security that
helps people with understanding the principles of MPCs.

C. Outline

The remainder of this paper is organized as follows. In
Section II, we propose ball-based cryptography by presenting
a formal treatment of protocols using balls and bags. In
Section III, we show a pseudocode of the AND protocol
with two inputs introduced in Section I-A, and then show
a diagram of the protocol, which implies correctness and
security of the protocol. In Section IV, we extend the two-
input AND protocol to an AND protocol with more than two
inputs. In Section V, we further extend the protocols to design
general MPCs. In Section VI, we discuss the efficiency of
our AND protocols. In Section VII, we show implementation
examples for ball-based cryptography. We conclude this work
in Section VIII. In Appendix A, we show a pseudocode of
card-based AND protocol with five cards for comparison. In
Appendix B, we introduce different kinds of balls to have
efficient protocols.

D. Related Work

Physical objects enable us to achieve cryptographic tasks,
such as MPCs [7], zero-knowledge proofs [8], polling [9], and
visual secret sharing [10]. As we perform these secure proto-
cols by hand, their principles can be intuitively understood;
hence, they are attractive. There are several researches on this
subject (called real-life hands-on cryptography), such as a deck
of playing cards [3]-[5] (known as card-based cryptography),
visual secret sharing sheets [11], coins [12], and a PEZ
dispenser [13], [14]. Real-life hands-on cryptography has been
attracting many young people to the field of security and
privacy.

Physical objects are powerful so that they provide solutions
to problems in cryptographic protocols (which cannot be
solved with only computational assumptions). Using tamper-
evident seals [15], we can implement standard cryptographic
protocols such as coin flipping and oblivious transfer which
are universally composable. Envelopes [16] can be used to im-
plement collusion-free protocols. The use of a ballot box [17]
was considered to perform rational secure computations.

Compared with these researches, our work employs the
property of bags (namely, automatic shuffle) and utilize simple
actions with colored balls and bags for performing MPCs.
Related to probability theory, taking a ball out of a bag in
ball-based cryptography can be a variant of an urn problem
by regarding a bag as an urn. An urn problem often appears in
probability theory and statistics, where a player takes one or
more balls from an urn containing some balls. Some examples
of urn problems such as binomial distribution are known.
MPCs would be included in the collection of urn problems
due to our work.



E. Comparison with Card-Based Cryptography

Among related work introduced above, card-based cryp-
tography is the most famous topic on real-life hands-on
cryptography. We note that card-based cryptography and ball-
based cryptography are different; a state of balls in a bag is
denoted by a multiset (as will be seen in Section II-A) while
a playing card is defined as a fraction to represent two states
of face-down and face-up [18].

Let us discuss the relation between them. Although it is
true that a bag containing one ball can be regarded as a face-
down card, balls and bags cannot be used to implement any
card-based protocol. This is because, with balls and bags, it
seems relatively difficult to realize a cyclic shuffle, which is
used in a large number of card-based protocols to cyclically
shuffle a sequence of cards. On the other hand, any ball-based
protocol can be implemented by using a deck of playing cards
because a bag containing balls can be represented by a set of
face-down cards. That is, we can regard a pile of cards as a
bag containing balls; by completely shuffling the pile of cards,
the property of being disordered is guaranteed. For instance,
the above two-party protocol can be implemented with two red
cards and four white ones. However, such an implementation is
no longer efficient because the famous five-card trick proposed
by Den Boer [3] requires only five cards; hence, the above two-
party protocol cannot be derived from card-based protocols
and the protocol is non-trivial. From the above discussion,
balls and bags approach relies on a weaker assumption than
card-based cryptography. We believe that this is an advantage
of our approach because even such a weaker setting provides
us a simple way of performing secure computations.

We emphasize that practical usability in ball-based cryp-
tography is as high as in card-based cryptography. Let us
compare the above two-party protocol with balls and bags
and the five-card trick [3], which is the most simple card-
based protocol for computing the logical AND. As will be
shown in Protocols 1 and 4, the length of the pseudocode
of our proposed protocol is almost the same as that of the
five-card trick [3]. Indeed, both protocols proceed in a similar
way, i.e., two players privately input balls or cards, shuffle a
sequence of bags or cards, and reveal all the colors of the
balls or cards. Therefore, executing our proposed protocol is
easy for laypeople, and it is a beautiful tool of pedagogical
significance as is the five-card trick (a case study of using
card-based cryptography in a university lecture was reported
in [19]). Moreover, physical assumptions they use are general
in daily life; the colors of balls in a bag are assumed to
be invisible in ball-based cryptography while the colors of
face-down cards are assumed to be invisible in card-based
cryptography.

Overall, ball-based cryptography will open a new vista, and
we expect that it will contribute to increasing people who are
interested in computer security and privacy.

II. FormALIZING PROoTOCOLS BASED ON BALLS AND BaGSs

In this section, we present a formal treatment of protocols
based on balls and bags by constructing a model of ball-based

secure computations. We also discuss active security of our
proposed scheme, i.e., how we should deal with malicious
players who may deviate arbitrary from a protocol.

A. Notations

Remember the AND protocol (which computes f(a,b) =
a A b) proposed in Section I-A. We now replace ingredients
and saucepans with balls and bags, respectively. That is, we
use two red balls, four white balls, and three bags as illustrated
in Fig. 1; this is an example of executing our AND protocol
using balls and bags when a = b = 1.

Let e and o denote a red ball and a white ball, respectively.
Assume that all balls are indistinguishable except for their
colors. Seeing Fig. 1, notice that we have to consider two
kinds of multisets of balls, namely a “bag” and a “tray.” Thus,
we introduce two expressions of a multiset of balls: {{-} is
an invisible multiset representing a bag possibly containing
balls, and [-] is a visible multiset representing a tray. We
use “invisible multiset” and “bag” interchangeably; we call
an invisible multiset of balls {by,...,b/}} a bag (into which
balls are put) where by,...,b; € {e,0} for a natural number
¢. Similarly, we call an visible multiset of balls [by,...,b/] a
tray (on which balls are put).

We assume that the size of bags is suitable so that once balls
are put into a bag, the order of the balls automatically becomes
disordered. We call this property automatically shuffle. For ex-
ample, {{e,0,e}} and {{e, e, o}} are indistinguishable to players.
In this paper, we write red balls first in an (in)visible multiset
to unify the notation. It is interesting that constructing MPCs
is possible even with balls and bags having such a property.

Using these notations, at the beginning of the two-party
protocol proposed in Section I-A, we have three empty bags
(invisible multisets) {{}, {}}, {} and a tray (visible multiset)
[e,0,0,0,0,0] on a table. Let us describe it with a tuple:

([e, @, 0,0 0 o] {1, {0 {0 (0. [0, D) - )

We call this tuple a configuration. The first part of the
configuration (before the first semi-colon) is a multiset of
available balls, its second part (between the first and second
semi-colons) is a sequence of bags, and its last part is a
sequence of trays keeping balls picked from the bags. The
last part may be omitted if there is no visible ball at that time.

Let us review the two-player protocol with these notations.
At Step 2, Alice holds one red ball and two white balls, i.e.,
[e,0,0], and puts them into the three bags depending on the
value of a; the above configuration is transformed into as
follows:

([e, 0,0, 0,0 0 {h, {0, T (1. (0. [D —

{([0, o,of;{o}, felt. fol: [1.[1.ID, ifa=0,

ifa=1. @

([o,0,0f; o}, fo bt o} [1. (1. 1D,
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Fig. 1: An example of executing our ball-based AND protocol with two inputs (when a =

At Step 3, Bob also puts balls depending on b; there are four
possibilities:

([1: o, of, o, ot o, o} [1.[1.[D,  if (a,b) = (0,0),
([1; fo, of, o, ot o, o [1.[1. [, if (a,b) = (0, 1), 3)
([1; fo, of, o, ot fo, o} [1. [ [D, if (a,b) = (1,0),
([1: o, o}, o, ol o, o [1L [ [, if (@, b) = (1, 1).

