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Abstract. Card-based cryptography uses a physical deck of cards to achieve
secure computations. To evaluate the performance of card-based protocols, the
numbers of helping cards and shuffles required to execute are often used as
evaluation metrics. In this paper, we focus on 𝑛-input AND protocols that use at
most two helping cards, and investigate how many shuffles suffice to construct
such a two-helping-card AND protocol. Since the Mizuki–Sone two-input AND
protocol uses two helping cards and it can be repeatedly applied 𝑛 − 1 times
to perform a secure 𝑛-input AND computation, an obvious upper bound on the
number of required shuffles is 𝑛 − 1. In this paper, to obtain better bounds (than
𝑛−1), we consider making use of the “batching” technique, which was developed
by Shinagawa and Nuida in 2020 to reduce the number of shuffles. Specifically,
we first formulate the class of two-helping-card 𝑛-input AND protocols obtained
by applying the batching technique to the Mizuki–Sone AND protocol, and then
show 𝑛-input AND protocols requiring the minimum number of shuffles (among
the class) for the case of 2 ≤ 𝑛 ≤ 500.

Keywords: Card-based cryptography · Secure computation · Real-life hands-on
cryptography · AND protocols

1 Introduction

Secure computations [36] enable players holding individual private inputs to evaluate
a predetermined function without revealing the input values more than necessary. The
method of secure computation using a physical deck of cards is called card-based
cryptography [7, 19]. Typically, two types of cards are used, where the reverse side is
indistinguishable as ? and the front side is either ♣ or ♡ . These cards are arranged
in the following way to represent Boolean values:

♣ ♡ = 0, ♡ ♣ = 1.
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When two cards placed face down according to this encoding rule represent a bit
𝑥 ∈ {0, 1}, these two cards are called a commitment to 𝑥 and are represented as follows:

? ?︸︷︷︸
𝑥

.

A two-input AND protocol takes as input two commitments to bits 𝑥, 𝑦 ∈ {0, 1}
along with some helping cards like ♣ ♡ , and performs a secure computation of the
AND value 𝑥 ∧ 𝑦 via a series of actions such as shuffling, rearranging, and turning over
cards. When the output is obtained as a commitment to 𝑥 ∧ 𝑦, such a protocol is called
a committed-format protocol:

? ?︸︷︷︸
𝑥

? ?︸︷︷︸
𝑦

♣ ♡ · · · → · · · → ? ?︸︷︷︸
𝑥∧𝑦

.

This paper deals with committed-format AND protocols, especially multi-input AND
protocols, as seen later.

1.1 The Mizuki–Sone AND Protocol

The most practical committed-format two-input AND protocol currently known would
be the protocol proposed by Mizuki and Sone in 2009 [20]. Hereinafter, we refer to this
as the MS-AND protocol, and the procedure is described below.

1. Place two input commitments to 𝑥, 𝑦 ∈ {0, 1} along with two helping cards, turning
the middle two cards face down, as follows:

? ?︸︷︷︸
𝑥

♣ ♡ ? ?︸︷︷︸
𝑦

→ ? ?︸︷︷︸
𝑥

? ?︸︷︷︸
0

? ?︸︷︷︸
𝑦

.

2. Rearrange the sequence as follows:

? ? ? ? ? ?
Q

QQs��	 ��	
? ? ? ? ? ? .

3. A random bisection cut (hereafter sometimes called an RBC for short), denoted by
[· · · | · · · ], is applied to the sequence of six cards, meaning that we split the card
sequence in half and randomly swap the left and right sides (until anyone loses track
of the move): [

? ? ?
��� ? ? ?

]
→ ? ? ? ? ? ? .

It is known that a random bisection cut can be securely implemented using familiar
tools such as envelopes [35].
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4. Rearrange the sequence as follows:

? ? ? ? ? ?
@@R@@R

�
��+

? ? ? ? ? ? .

5. The two cards are turned over from the left. Depending on the order of the two
revealed cards, we obtain a commitment to 𝑥 ∧ 𝑦 as follows:

♣ ♡ ? ?︸︷︷︸
𝑥∧𝑦

? ? or ♡ ♣ ? ? ? ?︸︷︷︸
𝑥∧𝑦

.

The above is the MS-AND protocol, which, given commitments to 𝑥 and 𝑦, uses two
helping cards and one random bisection cut to output a commitment to 𝑥 ∧ 𝑦.

After the protocol terminates, the two cards that were turned over in Step 5 can be
used as helping cards in another protocol run; we call such face-up cards free cards.

We will also call the two face-down cards that are not a commitment to 𝑥 ∧ 𝑦 a
garbage commitment iii. A garbage commitment can be transformed into two free cards
by applying a (normal) shuffle to the two cards (composing the garbage commitment)
and turning them over.

