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Abstract. Card-based cryptography allows us to securely compute ar-
bitrary functions using a deck of physical cards. Its performance is mainly
measured by the number of used cards and shuffles, and there is a line of
work that aims to reduce either of them. One of the seminal work is by
Shinagawa and Nuida (Discrete Applied Mathematics 2021) that shows
any Boolean function can be constructed by shuffling only once based on
the garbling scheme. Their construction requires 2n + 24g cards for an
n-input Boolean function that is represented by g logical gates. In this
paper, we reduce the number of cards to 2n+ 8g for arbitrary functions
while keeping it working with only one shuffle.

Keywords: Card-based cryptography · Garbled circuit · XOR shuffle.

1 Introduction

Card-based cryptography is unconventional computing which performs crypto-
graphic tasks such as secure computations, which exploits a deck of physical
cards [8, 14, 15, 20]. A card-based cryptographic protocol typically uses a two-
color deck consisting of ♡ and ♣ whose backs are all identical ? , and the
following encoding rule is usually used to represent Boolean values:

♣ ♡ = 0, ♡ ♣ = 1.

The complexity of a card-based protocol is measured in terms of the number of
cards and shuffles, which correspond to the space and time complexities of the
protocol, respectively.

As for minimizing the number of required cards, the currently known best
result is that 2n+6 cards are sufficient to construct any n-variable Boolean func-
tion [19]. However, it needs an exponential number of shuffles. As for minimizing
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the number of shuffles, Shinagawa and Nuida [24] proved that only one shuffle is
enough to design a protocol securely computing any Boolean function (although
it needs a relatively large number of cards as mentioned below). This paper
mainly focuses on the latter, i.e., improving the Shinagawa–Nuida single-shuffle
construction.

More specifically, Shinagawa and Nuida [24] have investigated the relation
between card-based cryptography and garbled circuit techniques. They have pro-
posed a card-based variant of a garbled circuit, called Card-based Garbled Cir-
cuit. The protocol enables us to compute any Boolean function with the optimal
number of shuffles, namely exactly one shuffle. Regarding the number of cards,
the protocol for an n-input Boolean function requires 2n+24g cards, where g is
the number of gates (when describing the function as a circuit).

Technical Overview of Our Scheme. Our goal is to minimize the number
of cards required to represent a card-based garbled circuit. To address this, we
propose a new method to represent garbled gates with a small number of cards,
that is, 8 cards per gate. Our method helps to reduce the primitive cost of card-
based garbled circuits which can be seen as reducing the size of the garbled
tables, allowing the number of cards to be reduced proportionally to the number
of gates.

The basic idea of garbled circuit techniques is to consider each gate as an
encryption of the corresponding truth table. A truth table of a logic gate con-
sists of 12 cells, so the most straightforward way to represent it in card-based
cryptography is to use 24 cards with standard encoding, as shown in Figure 1a.
The Shinagawa-Nuida single-shuffle construction shows that this representation
allows privacy-preserving computations of any binary gate. The garbling stage
of their scheme aims to encrypt the truth table of each gate by turning down
the cards and randomly permuting the rows of the table. The resulting truth
table looks as shown in Figure 1b. Since the positions of the result values are
uniformly random, the evaluation stage of the gate can make all values in the
operand cells public.

On the other hand, our scheme uses only 8 cards to represent a truth table as
shown in Figure 1c. This reduction comes from the observation that the operand
cell values are only positional information for each result cell. In other words,
we can omit the cards required for the operand cells, as long as the positional
information is recoverable. A similar optimization has already been proposed in
the context of garbled circuits, called the point-and-permute technique [2]. We
propose a variant of the point-and-permute technique in card-based cryptogra-
phy.

Our Contributions. We propose a protocol for any Boolean circuit with a
single shuffle. Compared to the existing protocol [24], we reduce the number of
cards from 2n+ 24g to 2n+ 8g, where g is the number of gates.
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♣ ♡︸ ︷︷ ︸
0

♣ ♡︸ ︷︷ ︸
0

? ?︸ ︷︷ ︸
f(0,0)

♣ ♡︸ ︷︷ ︸
0

♡ ♣︸ ︷︷ ︸
1

? ?︸ ︷︷ ︸
f(0,1)

♡ ♣︸ ︷︷ ︸
1

♣ ♡︸ ︷︷ ︸
0

? ?︸ ︷︷ ︸
f(1,0)

♡ ♣︸ ︷︷ ︸
1

♡ ♣︸ ︷︷ ︸
1

? ?︸ ︷︷ ︸
f(1,1)

(a) Plain-text

? ?︸ ︷︷ ︸
a1

? ?︸ ︷︷ ︸
b1

? ?︸ ︷︷ ︸
f(a1,b1)

? ?︸ ︷︷ ︸
a2

? ?︸ ︷︷ ︸
b2

? ?︸ ︷︷ ︸
f(a2,b2)