Let p;; for i,j € {0,1} represent the probability that the
input (a,b) is (i, j). Then, the first line in (3) occurs with
a probability of pgo, the second line occurs with a probability
of po1, and so on. Therefore, we now denote the above status

(3) by

([1: o, of, o, ot o, o s [1. (1. LD (P00, 0,0,0),
([1: o, o, o, o}t fo, o s [1L. 1. [D (0, o1, 0,0), @
([1; o, o B, flo, o}t fo, o}s [1. [1.[D (0,0, p19,0),
([1: e, o}, flo, o}t o, ofs [ [1.[D  (0,0,0, p11),

where a 4-tuple (goo, 901, g10,¢11) on the right side means that
gij is the conditional probability that (a,b) = (i, j) and the
current configuration is the left one.

Next, at Step 4, the three bags are shuffled; the resulting
configurations will be:

(s o, o o, ol o, o [L LD (52, 55, 552, 0),

(s e, oh e, o flos o5 [LILID - (52, 55, 552, 0),

(s e, o, flo, o fles o [L 1L D (5%, B, 5%, 0), 5)
(L0 e, o} fo, o o, o [ L. [D - (0,0,0, 51),

(s o, o e, o), flo, o [, 1. [D (0,0,0, 51),

(s o, o) ffo, ol e, o [, 1, 1D (0,0,0, 51).

Finally, Alice and Bob take all the balls out of the three
bags; this is denoted by the last part of the configurations,
namely visible multisets, as follows:

(0, 0 10 (s [0, 01, [0, 0], [o,0]) (222, 228, 22 ),

(L A0 ) ) (o, 01, [0, 00, [0, 0]) (B, 2, 20 g),
(0L 0 ([0, 01, [0, 01, [e.0]) (B2, B2 B0 0),
(0, 0 101 (: [, @1, [0, 0], [o,0]) (0,0,0, 1),

(0, 10 10 (h: [0, 01, [e, 01, [o,0])  (0,0,0, 1),

(I, 0L 0 (: [o, 01, [0, 01, [, 01) (0,0,0, 1),

b=1)

where pg = poo + po1 + p1o- The last part of the configurations,
i.e., balls picked from each bag, tells us that the AND value
aAb is obtained depending on whether two red balls are taken
from the same bag or not and that no information except for the
output is leaked (see Section III for more rigorous discussion).

B. Definition of Protocols

Let us introduce a formal definition of protocols based on
balls and bags.

Before going into the details, we first introduce extended
operations for a sequence of multisets. Let X = (Xy,...,Xy)
and Y = (Yy,...,Y;) be sequences of multisets of the same
length k. We define the following two operations: X U'Y =
Xpury,...,X, UYy) and union(X) = X; U--- U X;.

Next, we formally define a configuration (examples of
which were seen in Section II-A).

Definition 1 (Configuration): Let D be a multiset of balls
and k > 1 be an integer (representing the number of bags).
We call a triple (To;B;T) = (To;Biy,...,Bi;Ty,...,T) a
configuration if it satisfies the following:

o Ty C D is a tray, where all balls in D are put here before

the execution of a protocol;
B = (B,,...,By) C D' is a sequence of k bags;

« T = (Tl,.. ,Tv) € DF is a sequence of k trays repre-
senting that balls in 7; were taken out of B; for every i,
1<i<k

e« ToUunion(BUT)=D
We denote by CP% the set of all configurations derived by
fixing D and k.

Given a configuration (Ty; By,...,Bi;Ty,...,Ty), balls in
trays To and Ti,...,T; are visible while balls in bags
By, ..., By are invisible. We assume that the number of balls
inside each bag is known to the public. Bearing this in
mind, we define a visible configuration vis(C) for a config-
uration C = (Ty;By,...,B;Ty,...,Ty) as follows: vis(C) =
(To;\Byly ..., |Bil; Th,y ..., Ty), where |B;| denotes the number
of elements (balls) in B;. We also define the set of all visible
configurations as VisPh = {ViS(C) | C e C(D’k)}.ii

iilnformation about a configuration transition (e.g., a red ball was moved
to the second bag) can be captured by a visible “configuration-trace” that will
be mentioned later.



We are now ready to formally define a “protocol” P
achieving MPCs using balls and bags.

Definition 2 (Protocol): A protocol P is a tuple
(D, k,n, U, Q,A) satisfying the following:

« D is a multiset over {e, o}, representing balls used in the
protocol and k > 1 is the number of bags; therefore,
the initial configuration is C° = (D;B% T°) such that
union(B’ U T®) = ¢ and [B°| = |T°| = k.

o n > 2 represents the number of players participating in
the protocol.

« U is the set of players’ possible inputs. In the sequel, we
fix it to U = {0, 1}", meaning that each player’s input is
a bit.

o Qis a set of states with two distinguished states, namely,
the initial state go and the final state g.

« A (Q\{qf}) x Vis®® 0 x Action is an action
function, which specifies the next state and an action,
given a current state and a visible configuration. The
set Action includes the following actions, where we
describe each action for a configuration C = (T; B; T) =
(T(];B],...,Bk;Tl,...,Tk).

— (PublicPut,b, p) forb € Ty and p € {1,2,...,k}: This
puts the ball b from the tray Ty into the p-th bag B,
publicly (i.e., the color of the ball is known to all
players). That is, it transforms C into the following
configuration C’:

C' =(To\[bL; Bi, ..., Bp1, B,U{bY, By, ..., Bi; T).

Note that the player executing this action must show
the ball b to other players before putting it into the
bag.

— (PrivatePut, i, 1y, 1I;) for i, 1 <i < n, and sequences
of k multisets Iy = (Il,...,Ig) and I, = (Il,...,I’f)
such that union(Ip) = union(l;) € Ty and || = |F]]
for every j, 1 < j < k: This makes the i-th
player holding an input x; € {0, 1} take balls from
Ty and then privately put them into B as specified
by L. That is, it transforms C into the following
configuration C’:

C’ = (Ty\union(I,); BUT,; T).

Because union(Iy) = union(I;), the numbers of e and
o in Iy and I; are the same.

— (Shuf,R) for R € {1,2,...,k}: This shuffles bags
specified by R so that the resulting order of the
bags becomes unknown to all players. That is, it

transforms C into the following configuration C’:
C = (To;anl(l),anl(Z), .. -,Bzrl(k);T),

where 7 is uniformly drawn at random from the set
of all permutations such that all positions except for
R are fixed points (i.e., (i) = i for any i ¢ R).

— (Take, p) for p € {1,2,...,k}: This takes a ball out
of the p-th bag B, and then the ball is put on the

tray Tp. That is, it transforms C into the following
configuration C”:

C’ :=(Ty;B’; T"), where
B’ = (Bi,...,Bp1, By \ {b}, By, ..., By), and
T, = (T1’~ . -7Tp—19Tp U [b]sTml3-~ -’Tk)7

for a (taken) ball b € B,. Note that the taken ball
was drawn uniformly at random from B,. Also note
that, during this action, no player can get information
about other balls in B,. If we take all balls in all bags,
we write this action as (TakeAll).

— (Back,b,p)forb e T, and p € {1,2,...,k}: This puts
the ball b on the p-th tray T, back to the tray Ty. That
is, it transforms C into the following configuration
C”:

C'=(ToUIbLB;Ti,....,Tp1, Ty \[O], Tpus ..., Th)

If we put all balls on all trays back to T, we write
this action as (BackAll).

— (MergeBags, p1, p2) for pi,pr € {1,2,...,k}: This
merges the p;-th bag with the p,-th bag, i.e., all
balls in B, are moved into B,, without revealing
the colors of the balls. That is, it transforms C into
the following configuration C’:

C'=Toy;B1,....,Bp1,{}.....Bp, UBp,,...,Bi;T).

— (Return, e) for some expression e. This special action
indicates that the protocol terminates with the output
e.

Given inputs x = (x1,...,x,) € U = {0,1}", a protocol
P = (D,k,n,U,Q,A) proceeds as follows. Balls and bags
corresponding to D and k, respectively, are on the table,
i.e., the initial configuration is C° = (D;B%;T°) where
unionB° U T = ¢ and |B°| = |T° = k. Each i-th player
privately holds an input x; € {0, 1}, and the state of the protocol
is qo € Q. Then, the configuration and the state are transformed
according to the output of the action function A(gy, vis(Cp)).
The protocol continues to apply the action function A with
its current configuration and state being transformed until the
state becomes ¢y; it terminates with (Return, e).

Let f be a Boolean function such that f : {0, 1} — {0, 1}.
We say that a protocol P is correct for f if e (which is an
output of Return) derived by executing £ is always equivalent
to the value of f(xi,...,x,).

C. Security

Let us consider security of a protocol $. We first consider
that all players in # are semi-honest, i.e., they correctly
follow a protocol’s description, but attempt to learn additional
information from information derived during the execution of
#. In this case, the security of # intuitively means that no
information except for the output is leaked from balls taken
out of bags.

For the definition of the security, let us mention some
terms. Consider an execution of a protocol #; the enumeration



(vis (Cp) ,Vvis(Cy),...,vis(C,)) of all visible configurations
from the initial to the final one (where C;_; is transformed
into C; by an action) is called a visible configuration-trace (of
P).

Definition 3 (Security): Let P = (D,k,n,U, Q,A) be a
protocol that is correct for f. Let V be the random variable
representing the visible configuration-trace of #, M be the
random variables representing the inputs of £, and F be the
random variable representing the output of f. We say that £
is secure for f if it satisfies

PriM=x|F=0]=
PriM=x|F=1]=

PriM=x|V=uF=0], and
PriM=x|V=uF=1],

for any x € U and visible configuration-trace v.

Next, we consider malicious players who arbitrary deviate
from the protocol’s description. Note that such malicious
players are always able to obtain information about a private
input by illegally taking balls from bags immediately after an
honest player performs PrivatePut. Another possible attack is
to mark bags so that each bag can be identified even after
the order of the bags are shuffled via Shuffle. To prevent such
illegal actions, every player should observe each other to force
malicious players to be semi-honest (and immediately abort
the protocol if such attacks are detected). However, malicious
players can yet deviate by putting different colors' of balls
via PrivatePut that is not specified in # because it is a private
action. Therefore, if we consider malicious players in our
model, it intuitively suffices to consider whether or not they
can violate correctness and security of # via PrivatePut.

III. AND ProrocoL witH Two INpPUTS

In this section, based on the definitions in Section II-B, we
present a formal description of our AND protocol with two
inputs (x1,x) € {0, 1)? introduced in Sections I-A and II-A.
We first review the principle of our AND protocol and then
present its description. Finally, a diagram of the AND protocol
is given in Fig. 2, from which its correctness and security can
be confirmed.

A. Principle and Description

Remember the AND protocol introduced in Sections [-A
and II-A. Alice and Bob put e into the (first) bag B if his/her
private bit is 1; otherwise, they are supposed to put e into
different bags, B, and Bj.

More  formally, Alice holding x acts by
(PrivatePut, 1, ([e],[e],[eD,([e], [°], [0])), and the possible
configurations will be as in (2). Then, Bob holding x, acts by
(PrivatePut, 2,([e],[e],[e]), ([e], [°], [0])), and the possible
configurations will be as in (4). That is, sequences of balls
they privately put represent the values of their private inputs.
After shuffling the three bags and then taking all balls, they
can know that the AND value is 1 if there is [e, e]; otherwise,

iiiMalicious players cannot put a different number of balls into a bag via
PrivatePut because that number is fixed and verifiable by observing the bag
as defined in Definition 2.

Protocol 1. The two- 1nput AND
([e,e,0,0,0,01,3,2,{0,

0.4).
1) (PrivatePut, 1, ([c], [e],[c]),
2) (PrivatePut, 2, ([o], o], [¢]),
3) (Shuf,{1,2,3})

4) (TakeAll)

5) if visible conf. includes [e, e] then
6) (Return,x; Ax;=1)

7) else

8) (Return,x; A x, =0)

protocol:

(QNCINCI)
([e], [e], [e]))

s

0. No information about the inputs (beyond the output) is
leaked.

As seen above, our two-input AND protocol uses six balls
and three bags; a formal description of the protocol is shown
in Protocol 1. See Table I for the performance of the protocol
and Section VI is devoted to the discussion about it (as well as
that of our multi-input AND protocol which will be presented
in Section IV).

B. Security: A diagram of status transitions

To confirm the correctness and security of the AND protocol
against semi-honest players, we construct a diagram in Fig. 2
showing status transitions of the protocol. This method was
first proposed in [20] for card-based protocols, and then
an extended diagram was proposed in [6], which uses the
probability trace below.

Definition 4 (Probability Trace): Let P be a protocol with
an input set U = {0, 1}", and let v be a visible configuration-
trace. We regard every input x € U = {0,1}" as a decimal
number x, 1 < x < |[U] = 2". A |Ul-tuple (q1,92,--..qu))
such that g, = Pr(M =x,G,=C|V =v] for every x € U
is called a probability trace for a configuration C and the
visible configuration-trace v, where M, G,, and V are random
variables of the original input, configuration when v is seen,
and visible configuration-trace, respectively.

See Fig. 2 again. Each “box” in the figure including
several pairs of a configuration and a probability trace is
called a status. Each status is associated with a prefix of
the visible configuration-trace. As stated in Section II-A and
formally defined in Definition 4, a probability trace next to
a configuration represents the conditional probability that the
current configuration is the configuration, given the prefix of
the visible sequence-trace.

A status in Fig. 2 is transformed into the next status by an
action as follows:

o The topmost status consists of a single pair of
the initial configuration C° and the probability trace
(Poos pot> P10, P11)-

« The first (and second) action is PrivatePut. For instance,
when x; = 0, three balls specified by I(l) = ([e],[e],[°])
are privately put into the bags, and the probability trace
becomes (poo, poi, 0, 0).

« The third action is Shuf. After the action, there are three
possible configurations with the equal probability, i.e.,



1/3. This can be seen in the coefficient in the probability
traces for the three configurations.
» The fourth action is TakeAll, yielding six visible con-
figurations. Assume for example that we have observed
([0, o], [e, o], [e, o]). The fourth coordinate in the proba-
bility trace is 0, and other coordinates are all 20201,
and hence, we know that the inputs must not be (1,1).
It means that the output is “x; A x, = 0”. Furthermore,
no information about the inputs is leaked because the
distribution of the conditional probability that the inputs
are (0,0), (0,1), and (1,0) is the same as the one of
knowing x; A x, before the execution of the protocol.
This AND protocol is also secure against malicious players
because although malicious Alice (or Bob) could put a red
ball into a bag of different position that contradicts to the
value of her private input, this attack can be regarded as she
inputs the negation of her input. That is, it can be simulated
in ideal/real simulation paradigm [21] (although its rigorous
proof is omitted).

IV. AND ProtocoL witH More THAN Two INPUTS

In this section, we deal with secure AND computation with
more than two inputs. That is, we present a general AND
protocol that securely computes x; A --- A x,, given that n
players Py,..., P, hold private input bits xi,...,x, € {0, 1},
respectively.

A. Idea

Simply extending the two-input AND does not work.: As
stated in Section III-A, our two-input AND protocol computes
the AND value by making two players privately put e into
the same bag if and only if their private bits both are 1. If
we simply extend this principle, can we construct an n-input
AND protocol for any n? Consider for instance that there are
three players Py, P,, and P; where P; holds his/her private bit
x; € {0,1} for every i, 1 < i < 3. We prepare four (empty)
bags By, By, B3, and B4 and make each player P; privately put
e into the (first) bag B, if x; is 1 (otherwise, into the (i+1)-st
bag Bj1) and o into the remaining bags. Then, the resulting
configurations will be as follows:

Gflo,0,0} {e, 0,0}, {{e, 0,0}, {e,0,0}) (po0o.0,0,0,0,0,0,0),
Glle, 0,0}, {e, 0,0}, {{e. 0,0}, {o,0,0}) (0, poo1.0,0,0,0,0,0),
(fe. 0,0}, {o, 0,0} fo, 0,0} {le,0,0}) (0,0, poi0,0,0,0,0,0),
(ffe. 0,08, {o, 0,0} o, 0,0} {e,0,0}) (0,0,0, p100,0,0,0,0), o
G ffe.e,0f.{o, 0,0} o, 0,0} {fo,0,0}) (0,0,0,0, po11,0,0,0),
Gffe.e,0f. {0, 0,0} e, 0,0} {fo,0,0};) (0,0,0,0,0, pi01,0,0),
Glle, e, 0} {0, 0,0}, {{o, 0,0}, {fe,0,0};) (0,0,0,0,0,0, p110,0),

GHe.e, 0}, {0, 0,08 fo, 0,0} {o,0,0})
where we omit the tray Ty and empty trays. Therefore, after
shuffling the four bags and taking all balls, all the players can
know that the AND value is 1 if there is [e, o, e]; otherwise, 0.
As seen from (7), however, they obtain additional information
about the inputs from the number of e in a tray; for example,
if there is [e, e, 0], it means that the number of 1 among the
inputs xi, xp, and x3 is two. Therefore, this straightforward
extension is not a secure computation of AND.