? ?︸ ︷︷ ︸
a3

? ?︸ ︷︷ ︸
b3

? ?︸ ︷︷ ︸
f(a3,b3)

? ?︸ ︷︷ ︸
a4

? ?︸ ︷︷ ︸
b4

? ?︸ ︷︷ ︸
f(a4,b4)

(b) Shinagawa-Nuida

? ?︸ ︷︷ ︸
f(a,b)

? ?︸ ︷︷ ︸
f(a,b)

? ?︸ ︷︷ ︸
f(a,b)

? ?︸ ︷︷ ︸
f(a,b)

(c) Our scheme

Fig. 1: Card-based representations of the truth table for gate f

Related Work. As mentioned above, the goal of this paper is to provide a
generic construction for securely computing any Boolean functions using only
one shuffle. The Shinagawa-Nuida’s single-shuffle construction [24] has been the
only one that achieves the goal. There are several single-shuffle protocols for
specific elementary functions such as the AND [4, 16, 18], XOR [18], 3-input
equality [6, 23], 3-input majority [25], n-input AND [13], and n-input XOR [13]
functions. Another aspect of previous work is to reduce the number of cards;
especially, designing card-minimal protocols has attracted attention [5,9–12,21,
25].

Bellare et al. [3] proposed garbling schemes, an abstraction of garbled cir-
cuit methods, and formalized security properties of garbled circuits: privacy and
obliviousness.

2 Preliminaries

2.1 Notation

We use a bold symbol to represent a vector (or an ordered set). Let vi denote
the i-th (starting from 1) element of v. We write v ∥w for the concatenation of
v and w.

Let Sn denote the symmetric group on n elements. For a vector v of degree
n, we define a place-permutation action of Sn as (v · π)i = vπ(i), where π ∈ Sn.
For two permutations π, ρ, we use the notation πρ to represent the product of
permutations such that v · (πρ) = (v ·π) ·ρ for any vector v. We use the notation
(a, b) ∈ Sn to denote the transposition (i.e., a cycle with two elements) that
swaps a and b.

For b, c ∈ Z2, we will write b, b⊕ c, b ∨ c and b ∧ c for the negation of b, the
XOR, OR and AND of b and c, respectively.

2.2 Card-based Cryptographic Protocol

In this paper, we follow the computation model proposed in [17]. There are two
kinds of cards: The face side of a card is either ♣ or ♡ , and the back side
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is indistinguishable from the other cards, denoted by ? . Each card during the
protocol execution can be in one of the two states: face-top or face-down. A deck
is a finite vector on {♡,♣} × {face-top, face-down}.

As mentioned before, a bit x ∈ Z2 is represented by a single pair of cards as
follows:

0 = ♣ ♡ 1 = ♡ ♣

A commitment of x ∈ Z2, denoted by Com(x), is a pair of face-down cards
representing x.

For a current deck D of n cards, a protocol can perform the following oper-
ations:

– (Perm, π), where π ∈ Sn. The operation converts D into D · π.
– (Shuffle, G), where G is a permutation group on n points. The operation

converts D into D · π, where π is a random permutation chosen uniformly
on G.

– (Open, S), where S ⊆ {1, . . . , n}. The operation makes the state of the i-th
card in D face-top for all i ∈ S.

In particular, when G is isomorphic to some symmetric group Sk for k ≤ n,
(Shuffle, G) is called a pile-scramble shuffle [7]. Let I(1), . . . , I(k) be the disjoint
ordered subsets of {1, . . . , n} of the same size s. We define G as the permutation
group generated by the products of parallel transpositions (I(i)

1 , I
(j)
1 )(I

(i)
2 , I

(j)
2 ) · · ·

(I
(i)
s , I

(j)
s ) for all i < j. In this case, we use the syntactic sugar (PileShuffle, I(1),

. . . , I(k)) for (Shuffle, G).
The protocol is in a committed format if the output is also encoded in the

same manner as input; 0 = ♣ ♡ , 1 = ♡ ♣ . Our construction in this paper
focuses on a committed format so that it will be easy to use the committed
output of our protocol as an input of some other protocols.

2.3 Garbled Circuit

Let f = (n,m, g,Wires, A,B,G) be a Boolean circuit. Here, n, m and g denote
the numbers of inputs, outputs and gates, respectively. All input wires and gates
in f are assigned unique numbers belonging to Inputs = {1, . . . , n} and Gates =
{n+1, . . . , n+ g}, respectively. The wire coming out of gate i is also assigned i,
so the wires correspond to Wires = {1, . . . , n+ g}. The functions A,B : Gates→
Wires \ Outputs respectively specify the first and second input wires of a gate,
and G : Gates× {0, 1} × {0, 1} → {0, 1} specifies the functionality of each gate.
We simply write Ai, Bi and Gi for A(i), B(i) and G(i, ·, ·), and write A−1

i and
B−1

i for A−1(i) and B−1(i), respectively. We assume that Ai < Bi < i holds for
all i. Then all output wires in f belong to Outputs = {n+ g−m+1, . . . , n+ g}.