(0,0,0,0,0,0,0, p111),

Our idea: Let us go back to Step 4 in the AND protocol
introduced in Section I-A (or the fourth status in Fig. 2).
Suppose that we replace the action (TakeAll) with (Take, 1),
i.e., taking a ball out of the (first) bag B; in (5). There are two
possibilities, i.e., e is taken with a probability of 1/3 or o is
taken with a probability of 2/3.V If it is e, the configurations
in (5) are transformed into the followings:¥

([ ol o, o o, ols [0 L 1L 1D (5%, 5, 52, 0),
(s fod fo, ol e, ol [0, I 1D (52, 51, 52,0, (8)

2°2° 2>

([1; fo}t, fo, o, fo, ofs [e]. [1.[D  (0,0,0, pi1).

Note that this (Take, 1) action does not leak any information
about the inputs because the coordinate-wise sum of the
probability traces in (8) is equal to (pgo, poi, P10, P11), meaning
that the (conditional) distribution on inputs does not change.
Then, consider that we add the fourth bag and make the third
player Pz act by

(PrivatePut, 3, x3, ([o], [1, [1, [+, o]), (e 1. [1. [1. [0, o).

That is, if x3 = 0, the configurations in (8) are transformed
into
2 > 20 2

([T: o, o}, o, o}, f{o, o}, flo, o} [e],)
(0 fo, o} o, o o, of, flo, oBs [e],)  (P32,0, 53¢, 52,0,0,0,0),
((T: o, o}, o, o o, o}, e, 0} [0],)  (0,0,0,0,0,0, pi1o,0).

If x3 = 1, the configurations in (8) are transformed into

(U fe, 0o} ffo. o o, of flo, ofs [e1,) (0, 25, 0,0, 24+, 22,0, 0),
(O fe. o} o, of o, of. fo, oBs [e],) (0, £5+,0,0, 29+, 22,0, 0),
([T; o, o}, o, o}, o, o}, flo, o} [0],)  (0,0,0,0,0,0,0, py1r).

As seen from the above configurations, there is {{e, o} if the
AND value x; A x; A x3 is 1; otherwise, the four bags are a
permuted sequence of {{e, o}, {e, o}, {o, 0}, {o, o}}. Thus, after
(Shuf, {1,2,3,4}) and (TakeAll), all the players can obtain the
AND value of the three inputs x; A x A x3 without revealing
any information except for the output.

Next, let us consider n = 4. In the same way as n = 3,
assume that we replace the above action (TakeAll) (in the three-
input protocol) with (Take, 1) and then a red ball is taken. The
resulting configurations will be the followings:

G ol ffo, ol g
G ol (e, 0}, {
G ol ol ffe
G el fo. ok fo, 0} fo, ok [e].)

(22,0, 252, 242,0,0,0,0),

+{le.0}
+fle. 0}
+fle. 0}

o]

O’O}};[.],) (POOO Pool Po10 P100 P%l] Pl}OI’P]310’0)’

o,of:[e],)

>
,O}};[.],) (PO()(J P00l P010 P100 PO11 PlUl,PISIU’())’

3°>3°>3° 3> 3>3

0,0,0,0,0,0,0, p111).

(©)]

o]

These are the “same” configurations as in (8), i.e., the first
bag contains a red ball if and only if x; = x, = x3 = 1. Thus,
a four-input AND protocol can be constructed by making Py
privately put balls in a similar way to P3; when n = 3.

In this way, we can extend the two-input AND protocol to
the n-input one for n > 3.

VRemember that in Step 3, the three bags have been shuffled. Hence, taking
a ball out of B; does not leak information about x; and x;.

VIf it is o, we return o into B and then repeat shuffling bags and taking a
ball out of B; until e is taken.



|([0,0,0,0,0,0];{{}},{{}},{{}};[],[],[]) (Poo> pot,» P1o> P11) |

(PrivatePut, 1, ([o], [¢], [o]), ([¢], [°], [e])

([e, 0, 0L {ol}, o}, folt: (1. 1.1 (poos Po1,0,0)
([e, 0, 0L {{o}t, o}, folt: [1. [1, [ (0,0, p1o, p11)
(PrivatePut, 2, ([o], [], [¢]), ([*], [°], [°]))
([1; o, of, fo, o}, fle, o} [1, [, [ (poo,0,0,0)
([1; o, of, fo, o}, flo, o}; [I, [, [D (O, po1,0,0)
([J; e, of, fo, 0B, e, o}: [1, [1, [ (0,0, p10,0)
([J; e, o}, fo, 0B, o, o}; [I, [1, [ (0,0,0, p11)
(Shuf, {1,2,3))
([ o, o flos o fle. o 0L . [D (B2, &, 52,0)
([1: e, o}, o, o flo o [ [ [D (52, B, 52,0)
([1: e, o}, flo, o flo o [ 1. ID (B2, B, 52,0)
([1: fo, o}, fo, o}, o, o} (1. [0, [ (0,0,0, &
([1: o, o)) fo, @}, o, o} (1. 1. [ (0,0,0, &
([1: fo, o} flo, o}, e, o} (1. [0. [ (0,0,0, 5
l(TakeAII)
|
(0L € s Lo, 01, [e, 0], [, 0]) (B2, B, R, 0) (s €3 €8, {0 [e, @1, [0, 0], [0,0]) (0,0,0,1)
= (Return, x; A x, = 0) = (Return,x; A x, = 1)
(0L € s Lo, 01, [e, 0], [0, 0]) (B2, B, LR 0) (s €3 {8, {0 [o, o1, [e, @], [0,0]) (0,0,0, 1)
= (Return, x; A x, = 0) = (Return,x; Axy = 1)
(U {0, 001, {: [, 01, [0, 0], [, 0]) (B2, B B () ([T 4 {8 & [0, o, [o, 0], [e, @]) (0,0,0,1)
= (Return, x; A x; = 0) = (Return, x; Axp = 1)

Fig. 2: A diagram of the two-input AND protocol with two inputs x;, x, € {0, 1} introduced in Sections I-A and II-A, where

Po = Poo + Po1 + Pio-

B. Description

Based on the idea explained above, we present an informal
description of our AND protocol with n (> 3) inputs, in which
correctness and security are also described.

1) Players prepare n+ 1 empty bags, two red balls, and 2n

white balls.
2)

If x; =0, a player P; privately puts a red ball into the

second bag and a white ball into each of the first and
third bags. If x; = 1, Py privately puts a red ball into
the first bag and a white ball into each of the second

and third bags.
3)

If x, = 0, a player P, privately puts a red ball into

the third bag and a white ball into each of the first and
second bags. If x, = 1, P, privately puts a red ball into
the first bag and a white ball into each of the second

and third bags.

4) For i = 3 to n, repeat the following.

a)
b)

Shuffle the first i bags (which are not empty).
Take a ball from the first bag. If its color is red,
then player P; holds the red ball and other two
white balls. If its color is white, then they puts the
white ball into the first bag again and go back to
the previous step. (Note that since the bags have
been shuffled in the previous step, the probability
that the color of the taken ball is red is ﬁ, which
is independent of the input.)

If x; = 0, P; privately puts the red ball into the
(i + 1)-st bag and the white ball into the first bag.
If x; = 1, P; privately puts the red ball into the
first bag and the white ball into the (i + 1)-st bag.
Another white ball is put into the (i + 1)-st bag.
Note that the two red balls are in the first bag if
and only if x; Axp A---Ax; = 1.



Protocol 2. The AND protocol with n (> 3) inputs:
([e,0,0,0,...,0],n+1,n,{0,1}", 0, A).

5 s Tye e

1) (PrivatePut, 1,1}, I})
2) (PrivatePut, 2, I, I2)

3) for i < 3 to n do

4)  while(1)

5) (Shuf, {1,2,...,i}

6) (Take, 1)

7) if taken ball = e then

8) (Back, e, 1)

9) (PrivatePut, i, I}, I )

10) break

11) else if taken ball = o then
12) (Back, o, 1)

13) (PublicPut, o, 1)

14) (Shuf,{1,2,...,n+1})

15) (TakeAll)

16) if visible conf. includes [e, e] then
17)  (Return,x; A---Ax, =1)
18) else

(Return, x; A -+ A x, =0)

XiA A X1 =0/x=0

XA A X1 =0/x=1

XA A Xi.1=1/x=0

XA A X=1
990 @ -
5) Shuffle the n + 1 bags.

6) Take all the balls from the n + 1 bags. If there is a bag
including two red balls, then we have x; A--- A x, = 1;
otherwise, x; A--- A x, =0.

A formal description is shown in Protocol 2. Here,

1 = ([o].[e].[0]. [1.....[1).
I = ([e], (0], [¢], [1,...... ),
I =1} = ([e].[oL [o], [1...... 11),
and for every i, 3 <i<n,
B = (oL 0. 1 for o . 01),
1 = (o111, 10, [0, 0L, 01, 1).

C. Correctness and Security

Figure 3 shows a part of the diagram of the n-input
AND protocol described in Section IV-A; the partial diagram
corresponds to Steps 3—13 in Protocol 2. From this figure, we
can see that there is {e, e }} ifand only if x; = x, =--- = x; = 1.

We can furthermore see that (Take, 1) leaks no information
about the inputs because the probability of taking a red ball
is always ﬁ, which is independent of the inputs. Therefore,
this protocol is secure against semi-honest players.

This multi-input AND protocol is also secure against ma-
licious players in the same reason for the two-input AND
protocol mentioned in Section III-B. Moreover, the protocol
is a collusion-free protocol [16], i.e., it prevents malicious
players from obtaining additional information by coordinating
their actions during the execution of the protocol. This is
because players are assumed to be in the same place, and
hence, they can observe each other’s actions to be performed in
a correct manner. That is, actions used in our protocols satisfy
observability (as in [16, Theorem 4]). Although colluding
players can share information about the colors of balls they
put into bags via PrivatePut, it does not help them obtain extra
information because the number of red balls in bags is always
two in the protocol (when taking balls).

V. ProtocoLs FOR ANY BooLEAN FuNcTIiON

In this section, we will explain how to realize protocols for
any Boolean function with balls and bags. To achieve it, we
will propose committed-format AND and NOT protocols that
are known to be functionally complete. Note that in our AND
protocols shown in Sections III and IV, the balls should be
revealed to obtain the AND values in the final step. Namely,
the previous AND protocols cannot be used as building blocks
for a composition of another protocol. As a building block for
a composite protocol, the following property called committed-
format is required: We say a protocol is committed-format if
its output can be an input for another (next) protocol without
revealing balls themselves.

Note that in the sequel, we will construct committed-format
protocols with balls, where sizes of all balls are the same.
On the other hand, in Appendix B, we will discuss efficient
committed-format AND, NOT, and COPY protocols that can
also realize any Boolean function by introducing two kinds of
balls with different sizes.

A. Committed-Format AND protocol

Encoding: We encode a Boolean value with two bags,
each of which includes the same number of balls, as follows:

so-0)h ffe,0,0,.. 0 =0,

fe,0,0,...,0},fo,0,0,...,0} = 1.

(10)

That is, a pair of bags where the second (resp. first) bag
contains exactly one red ball e represents O (resp. 1). A pair
of bags representing a bit x € {0, 1} according to the above
encoding rule is called a commitment to x.

Let us replace a Return action in Definition 2 with a Result
action for a committed-format protocol: (Result, py, p;) for
p1.p2 € {1,...,k}. This means that the protocol terminates
with the commitment consisting of the p;-th and p,-th bags.

Idea: Given two commitments to x; € {0,1} and
x, € {0,1}, a committed-format AND protocol produces a
commitment to x; Ax;. Let B; and B, be two bags constituting
a commitment to x;, and B3 and B, be those constituting a
commitment to x, such that |By| = |Bz| = |Bs| = |B4| = m.
Suppose that we merge B; with B; via MergeBags (i.e., B;
and B; become such that |Bj| = 2m and |Bs| = 0) and put m



¥

([o, ..., oL {ol, flo, ol ffo, o). flo, o)), ) [o]) (B0, Poctn Poto 0,0)
([o, ..., of; o}l flo, o}t ffe, ol {(0 off () [e]) (Pu0, o L, 0,0)
(or....oT: oN or ol 0,0l .- 1o, o), {1 [o]) (o, ’—’T .,0,0)
([o, ..., of; e}l flo, o}t fo,oh,..., flo,of, {}:[eD (0,0,0,..., pi11.10, P111-11)
l(Back D
([e,0,..., of; o}l fle, ol fo, 0}, ., flo.olf, () (Pumye, Pumol Popin 0,0)
([e,0,.-,0L: o), {10, o oyl o, o) () (2 ’ 01 ' L, ...,0,0)
([e,0,...,0L o), flo,of, fo, ol ..., flo, of, {0) (22 "“,”“S,“',"“E £,...,0,0)
([e,0,..., ol; {{e}. flo, of. f{o, o}, ..., flo, ol ;) (O, 0 0,..., P111-10, P111-11)
1(PrivatePut i, 10, 1)
([o,.... 0L {o, o) {o. o} o, o}, ffo, o)), o, 0}f;) (25,0, 2t 0,0)
([o,...,0L {{o, o), flo,0f, {e, 0l ..., flo,0f, {o,0);) (22,0, ”‘“"’, ©,...,0,0)
([o,..., ol;fle, ol fle,of flo, o}, flo, ol flo,ols) (O, ”‘“’“ 2,0, 0 0)
([o,..., 0L {e, o) {o. o} e, o} ... o, o {o, o) (O, ”“’“ %.0,...,0,0)
([o,..., of;flo, o}, flo, ol flo, 0., ffe. o)), (e, o)) (22,0, ”‘“’ﬁ L 0,0)
([o,..., ol;fle, o}, flo, ol flo, o, ffe. o}, o, 0}:) (0, 2%2,0,....,0,0)
(or ol fle. ol flo. ). for ol fio. 0l e o)) (0.0.0.... prrr10.0)
([o,..., ol;fle, o}, flo,of, flo,ol,..., flo, ok, o, ol;) (0,0,0,...,0, pi11.11)
l(Shuf (L2,3,....0,i+1})
(o, ..., ol; {{e, o}, (e, 0}, ffo. 0. ..., {{o, o)}, ffo, o)) (p::xc;m Pwo-on poweo mem 0)
([o.....0L:{le, o} flo, 0l fle, ol ..., flo, ol flo, o)) (e, 2o ”C ,,,,, e g
([0, 0% (o, 0} e, ol e, 0} .. flo, o)) ffo, o)) (Ztn, P prnio  Pililo ()
(o,..., ol {e, o}, o, o}, {0, 08, ..., {( ol e, o)) (I)mm 0 p:KJc;"P:‘.JU 0 /JmCm 0)
(o, ..., ol; ffo, o}, o, o}, ffo, o}, ..., {{e, o}, {(e, o)] ) (mm 00 p«:u o1 I’::m 0o pmcm 0)
(lo,....0L: {o. o} ffo, o {0, 0., fo. ol o, o) (0,0,0,...,0, Zikit)
([o,...,0L ffo, o}, f{e, e} flo, 0}, flo, ol flo, o)) (0,0,0,...,0, 2ttty
([o..... 0L {fo, o}, {o, o}, . o}, [(o ol {o. o)) (0,0,0,...,0, LiLt)
([o,...,oL; fo, 0}, o, o}, flo, 0}, .. {{ ol {lo,0h;) (0,0,0,...,0, 24ttty
([o,..., o];{{o, o}, fo, o}, fo.0},..., {{o, o}, {fe,o}:) (0,0,0,...,0, IJm u)
1(Take,1)
o is taken with prob. 2/3. = e is taken with prob. 1/3.
([o....,0L:flo}h o, 0l flo, o, o, o)l flo, o [o]) (Lt 2Pwoon Puos  Pubis () ([o,..., 0L {o} e, ol o, ol ..., {0, 0}, o, o) [o]) (Lobte, Pwoett Poveio | Pul-n ()
(los---soli (ol flo ol {los oo, flo ol flo, offs [o]) (R, Logn, Pudeie . PUze () ([o,..., ol floll, o, o, e, 0},..., flo, ol flo, ol [o]) (’""” “",m T au-b Q)
(o0l {0}, (e, 0l e, 0N ..., 10,0} o, ol [o]) (L2, mon pmowo . Puin g :
: ([o..... oL {olh flo. ol o, ol ..., {0, o) o, o)) [o]) (Labte Pwoett Poten - Puien ()
([0, oL (ol o, o) o0l o, o o, o) o]) (2, s pwoo  puw o) ({or....oL: o) o ol o, 0N . o, o). o, i [e) (0.0,0....0. pyyr.)
(o, 0% o} {0, o, 0} .. e, o), e, o; [o]) ('—C pmo Pwen UL () |
([o,..., of; o}l ffe. o}, o, 0}, ., flo, o}, flo,ols[o]) (0,0,0,. 0 o ”)
Mo, o%: ol o, o o, o) -, 1o, ), o, ol [o]) (0,0,0,...,0, 2uiar)
([or-...0L: ol o, ol .0 .. o, o e, o} [o]) (0,0,0,...,0, 2ty
Fig. 3: A crucial part of a diagram of the AND protocol with n inputs xj, x5, ..., x, € {0, 1}" for the loop index i € {3,4,...,n—1},