Garbling scheme [3] consists of the following algorithms:

– (F, e, d) ← Gb(1k, f): Given a security parameter k ∈ N and a function
f : {0, 1}n → {0, 1}m, it outputs a garbled circuit F , encoding information
e, and decoding information d
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– X ← Enc(e, x): Given encoding information e and an input x ∈ {0, 1}n, it
outputs a garbled input X

– Y ← Eval(F,X): Given a garbled function F and a garbled input X, it
outputs a garbled output Y

– y ← Dec(d, Y ): Given decoding information d and a garbled output Y , it
outputs a plain output y

The security properties we focus on are described as follows:

– Privacy: The tuple (F,X, d) should not reveal any information on the input x
except the output f(x). Here, there must exist a simulator S that takes input
(1k, f, f(x)) and outputs (F ′, X ′, d′) that is indistinguishable from (F,X, d)
that would be generated by the protocol.

– Obliviousness: The tuple (F,X) should not reveal any information on x.
Here, there must exist a simulator S that takes input (1k, f) and outputs
(F ′, X ′) that is indistinguishable from (F,X) that would be generated by
the protocol.

Note that in this paper we do not use the security parameter k and only
consider the security properties in the information-theoretical sense.

2.4 Card-based Garbling Scheme

Our card-based garbling protocol (Protocol 2) realizes the standard garbling and
encoding algorithms at once, as in Shinagawa and Nuida [24]. In addition, when
considering a protocol in a committed form, the decoding phase is omitted. In
summary, the functionalities of a card-based garbling scheme are described as
follows:

– I ← Init(x, f): Given an input x and a function f : {0, 1}n → {0, 1}m, it
outputs a committed initial state I

– (F,X) ← CardGb(I): Given a security parameter k ∈ N and an initial state
regarding an input x and a function f , it outputs a garbled circuit F , de-
coding information d, and a garbled input X

– Y ← CardEval(F,X): Given a garbled function F and a garbled input X, it
outputs a garbled output Y

3 Main Protocol

In this section, we propose an efficient protocol for card-based garbled circuits.
The main idea of our scheme is to use an elaborate shuffling technique for ran-
domization. We show that the XOR shuffle technique for the secret-sharing-based
scheme of [1] is also applicable to card-based cryptography. As a result, the XOR
shuffle provides an analog of the point-and-permute technique in the field of gar-
bled circuits, reducing the number of cards required to represent the circuit.
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3.1 Example: for a circuit with one gate

To grasp the intuition of our idea, let us consider the simplest case with a single
binary logic gate. In this case, the Boolean circuit is described as (2, 1, 1, {1, 2, 3}, {3 7→
1}, {3 7→ 2}, f), where f is the functionality of the logic gate. The procedure has
three phases: initialization, garbling, and evaluation.

Initialization. Let x1 and x2 be distinct inputs, and f be the binary Boolean
function we want to evaluate at the gate. Given the commitments of x1 and x2,
the initial state is set as follows:

1

?
2

?︸ ︷︷ ︸
x1

3

?
4

?︸ ︷︷ ︸
x2

5

?
6

?︸ ︷︷ ︸
f(0,0)

7

?
8

?︸ ︷︷ ︸
f(0,1)

9

?
10

?︸ ︷︷ ︸
f(1,0)

11

?
12

?︸ ︷︷ ︸
f(1,1)

Here, the first four cards are the commitments of x1 and x2, and the latter eight
cards are the commitments of the values of f(0, 0), f(0, 1), f(1, 0), and f(1, 1),
i.e., an encryption of the truth table for f . See Sect. 3.2 for the detail.

Garbling. In order to obliviously select the desired output from the encrypted
truth table while keeping the input values secret, we apply an XOR shuffle to the
initial state4. An XOR Shuffle consists of two consecutive pile-scramble shuffles
as follows:

1. (PileShuffle, {1, 5, 6, 7, 8}, {2, 9, 10, 11, 12})

1

?
◦

2

?
•

3

?
4

?
5

?
◦

6

?
◦

7

?
◦

8

?
◦

9

?
•

10

?
•

11

?
•

12

?
•

2. (PileShuffle, {3, 5, 6, 9, 10}, {4, 7, 8, 11, 12})

1

?
2

?
3

?
◦

4

?
•

5

?
◦

6

?
◦

7

?
•

8

?
•

9

?
◦

10

?
◦

11

?
•

12

?
•

A pile scramble shuffle allows us to swap the positions of the white- and black-
marked cards with equal probability while maintaining the order of the cards
marked each color. After the XOR shuffle, the final state can be one of the
following four cases:

1

?
2

?︸ ︷︷ ︸
x1

3

?
4

?︸ ︷︷ ︸
x2

5

?
6

?︸ ︷︷ ︸
f(0,0)

7

?
8

?︸ ︷︷ ︸
f(0,1)

9

?
10

?︸ ︷︷ ︸
f(1,0)

11

?
12

?︸ ︷︷ ︸
f(1,1)

2

?
1

?︸ ︷︷ ︸
x1

3

?
4

?︸ ︷︷ ︸
x2

9

?
10

?︸ ︷︷ ︸
f(1,0)

11

?
12

?︸ ︷︷ ︸
f(1,1)

5

?
6

?︸ ︷︷ ︸
f(0,0)

7

?
8

?︸ ︷︷ ︸
f(0,1)

1

?
2

?︸ ︷︷ ︸
x1

4

?
3

?︸ ︷︷ ︸
x2

7

?
8

?︸ ︷︷ ︸
f(0,1)

5

?
6

?︸ ︷︷ ︸
f(0,0)

11

?
12

?︸ ︷︷ ︸
f(1,1)

9

?
10

?︸ ︷︷ ︸
f(1,0)

2

?
1

?︸ ︷︷ ︸
x1

4

?
3

?︸ ︷︷ ︸
x2

11

?
12

?︸ ︷︷ ︸
f(1,1)

9

?
10

?︸ ︷︷ ︸
f(1,0)

7

?
8

?︸ ︷︷ ︸
f(0,1)

5

?
6

?︸ ︷︷ ︸
f(0,0)

4 Note that a similar procedure was used for changing an integer encoding into two
commitments [22].
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where x denotes the negation of x. The key property of the XOR shuffle is
that each case has an equal probability thanks to the randomness given by pile-
scramble shuffles. Accordingly, the distribution of the two values committed on
the first four cards is uniform on {0, 1}2 regardless of the input values x1 and
x2. See Sect. 3.3 for the details.

Evaluation. The evaluation phase of our protocol proceeds as follows. The
players first reveal the first four cards to obtain the two randomized values,
denoted by b1 and b2. Then, depending on the values of b1 and b2, the players
choose two of the latter eight cards according to the following rule:

– If b1 = 0 and b2 = 0, take 5 and 6
– If b1 = 0 and b2 = 1, take 7 and 8
– If b1 = 1 and b2 = 0, take 9 and 10
– If b1 = 1 and b2 = 1, take 11 and 12

The correctness of the protocol comes from the definition of XOR shuffle. When
b1 = x1 ⊕ r1 and b2 = x2 ⊕ r2 for some r1, r2 ∈ Z2, the latter part are the
commitments of the values of f(r1, r2), f(r1, r2), f(r1, r2) and f(r1, r2). There-
fore, the two chosen cards are the commitment of the desired output value. See
Sect. 3.4 for the details.

3.2 Initialization Phase

We first define the initial state of the protocol. Let f = (n,m, g,Wires, A,B,G)
be a Boolean circuit. For i ∈ Gates, we define an eight-card representation of the
truth table of gate i as follows:

Com(f, i) := Com(Gi(0, 0)) ∥ Com(Gi(0, 1)) ∥ Com(Gi(1, 0)) ∥ Com(Gi(1, 1)).

We now describe a protocol for Init below. The protocol requires 2n+ 8g cards.

Protocol 1. Init

Input: (x, f), where x is a vector of input values, and f is a Boolean circuit.
Output: I, where I is an initial state consisting of 2n+ 8g face-down cards.

1. Set I = (Com(x1) ∥ · · · ∥ Com(xn) ∥ Com(f, n+ 1) ∥ · · · ∥ Com(f, n+ g)).
2. Output I.

For simplicity, we define the offset a : Wires→ {1, . . . , 2n+8g}, which assigns
the first position in the deck to the wire number of the circuit, as follows:

a(i) =

{
2i− 1 i ∈ Inputs
8i− 6n− 7 i ∈ Gates
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4
1

2

5
3

6
4

5

Fig. 2: Boolean Circuit f

Example. As an example, we consider the Boolean circuit in Fig. 2. Note
that this example is the same as the Appendix example in [24]. Formally, the
circuit is defined as f = (3, 1, 3, A,B,G) where A(4) = 1, A(5) = 3, A(6) = 4,
B(4) = 2, B(5) = 4, B(6) = 5, G4, G5 and G6 are AND, XOR, and OR gates,
respectively. In this case, the initial state of the protocol is set as 30 face-down
cards arranged as follows:

1

?
2

?︸ ︷︷ ︸
x1

3

?
4

?︸ ︷︷ ︸
x2

5

?
6

?︸ ︷︷ ︸
x3

7

?
8

?︸ ︷︷ ︸
0

9

?
10

?︸ ︷︷ ︸
0

11

?
12

?︸ ︷︷ ︸
0

13

?
14

?︸ ︷︷ ︸
1

15

?
16

?︸ ︷︷ ︸
0

17

?
18

?︸ ︷︷ ︸
1

19

?
20

?︸ ︷︷ ︸
1

21

?
22

?︸ ︷︷ ︸
0

23

?
24

?︸ ︷︷ ︸
0

25

?
26

?︸ ︷︷ ︸
1

27

?
28

?︸ ︷︷ ︸
1

29

?
30

?︸ ︷︷ ︸
1

3.3 Garbling Phase

Next, the protocol proceeds to the garbling phase. The players perform a series of
pile-scramble shuffles according to the circuit. This ensures that the input values
are uniformly random after the garbling phase without changing the semantics
of the circuit.

Our scheme requires a total of n + g −m pile-scramble shuffles. Each pile-
scramble shuffle is defined for each i ∈ Wires \ Outputs, and runs consecutively
in this index order. Unlike the single-gate circuit, a pile-scramble shuffle requires
many different positions to be shuffled simultaneously according to the circuit
topology. To specify the positions to be exchanged in each pile-scramble shuffle,
we define the ordered subsets P (i,1),P (i,2) ⊆ {1, . . . , 2n + 8g} for i ∈ Wires \
Outputs as follows:

P (i,1) = I(i,1) ∥ (∥j∈A−1
i
L(j,1)) ∥ (∥j∈B−1

i
R(j,1))

P (i,2) = I(i,2) ∥ (∥j∈A−1
i
L(j,2)) ∥ (∥j∈B−1

i
R(j,2))

where I(i,1), I(i,2), L(j,1),L(j,2),R(j,1),R(j,2) are given as:

I(i,1) =

{
{a(i) + 0} i ∈ Inputs
{a(i) + 0, a(i) + 2, a(i) + 4, a(i) + 6} i ∈ Gates

I(i,2) =

{
{a(i) + 1} i ∈ Inputs
{a(i) + 1, a(i) + 3, a(i) + 5, a(i) + 7} i ∈ Gates

L(j,1) = {a(j) + 0, a(j) + 1, a(j) + 2, a(j) + 3}
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L(j,2) = {a(j) + 4, a(j) + 5, a(j) + 6, a(j) + 7}
R(j,1) = {a(j) + 0, a(j) + 1, a(j) + 4, a(j) + 5}
R(j,2) = {a(j) + 2, a(j) + 3, a(j) + 6, a(j) + 7}

The pile-scramble shuffle determined by P (i,1) and P (i,2) results in an XOR
shuffling, as discussed in Section 3.1. Here we point out the difference between
this definition and the single gate case. In a general circuit, there can be non-
input wires and branching wires. When j /∈ Inputs, the players must randomize
all 4 possible commitments for input to j, defined as I(i,1) and I(i,2). When j is
a branching wire, i.e., when A−1

j ∪B
−1
j contains two or more wires, the players

must randomize all the truth tables on the output side of wire j, defined as
L(j,1), L(j,2), R(j,1) and R(j,2).

Protocol 2. CardGb

Input: I, where I is an initial state.
Output: (F , X), where F and X are decks with 8g and 2n face-down cards,

respectively.

1. For i ∈Wires \ Outputs do:
(a) Compute (PileShuffle, P (i,1), P (i,2)).

2. Parse the resulting deck as X ∥ F and output it.

The garbling phase randomizes the circuit semantics as follows. In X and F ,
the Boolean value assigned to each non-output wire is randomized by a single
pile-scramble shuffle. Note that each pile-scramble shuffle can be viewed as a
group action by a random element in S2

∼= Z2. Let ri denote a random element
in Z2 resulting from the i-th pile-scramble shuffle, except that we set ri = 0 if
i ∈ Outputs. For each i ∈ Inputs, the input value xi is randomized to xi ⊕ ri
and stored in X. For each j ∈ Gates, the four outcome values are randomized
and rearranged to be Gj(rAj , rBj )⊕ rj , Gj(rAj , rBj )⊕ rj , Gj(rAj , rBj )⊕ rj , and
Gj(rAj , rBj )⊕ rj in order.

Furthermore, we can make a more critical observation that the resulting
circuit semantics is determined independently of the order of the n+ g−m pile-
scramble shuffles. Due to the successive pile-scramble shuffles, the truth table
of each gate j is randomized by three kinds of group actions, defined as I, L,
and R, by the distinct random elements rj , rAj , and rBj . The key fact here is
that, by definition, these group actions are all commutative. This is because they
form the group S2×S2×S2 and its natural action on 8 points. Accordingly, the
players can apply the pile-scramble shuffles in any order.