where

white balls into each of B, and By (i.e., they become such that
|By| = 2m and |B4| = 2m). Then, the resulting configurations

will be as follows:
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o,...,o) {}.{{e,0,0,...,0%)  (P00.,0,0,0),
o,...;o) {}.{{o,0,0,...,0k)  (0,p01,0,0),
o,...,o} {},{{e,0,0,....0) (0,0,p10,0),
o,...;o) {}.f{o,0,0,...,0) (0,0,0,p1),

empty trays and empty bags (over the (i + 2)-nd) are omitted for simplicity.

to our two-input AND protocol.

where we omit the tray Ty. Note that these are similar to (4)

if we eliminate the empty bag Bs, i.e.,

two red balls are in

ViIf it is o, we return o into Bj.

B, if and only if x; = x, = 1. Therefore, we can compute an
AND value via (Shuf, {1,2,4}) and (TakeAll) in the same way

Next, let us consider how to produce a commitment to x; Ax;
from the above configurations (where B3 is removed). Suppose
that we repeat applying (Shuf, {1,2, 3}) and (Take, 1) until the
color of a taken ball is red"'. Then, the resulting configurations




Protocol 3. The committed-format AND protocol, where the
number of balls in each bag is denoted by m:

([o.....01.4.2.{0,1}%, Q. A).

Initial state (where empty trays are omitted):

([o,..., o];{o,0,..., ol},fe,0,..., ol},fo,o0,..., o}},fe,0,..., ol;)  (p0o,0,0,0)
([o,..., ol;{{o,0,..., oh,{le,o0,..., o}, {{e,0,..., o}, {{o,o0,..., ols) (0, po1,0,0)
([o,..., ol;{{e,o,..., o}, fo,o0,..., o}, fo,o,..., oh,fe,o0,..., ol) (0,0, p10,0)
([o,..., ol:ffe.o,..., o}, ffo,o,..., o}, fe,o...., o}, fo,0,..., o) (0,0,0,p1r)
Steps

1) (MergeBags, 3, 1)
2) (PublicPut,o---0,2)
3) (PublicPut,o---0,4)
4) while(1)

5)  (Shuf,{1,2,4})

6) (Take, 1)

7)  if taken ball = e then
8) break

9) else

10) (Back, o, 1)

11) (PublicPut, o, 1)
12) (MergeBags, 4,2)
13) (PublicPut,o---0,1)
14) (Result, 1,2)

will be as follows:

Gflosos....of f{e 0, 0f o 0, ofi[e])  (BLELE20),

222227
Gllo,o,.. ol flo o, ol fle 0 . ofi[e])  (B555550), (11)
(;{{.70""70}}7{{0703'"70}}7{{0705 ,O}};[.]) (O’Ovo’pll)a

where we omit the empty bag and empty trays. From the above
configurations, notice that if we merge B, and Bj into one
bag, say B,, then a pair of By and B, can be a commitment
to x; A xp. Thus, we can obtain the output commitment by
moving all the balls in B3 into B, (and put 2m white balls
into By to make the numbers of balls be the same).

Description: Given two commitments to x; € {0, 1} and
xp € {0, 1}, our committed-format AND protocol informally
proceeds as follows.

1) Merge the first bag constituting the commitment to x,
with the first bag constituting the commitment to x;.
Note that there is a bag including two red balls if and
only if x; A xp = 1.

X1 O/Xz— x1 1/x2—0

x10/X2 11/=1

2) Put white balls into the second bags constituting the
commitments to x; and x, so that the numbers of balls
in those bags become the same as in the merged bag.

3) Shuffle the three bags.

4) Take a ball from the first bag. If its color is red, then
merge the third bag with the second bag. Note that the
first bag includes a red ball if and only if x; A xp = 1.

@@

X1

If its color is white, then put it into the first bag again
and go back to the previous step.

5) Put white balls into the first bag so that the number of
balls in that bag becomes the same as in the merged
bag. The first and second bag constitute a commitment
to x1 A\ x3.

A formal description is shown in Protocol 3. We denote
by B; and B, two bags constituting a commitment to x;
and by B; and B, those constituting a commitment to x;.
Hereinafter, for successive two actions (PublicPut, by, p) and
(PublicPut, by, p), we simply write (PublicPut, b;b,, p).

We omit a diagram of our committed-format AND protocol
as it is similar to that of our multi-input AND protocol shown
in Fig. 3. We discuss the performance of the protocol in
Section VL.

B. How to Construct a Protocol for Any Function

See (10) again. We note that a committed-format NOT
protocol can be easily constructed; just swapping two bags
constituting a commitment to x € {0, 1} results in a commit-
ment to the negation X.

We now have committed-format AND and NOT protocols
as shown above. Based on these protocols, we can construct
a protocol for any Boolean function f as follows.

1) Create a Boolean circuit representing f (with AND and
NOT gates).

2) Each player prepares a required number of commitments
to his/her private input via PrivatePut according to the
circuit.

3) Obtain a commitment to the output value of f by evalu-
ating the circuit using our committed-format AND/NOT
protocols. If the number of balls is different between
input commitments when performing the AND protocol,
players put white balls such that the number of balls
becomes the same.

Since our committed-format AND protocol is secure and any
information about the inputs and output does not leak (because
of committed-format), the above protocol for f is also secure
against semi-honest players. However, unlike our proposed
AND protocols, the above protocol is not secure against
malicious players because they possibly perform PrivatePut
multiple times, and hence, the protocol cannot ensure that they
consistently perform PrivatePut without contradicting to their
private inputs. (We solve this security issue in Appendix B by
constructing a copy protocol that duplicates a commitment.)

VI. PErRFORMANCE OF OUR PrOTOCOLS

This section discusses the efficiency of our AND protocols
shown in Sections III, IV, and V-A. Table I summarizes the
performance of our proposed protocols. We evaluated them in
terms of two items: the number of balls and bags, and runtime.

The Number of Balls and Bags: Our two-input AND
protocol requires six balls (namely, two red and four white
balls) and three bags. Our conjecture is that two bags would
be insufficient for a secure computation of the two-input AND
computation. On the other hand, our AND protocol with n



inputs requires 2n + 2 balls (namely, two red and 2n white
balls) and n + 1 bags. Our committed-format AND protocol
would be inefficient because it requires 8m balls (and four
bags) where m denotes the number of balls in each of bags
constituting input commitments.

Let C be a Boolean circuit with the logical AND/NOT gates
and d(C) denote the depth of C. Let us consider the number
of required balls for our committed-format AND protocol that
evaluates the “final” AND gate for C (i.e., it is of the depth
d(C)), denoted by a4(). Remember that the number of balls in
each of bags constituting the output commitment is four times
greater than that of input commitments in our committed-
format AND protocol. Thus, we have ay¢) = 2 x 499, ie.,
aqec) = 0(411(0))_

Runtime: Our two-input AND protocol has a determinis-
tic runtime. By contrast, our AND protocol with n inputs and
committed-format AND protocol are Las Vegas algorithms.
Each protocol includes a repetition of shuffling bags and taking
a ball until e appears. Let us estimate the expected number of
the repetition.

For our AND protocol with n inputs, let us first consider
the case of n = 3 as a simple case. Remember that we repeat
(Shuf, {1,2,3}) and (Take, 1) (and (PublicPut, e, 1)) from (4)
until e appears. The expected number of the repetition is three
because the probability of taking e is exactly 1/3. Then, let us
consider the case of n = 4. In addition to the actions for n =
3, we repeat (Shuf,{1,2,3,4}) and (Take, 1) from four bags
including eight balls (namely, two red and six white balls) until
e is taken. Therefore, the expected number of the repetition is
3+4="1.

When we have n (>3) inputs, the expected number of the
repetition can be written as follows:

I n—-2)n+3)
k= — " 7
2 )

That is, it is O (n?).

For our committed-format AND protocol, let us also show
the expected number of the repetition. The probability of
taking e (as in (11)) is 2/(6m—2) because the total numbers of
red and white balls in the bags are 2 and 6m — 2, respectively.
Thus, the expected number of the repetition is 3m — 1. As
for the number of balls, let us consider the expected number
of the repetition for our committed-format AND protocol that
evaluates the final AND gate for C, denoted by By). We have
ﬁd(C) =3 x 4401 _ 1, ie., ,Bd(C) = O(4d(0)).

VII. IMPLEMENTATION EXAMPLES

In this section, we show implementation examples for ball-
based cryptography to show the feasibility of using (physical)
balls and bags. For this, we purchased two-colored balls for
approximately $1 and three bags for approximately $3 as
shown in Fig. 4. Using these balls and bags, we implemented
all the actions defined in Definition 2 (except for Back and
Result*!!), as shown in Fig. 5. As a result, we confirmed that

viiBack can be performed without using a bag, and Result requires no ball
and bag.

Fig. 4: Two-colored balls and three bags we purchased. The
bags are closed at the top with drawstrings.

ball-based cryptography proposed in this study is based on
realistic physical operations and is feasible for humans.

VIII. CoNcLUSION

In this work, we showed that balls and bags provide us
a simple way for achieving a secure computation of the
logical AND. We formalized protocols with balls and bags
and showed how to construct a diagram of a protocol, from
which its correctness and security can be confirmed. Moreover,
we presented general MPCs by constructing committed-format
AND and NOT protocols. In Appendix B, we also proposed
efficient committed-format protocols using different kinds of
balls.
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) (PrivatePut,1,(]Q?H&‘eee),(]&H(?‘eee)
2) (PrivatePut, 2,(eee[#]0)), (cee[v] 4]
3) (PublicPut, (e €[v]ee))

4) (Turn,{3})

5) (Shuf,{r|7n=(12345,0<i<4)

6) (Turn,{1,2,3,4,5})

7) if visible seqence includes @@@ then
8) (Return,x; Axx=1)

9) else
10)  (Return,x; A x, =0)
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APPENDIX A
A Pseubpocope oF CARD-BASED AND protocoL WITH F1veE CARDS

We show a pseudocode of the five-card trick proposed by
Den Boer [3] in Protocol 4, where formal descriptions of
actions are derived in [18], and PrivatePut and PublicPut are
defined in a similar way to our ball-based model.

APPENDIX B
ProtocoLs witH DIFFERENT KINDS OF BALLS

In this section, we discuss efficient committed-format
AND/NOT protocols that can also realize any Boolean func-
tion by introducing two kinds of balls with different sizes.
Moreover, we propose a “COPY” protocol that duplicates an
input commitment without revealing any information about the
input value.

A. Extended Model

We hereinafter encode a Boolean value with two bags, each
of which contains a single ball, as follows:

12)

Note that this encoding rule is a special version of (10).

Let us introduce two kinds of balls with different sizes. We
denote by m and O a red ball and a white ball, respectively,
which are bigger than e and o. We hereinafter call {e, o} small
balls and {m, 0} big balls. We assume that we can distinguish
small balls and big balls in a bag by hands. For example, if
we have a bag {{m,0,e,0}}, we can take only big (or small)
balls out of the bag.

For the discussion about a protocol with different kinds of
balls, let us extend actions in Definition 2 as follows.

o (Take, p,S) for p € {1,2,...,k} and S € {“small”,“big”}:
This takes a ball out of the p-th bag, such that the size of
the taken ball is specified by S. If the p-th bag includes
only balls of the same size, the description of S is omitted.

If we take all big or small balls in all bags, we write it
as (TakeAll, S).

» (MoveBetweenBags, pi, p2,S) for pi,pr € {1,2,...,k}
and S € {“small”,*big”}: This moves a ball (whose size
is specified by S) in the p;-th bag into the p,-th bag
without revealing the color of the moved ball. If the p;-
th bag includes only balls of the same size, S is omitted.

B. Efficient Committed-Format AND Protocol

In this subsection, we present an AND protocol that pro-
duces a commitment to the logical AND of a given input
commitments. We call such a protocol a committed-format
AND protocol. Before describing it, let us mention the idea
behind the protocol.

a) Idea: See (11) again. Remember that in our
committed-format AND protocol shown in Section V-A, B,
and B3 are merged in the final step to produce an output
commitment, increasing the number of required (white) balls
for the protocol. Let us consider how to make it efficient.

Suppose that given input commitments to x; € {0, 1} and
x; € {0,1}, we proceed in the same way to the committed-
format AND protocol until merging B3 with B,. The resulting
configurations will be as follows:

bollo, o [eL, [, 1D (5, B, B2,0),
Glol flo,of, e, ol [o], [, 1D (5%, 552,
(;{{.}}7{{0’0}}7{{090}};[.]7[]7[]) (09 907pll)7

where empty bags and trays are omitted. Our idea is that
decreasing the number of white balls in B, and B; by three
yields a commitment to x; A x,. To achieve this, we first move
balls in B; into Bj; the resulting configurations will be as
follows:

~~
=
(e]
=
=
[ ]
o

o]

(7 {{O}}’ {{.a 0,0, O}}7 [.]5 []) (1700’ Po1, P10, 0)’

Gfelt, flo,0,0,0};[e],[1) (0,0,0, p11),
Then, we put m and O into B; and B,, respectively (and put
three o, 0,0 into B;). As seen later, these big balls “preserve”

the current order of the two bags. The resulting configurations
will be as follows:

(;{m,0,0,0,0},{{0O,0,0,0,0f;[e],[1) (Poo, Poi> P10, 0),
(G{m,e,0,0,0},{0,0,0,0,0f;[e],[1) (0,0,0,p11).

To decrease the number of white balls in By and B,, we first
shuffle By and B, (after moving the ball on 7):

10,10

m,0,0,0,0}} 2o Po Pl ()

({m,0,0,0,0},{{O,0,0,0,0} 73
GO, e,0,0,0), {m,0,0,0,0}[1,[) (5, 5, 50),
G{m,e,0,0,0}{0,0,0,0,0)[],[1) (0,0,0,5),
GO, 0,0,0,0}, {m, e,0,0,08[1,[1) (0,0,0,5").

Then, we can take all small balls without revealing any
information about the inputs; if B; includes e, the resulting
configuration will be as follows:

G o}, {m};[e,0,0,0],[0,0,0,0])  (poo, Pot, P10, 0),
G {m}, {O);[e,0,0,0],[0,0,0,0]) (0,0,0,p11),
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Now, one can see that B; and B, is a “commitment” to x; A
X, with big balls. Then, we put e and o into B; and B,
respectively:

(7 {{D,.}},{{.,O}};[],[]) (1700,1701’1710,0),

GEm, o}, {o, o [1.[D  (0,0,0, p11).
Now, one can see that the number of white balls has been
decreased by three from (8). Then, we shuffle By and Bj;:

Glo, o) im0l (1, 1D (52, 5, 58,0),

o, o) im0} m oo,
Glm ol fm, ol (1.1 (42, 22, 22, 0),
GAm ol @ ol (LI (0,0,0,2),
Lol fm o) (LI (0,0,0,20).