From the above observation, we can define a variant of the CardGb protocol
that only requires a single shuffle. Let Gi be the permutation group determined
by P (i,1) and P (i,2), and let Gf := {g1g2 · · · gn+g−m ∈ S2n+8g | gj ∈ Gj}. Note
that Gf is also a permutation group, since any two of Gj are commutative. Thus,
we can combine the n+ g −m pile-scramble shuffles into one shuffle as follows.
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Protocol 3. CardGb (with a single shuffle)

Input: I, where I is an initial state.
Output: (F , X), where F and X are decks with 8g and 2n face-down cards,

respectively.

1. Compute (Shuffle, Gf ).
2. Parse the resulting deck as X ∥ F and output it.

Example. Consider the garbling phase of the example given by Fig. 2. In this
case, n+ g −m = 5, so the garbling phase contains 5 consecutive pile-scramble
shuffles. Since wire 1 is the first input of gate 4, the first pile-scramble shuffle is
described as (PileShuffle, {1, 7, 8, 9, 10}, {2, 11, 12, 13, 14}):

1

?
◦

2

?
•

3

?
4

?
5

?
6

?
7

?
◦

8

?
◦

9

?
◦

10

?
◦

11

?
•

12

?
•

13

?
•

14

?
•

15

?
16

?
17

?
18

?
19

?
20

?
21

?
22

?
23

?
24

?
25

?
26

?
27

?
28

?
29

?
30

?

Similarly, wires 2 and 3 respectively determine the second pile-scramble shuffle
(PileShuffle, {3, 7, 8, 11, 12}, {4, 9, 10, 13, 14}) and the third pile-scramble shuffle
(PileShuffle, {5, 15, 16, 17, 18}, {6, 19, 20, 21, 22}):

1

?
2

?
3

?
◦

4

?
•

5

?
6

?
7

?
◦

8

?
◦

9

?
•

10

?
•

11

?
◦

12

?
◦

13

?
•

14

?
•

15

?
16

?
17

?
18

?
19

?
20

?
21

?
22

?
23

?
24

?
25

?
26

?
27

?
28

?
29

?
30

?

1

?
2

?
3

?
4

?
5

?
◦

6

?
•

7

?
8

?
9

?
10

?
11

?
12

?
13

?
14

?
15

?
◦

16

?
◦

17

?
◦

18

?
◦

19

?
•

20

?
•

21

?
•

22

?
•

23

?
24

?
25

?
26

?
27

?
28

?
29

?
30

?

Next, consider the pile-scramble shuffle given by wire 4. This wire comes out
of gate 4 and goes into the second input of gate 5 and the first input of gate
6. Accordingly, all the cards corresponding to gates 4, 5, and 6 are shuffled in
a way that preserves the circuit semantics. Such a shuffle is given as the pile-
scramble shuffle (PileShuffle,P (4,1),P (4,2)), where P (4,1) = I(4,1) ∥R(5,1) ∥L(6,1)

and P (4,2) = I(4,2) ∥R(5,2) ∥L(6,2):

1

?
2

?
3

?
4

?
5

?
6

?
7

?
◦

8

?
•

9

?
◦

10

?
•

11

?
◦

12

?
•

13

?
◦

14

?
•

15

?
◦

16

?
◦

17

?
•

18

?
•

19

?
◦

20

?
◦

21

?
•

22

?
•

23

?
◦

24

?
◦

25

?
◦

26

?
◦

27

?
•

28

?
•

29

?
•

30

?
•

Likewise, the fifth pile-scramble shuffle is defined as (PileShuffle,P (5,1),P (5,2)),
where P (5,1) = I(5,1) ∥R(6,1) and P (5,2) = I(5,2) ∥R(6,2).

1

?
2

?
3

?
4

?
5

?
6

?
7

?
8

?
9

?
10

?
11

?
12

?
13

?
14

?
15

?
◦

16

?
•

17

?
◦

18

?
•

19

?
◦

20

?
•

21

?
◦

22

?
•

23

?
◦

24

?
◦

25

?
•

26

?
•

27

?
◦

28

?
◦

29

?
•

30

?
•

Finally, let us review the circuit semantics after successive pile-scramble shuffles.
Let ri denote the bit corresponding to the i-th pile-scramble shuffle. Then the
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following holds:
1

?
2

?︸ ︷︷ ︸
x1⊕r1

3

?
4

?︸ ︷︷ ︸
x2⊕r2

5

?
6

?︸ ︷︷ ︸
x3⊕r3

7

?
8

?︸ ︷︷ ︸
g4
0⊕r4

9

?
10

?︸ ︷︷ ︸
g4
1⊕r4

11

?
12

?︸ ︷︷ ︸
g4
2⊕r4

13

?
14

?︸ ︷︷ ︸
g4
3⊕r4

15

?
16

?︸ ︷︷ ︸
g5
0⊕r5

17

?
18

?︸ ︷︷ ︸
g5
1⊕r5

19

?
20

?︸ ︷︷ ︸
g5
2⊕r5

21

?
22

?︸ ︷︷ ︸
g5
3⊕r5

23

?
24

?︸ ︷︷ ︸
r4∨r5

25

?
26

?︸ ︷︷ ︸
r4∨r5

27

?
28

?︸ ︷︷ ︸
r4∨r5

29

?
30

?︸ ︷︷ ︸
r4∨r5

where

g40 = r1 ∧ r2, g41 = r1 ∧ r2, g42 = r1 ∧ r2, g43 = r1 ∧ r2,

g50 = r3 ⊕ r4, g51 = r3 ⊕ r4, g52 = r3 ⊕ r4, g53 = r3 ⊕ r4.

3.4 Evaluation Phase

The evaluation phase is an iterative process to obtain a commitment of the
desired Boolean value as output. At each step, the players open two designated
cards. The first step starts with opening the cards corresponding to the input
wires. Then, if a gate takes the values at the two input wires, the players refer
to the values to determine the following card positions and open only two out of
the eight cards corresponding to the gate.

Let us consider the correctness of our scheme. To prove this, we show that
the circuit randomized by the garbling phase provides the same output as the
plain-text circuit evaluation when computed through the evaluation phase of our
scheme. Let vj be the output value of gate j in the circuit f when x is input.
Then, it suffices to show that the evaluation phase of our scheme gives the output
value of gate j as vj ⊕ rj , where rj is the same as introduced in Section 3.3.

The proof is shown by induction on the circuit structure. The base case
follows from the fact that each i ∈ Inputs is assigned xi⊕ri in X. Assume that the
statement holds up to j−1. Then Out(Aj) = vAj

⊕rAj
and Out(Bj) = vBj

⊕rBj
.

On the other hand, by the definition of CardGb, the four secret values represented
by the eight cards starting from a(j) in F is Gj(rAj

, rBj
)⊕ rj , Gj(rAj

, rBj
)⊕ rj ,

Gj(rAj
, rBj

)⊕rj , and Gj(rAj
, rBj

)⊕rj . Hence, according to the definition of the
evaluation phase, the players specify the two cards representing Gj(vAi

, vBj
)⊕rj ,

which is the desired conclusion.
Remark that the evaluation phase leaks no information about the initial state

I. During the evaluation phase, 2(n+ g−m) cards become open in total, so the
players know n+g−m Boolean values. However, due to n+g−m pile-scramble
shuffles in the garbling phase, there is enough randomness in F and X to hide the
secret values. This property can be viewed as the counterpart of the obliviousness
property in garbled schemes.

Example. Here we demonstrate the evaluation phase for the example given by
the circuit in Fig. 2. First, the players open all cards in X. Suppose the result
is:

1

♡
2

♣︸ ︷︷ ︸
1

3

♣
4

♡︸ ︷︷ ︸
0

5

♣
6

♡
7

?
8

?
9

?
10

?
11

?
12

?
13

?
14

?
15

?
16

?
17

?
18

?
19

?
20

?
21

?
22

?
23

?
24

?
25

?
26

?
27

?
28

?
29

?
30

?
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Protocol 4. CardEval

Input: (F,X), where F and X are decks consisting of 8g and 2n face-down cards,
respectively.

Output: Y , where Y is a deck consisting of 2m face-down cards.

1. Set D = X ∥ F .
2. Compute (Open, {1, . . . , 2n}).
3. Set Out(i) to the Boolean value represented by (2i − 1)-th and 2i-th cards for all

i ∈ Inputs.
4. For i ∈ Gates \ Outputs do:

– If Out(Ai) = 0 and Out(Bi) = 0, compute (Open, {a(i), a(i) + 1}) and set
Out(i) to the value.

– If Out(Ai) = 0 and Out(Bi) = 1, compute (Open, {a(i) + 2, a(i) + 3}) and set
Out(i) to the value.

– If Out(Ai) = 1 and Out(Bi) = 0, compute (Open, {a(i) + 4, a(i) + 5}) and set
Out(i) to the value.

– If Out(Ai) = 1 and Out(Bi) = 1, compute (Open, {a(i) + 6, a(i) + 7}) and set
Out(i) to the value.

5. Set Y to an empty deck.
6. For i ∈ Outputs do:

– If Out(Ai) = 0 and Out(Bi) = 0, append the face-down cards at {a(i), a(i)+1}
to Y .

– If Out(Ai) = 0 and Out(Bi) = 1, append the face-down cards at {a(i)+2, a(i)+
3} to Y .

– If Out(Ai) = 1 and Out(Bi) = 0, append the face-down cards at {a(i)+4, a(i)+
5} to Y .

– If Out(Ai) = 1 and Out(Bi) = 1, append the face-down cards at {a(i)+6, a(i)+
7} to Y .