As seen from the above configurations, we can obtain a
commitment to x; Ax; after taking all big balls and rearranging
By and B; according to the order of the taken big balls.

b) Description: Given two commitments to x; € {0, 1}
and x; € {0, 1}, our efficient committed-format AND protocol
proceeds as shown in Protocol 5. We denote by B; and B,
two bags constituting a commitment to x; and by B; and
B4 those constituting a commitment to x,. Hereinafter, for
successive actions (PublicPut, by, p) and (PublicPut, b,, p), we
simply write (PublicPut,b,b,, p).

The correctness and security of the protocol can be con-
firmed from its diagram dipicted in Fig. 6.

Note that in contrast to the committed-format AND protocol
shown in Section V-A, our efficient one shown in this subsec-
tion always requires 11 (two big and nine small) balls, four
bags, and a expected number of four repetitions, i.e., constant.

C. COPY Protocol

In this subsection, we present a COPY protocol. Given a
commitment to x € {0, 1}, our COPY protocol produces two
commitments to x. Remember that we decrease the number of
balls by using m and O in the above committed-format AND
protocol. Our COPY protocol proceeds in a similar way that
we “increase” the number of balls in each bag constituting the
input commitment to x.

The correctness and security of our COPY protocol can be
confirmed from its diagram. Due to the page length limitation,
its description and diagram are omitted.

D. How to Construct a Protocol for Any Function

We now have committed-format AND, COPY, and NOT
protocols as shown in Sections B-B and B-C. Based on these
protocols, we can construct a protocol for any function as
follows. If we want to compute an arbitrary function f given
commitments to each of the inputs, we first create a Boolean
circuit representing f, and then construct a protocol based on
the circuit by combining AND/COPY/NOT protocols.

Protocol 5. The efficient AND protocol in committed format:
(Im,0,0,0,0,0,01,4,2,{0, 1%, 0, A).

Initial state:

([m,0,0,0,0,0,0]; o}, {e}}, {olt, {e s (L. (L IL[D (P00, 0,0,0)
([m,0,0,0,0,0,0]; o}, fe}, {e}t, {ols [L.[L.1L.ID (0, po1,0,0)
(Im,0,0,0,0,0,0]; fo}, {olt, {ol, fe}; (L[ [1.ID (0,0, p10,0)
([m,0,0,0,0,0,0]; fo}, {olt, {o}, fo; [ [.I1.ID (00,0, p11)
Steps:

1) (MergeBags,3,1)

2) (PublicPut,o,2)

3) (PublicPut,o,4)

4) while(1)

5)  (Shuf,{1,2,4})

6) (Take, 1, “small”)

7)  if taken ball = e then
8) break

9) else

10) (Back, o, 1)

11) (PublicPut, o, 1)

12) (MergeBags,4,2)

13) (PublicPut,o o om, 1)
14) (PublicPut,d,2)

15) (Shuf,{1,2})

16) (TakeAll, “small”)

17) if visible conf. = ([e,0,0,0],[0,0,0,0]) then
18)  (BackAll)

19)  (PublicPut, e, 1)

20)  (PublicPut, 0,?2)

21) else

22)  (BackAll)

23)  (PublicPut, e,?2)

24)  (PublicPut, o, 1)

25) (Shuf,{1,2})

26) (TakeAll, “big”)

27) if visible conf. = ([m],[O]) then
28) (Resulti, 1,2)

29) else

30) (Result,2,1)




Gloh, e, o, o [LILILID  (Poo,0,0,0)
Gloh, e, o, ol [LILILID (0, poi,0,0)
Glled, o, o, el [LILILID (0,0, p10,0)
Glol o, el ol [1L.0L 1L, [ID  (0,0,0, p11)
(MergeBags, 3, 1)
(PublicPut, o, 2)
(PublicPut, 0, 4)
Gflo, o, flo, ot M fle, o s [ 11 11,11 (P00, 0,0,0)
GHle, o, fle, ot {1 flo, obs [ [ 11,11 (0, po1,0,0)
Gle, ol o, o, {h e, o [1LIL [, [D (0,0, p1o,0)
Gle, ol flo, o, {h o, o [1LIL 1, [D  (0,0,0, p11)
l(Shuf (1,2,3)
G ool flo. ol o ols [0 1D (52,5, 50,0
Gle. ol o, o o ols [0 1D (52,5, 52,0)
Gle. ol flo. ol e ols [0 [D (52,5, 52,0)
G, o) o, o} ffo, o: (111, [1) (0,0,0,5H)
Glo.of. feo. ol fo, os [1. 11D (0,0,0,5)
Gilo,of. fo,of ffe, e }s [1. 11 [ (0,0,0,5%)
(Back, o, 1) | (Take, 1) « is taken with prob. 1/3.
(PublicPut, o, 1) =
(Shuf,{1,2,3}) o is taken with prob. 2/3.|
Gllod. fo, ol ffe, 05[], 10, 1D (B2, B, B2,0)
Gl o, of, flo, ol [o], [, [D ('7”0 )
Gleh, flo, o, ffe, ol [o], [1,[D (”‘m o, B0 0)
G ol o, o}, fo. o} [e]. [1.[D (0,0,0, 5%
Gliod o, o) e, o) [o], [1, [ (0,0,0, 5%) Glol e, ol o, ol [o], [1, [1) (B, u 21 ()
G ol o, o) fie, o [o1, 1, 11) (B2, 2, 2 )
G{el), o, 0B, flo, ol [e], [1.[D (0,0,0, p11)
(MergeBags, 3, 1)
(PublicPut,c o om, 1)
(PublicPut, 0, 2)
({{m,0,0,0,0},{{O,e,0,0,0}[1,[1) (poo,poi»pio,0)
({{m, e, 0,008 {0,0,0,0,0}[],[]) (0,0,0,p11)
[ shut,(1,2))
. . (fm,0,0,0,0}, {0, 0,000} [1,[) (&2, 5, 5 0)
e is taken out of B, with prob. 1/2. ({D.e 000 {mo oo ol (é,é,@’o)
(:fm,e,0,0,0},{0,0,0,0,0}: ([ (0,0,0, %)
(:fO,0,0,0,0}),{{m,e,0,0,0}: (][ (0,0,0,5)

(TakeAll, “small”)

|
G {m}}, {O); [0, 0,0,0],[e,0,0,0]) (poo, Po1> P10, 0) l- is taken out of B; with prob. 1/2.
GHoY, {m};[0,0,0,0],[e,0,0,0]) (0,0,0,p11)

GAON, (=) [0, 00,01, [0,0,0,91) (Poos por, P10, 0)
E?Z‘Eﬁﬁ‘é?ut o G, (D) [e, 0,0,0], [0,0,0,01) (0,0,0,p11)
(PublicPut o, 1) Eg;‘gﬁgﬂth o
Gim, o}, fo, e} [1,[1) (poo, po1» P10, 0) (PublicPut, o,2)
Gla. o). tm o) 0. 1) (0.0.0.p11) GO, o (m ol LD (Poos por, 10,0)
Glm, ol {o, o) LI (0,0,0, p11)

l(Shuf, (,2)
POL PIO 0)

of {m ok (11D (5.5
Lol o, el (1 [D (”‘“’ ””‘ 22,0
el ool 111D (0,0, 0 p“)
of, {m, e} [1.[D (0,0,0, "”)

l (TakeAll, “big”)

(Shuf, {1,2})

Fig. 6: A diagram of the committed-format AND protocol, given two commitments to x; € {0, 1} and x, € {0, 1}, where we

m is taken out of B, with prob. 1/2

Glelt. {ob; [O], [mD (poo, por P10, 0)
Glolt {o}:; [O], [m]) (0,0,0,p11)
= (Result, 2, 1)

\%ken out of By with prob. 1/2.

Gl flo}; [mL. [OD)  (Poo. Pot, P10, 0)
G{ed, o)t [m], [TD (0,0,0,p11)
= (Result, 1,2)

omit the tray 7y and renumber the positions of the bags after deleting unused empty bags.
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