7. Output Y .

The next step is evaluating gate 4 with inputs 1 and 0. The evaluation pro-
tocol picks the third committed value from a(4) and opens it.

1

♡
2

♣
3

♣
4

♡
5

♣
6

♡︸ ︷︷ ︸
0

7

?
8

?
9

?
10

?
11

♣
12

♡︸ ︷︷ ︸
0

13

?
14

?
15

?
16

?
17

?
18

?
19

?
20

?
21

?
22

?
23

?
24

?
25

?
26

?
27

?
28

?
29

?
30

?

Similarly, gate 5 is evaluated with inputs 0 and 0, opening the first committed
value from a(5).

1

♡
2

♣
3

♣
4

♡
5

♣
6

♡
7

?
8

?
9

?
10

?
11

♣
12

♡︸ ︷︷ ︸
0

13

?
14

?
15

♡
16

♣︸ ︷︷ ︸
1

17

?
18

?
19

?
20

?
21

?
22

?
23

?
24

?
25

?
26

?
27

?
28

?
29

?
30

?

In the final step of evaluating gate 6 with inputs 0 and 1, the players choose
the second committed value from a(6) and output it as Y := ?

25
?

26
.
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Let us check the correctness of this case. As discussed in Section 3.3, the gar-
bling phase randomizes the circuit semantics using five random Boolean values
ri. The values revealed during the evaluation phase satisfy the following:

x1 ⊕ r1 = 1, x2 ⊕ r2 = 0, x3 ⊕ r3 = 0, (r1 ∧ r2)⊕ r4 = 0, (r3 ⊕ r4)⊕ r5 = 1.

In addition, Y is a commitment of r4 ∨ r5. Accordingly, we have the following:

r4∨ r5 = r4∨ (r3⊕ r4) = (r1∧ r2)∨ (r3⊕ (r1∧ r2)) = (x1∧x2)∨ (x3⊕ (x1∧x2)),

which is the desired output.

3.5 Card-based Protocols for Standard Garbling Scheme

This section introduces card-based protocols for computing the functionalities
in Section 2.3 to investigate the relation to the standard garbling schemes. By
making some modifications to the protocols in the previous sections, we can de-
fine a card-based garbled circuit scheme suitable for the original garbling scheme
definition. In this case, our scheme requires 4n+8g+2m cards in total and one
shuffle each in Gb, Enc and Dec, respectively. On the other hand, this scheme
allows us to split the computational procedure into two parts that depend only
on f or x, respectively. Hereafter, let XOR denote the functionality for comput-
ing the element-wise XOR of two decks in a committed form. Using the protocol
proposed in [18], XOR can be computed with only one shuffle.

First, we define a protocol for the garbling phase Gb. The initial state consists
of 4n+8g+2m face-down cards and is defined as the output of Init(0, f) followed
by m commitments of 0, where 0 denotes the 2n cards consisting of n commit-
ments of 0. The protocol computes CardGb on the first 2n + 8g cards. Then,
executes additional m pile-scramble shuffles for each i ∈ Outputs as follows.

(PileShuffle, I(i,1) ∥ {6g + 2m+ 2i− 1}, I(i,2) ∥ {6g + 2m+ 2i})

Finally, the protocol outputs the first 2n cards as e, the next 8g cards as F , and
the last 2m cards as f . Note that the additional m pile-scramble shuffles are
commutative with each other and also with the other n+ g −m shuffles, so all
the required pile-scramble shuffles can be combined into one shuffle.

The rest part is straightforward. We can define a protocol for the encoding
phase Enc(e, x) as simply computing XOR of e and the commitment of x. Simi-
larly, our protocol for the decoding phase Dec(d, Y ) simply computes XOR of d
and Y , opens the results and outputs the Boolean values. The evaluation phase
Eval is the same as CardEval.

It is easy to verify the correctness and obliviousness of this scheme. The proof
is similar to the case of the CardGb and CardEval protocols. In addition, this
protocol provides the counterpart of the privacy property in garbling schemes.
This follows from the fact that the obliviousness proof in Section 3.4 leaks no
information on x in an information-theoretic sense.
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4 Conclusion

Shinagawa and Nuida [24] showed a surprising result that any Boolean function
can be securely computed using only one shuffle by combining card-based cryp-
tography with Yao’s garbled circuit technique. Their protocol requires 2n+ 24g
cards, where g is the number of gates and n is the number of function inputs.
This paper improved upon this existing approach by introducing an XOR shuffle
technique that helps to reduce the number of required cards. Consequently, we
showed that, instead of having 2n+ 24g cards, only 2n+ 8g cards are sufficient
for constructing a single-shuffle protocol.

Acknowledgements This work was supported by JSPS KAKENHI Grant
Numbers JP21H05052, JP21K11881, and JST, CREST Grant Number JPMJCR22M1,
Japan.
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