1.2 Committed-Format Multi-Input AND Protocol

As mentioned above, the subject of this paper is to construct committed-format multi-
input AND protocols. That is, given 𝑛 input commitments

? ?︸︷︷︸
𝑥1

? ?︸︷︷︸
𝑥2

· · · ? ?︸︷︷︸
𝑥𝑛

,

we want to produce a commitment to 𝑥1 ∧ 𝑥2 ∧ · · · ∧ 𝑥𝑛.
Applying the MS-AND protocol described in Sect. 1.1 to commitments to 𝑥1 and 𝑥2

yields a commitment to 𝑥1 ∧ 𝑥2 together with two free cards. Thus, we can continue to
apply the MS-AND protocol to commitments to 𝑥1 ∧ 𝑥2 and 𝑥3. By repeating this a total
of 𝑛 − 1 times, a committed-format 𝑛-input AND protocol can be constructed [15]:

? ?︸︷︷︸
𝑥1

? ?︸︷︷︸
𝑥2

· · · ? ?︸︷︷︸
𝑥𝑛

♣ ♡ → · · · → ? ?︸︷︷︸
𝑥1∧𝑥2∧···∧𝑥𝑛

.

In this case, the number of required helping cards is two, and the number of required
shuffles (namely, the number of random bisection cuts) is 𝑛 − 1.

iii These two cards are actually a commitment to 𝑥 ∧ 𝑦.
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1.3 Contribution of This Paper

As described in Sect. 1.2, an obvious upper bound on the number of required shuffles
for a committed-format 𝑛-input AND protocol is 𝑛 − 1 under the condition that two
helping cards are available. On the other hand, there is a technique called the “batching”
proposed in 2020 by Shinagawa and Nuida [31] that can reduce the number of shuffles.

Therefore, in this paper, we apply the batching technique to the MS-AND protocol so
that we can construct two-helping-card 𝑛-input AND protocols having a smaller number
of shuffles. Such an application naturally formulates the class of committed-format
two-helping-card 𝑛-input AND protocols. Within the class, we present a simple generic
protocol having a smaller number of shuffles. Furthermore, we reduce the problem of
constructing a protocol to the “MSbatching move-sequence” problem (which is a kind of
a computational problem), and by analyzing the latter problem, we show the minimum
number of shuffles among the class of protocols in the range of 2 ≤ 𝑛 ≤ 500. It turns out
that the generic proposed protocol is optimal in terms of the number of shuffles for many
cases of 𝑛. For every 𝑛, 2 ≤ 𝑛 ≤ 500, such that the proposed protocol is not optimal, we
find optimal protocols, as well.

1.4 Related Works

The history of committed-format two-input AND protocols dates back to 1993 [2], and
since then, a couple protocols have been invented [22, 33], followed by the MS-AND
protocol in 2009 [20] (which uses six cards and one random bisection cut as seen
above). Subsequently, four- and five-card protocols have been developed using complex
shuffles [8, 9, 25].

As for committed-format multi-input AND protocols, those using only one or two
shuffles have recently been proposed [11] (although many helping cards are required).
In addition, several specialized protocols have been known [6, 15].

The research area of card-based cryptography has been growing rapidly in recent
years [16, 17]. Examples of active topics are: physical zero-knowledge proof proto-
cols [4, 10, 23, 24], private-model secure computations [1, 12, 21], symmetric function
evaluation [26–28], information leakage due to operative or physical errors [18, 29],
graph automorphism shuffles [14, 30], multi-valued protocols with a direction encod-
ing [34], the half-open action [13], card-minimal protocols [3, 8], and applications to
private simultaneous messages protocols [32].

1.5 Organization of This Paper

The remainder of this paper is organized as follows. In Sect. 2, we introduce the batching
technique along with the “pile-scramble shuffle” required for it. In Sect. 3, we show
how the batching technique can be applied to multiple MS-AND protocols. In Sect. 4,
we formulate the class of protocols obtained by applying the batching technique, and
reduce the problem of finding protocols having fewer shuffles to the “MSbatching
move-sequence” problem and propose a simple generic protocol in Sect. 5. In Sect. 6, the
MSbatching move-sequence problem is analyzed by a dynamic programming algorithm,
and we show optimal 𝑛-input AND protocols for 2 ≤ 𝑛 ≤ 500 in the sense that the number
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of shuffles is minimum among all the protocols in the class. Finally, the conclusion is
given in Sect. 7.

2 Preliminaries

In this section, we first introduce the pile-scramble shuffle [5] and then explain the
batching technique [31].

2.1 Pile-Scramble Shuffle

A pile-scramble shuffle [5] is a shuffling operation that divides a sequence of cards into
multiple piles of the same size and then rearranges the order of those piles uniformly at
random (while the order of cards inside each pile is kept unchanged).

As an example, applying a pile-scramble shuffle, denoted by [ · | · | · · · | · ], to a
sequence of nine cards consisting of three piles yields one of the following six sequences
with a probability of exactly 1/6:[ 1

?
2
?

3
?

��� 4
?

5
?

6
?

��� 7
?

8
?

9
?
]

→



1
?

2
?

3
?

4
?

5
?

6
?

7
?

8
?

9
?

1
?

2
?

3
?

7
?

8
?

9
?

4
?

5
?

6
?

4
?

5
?

6
?

1
?

2
?

3
?

7
?

8
?

9
?

4
?

5
?

6
?

7
?

8
?

9
?

1
?

2
?

3
?

7
?

8
?

9
?

1
?

2
?

3
?

4
?

5
?

6
?

7
?

8
?

9
?

4
?

5
?

6
?

1
?

2
?

3
? .

A pile-scramble shuffle can be easily implemented by placing each pile in an envelope
and randomly stirring the envelopes.

A random bisection cut that appears in the MS-AND protocol can be said to be a
pile-scramble shuffle for two piles (each consisting of three cards).

2.2 Batching Technique

The batching technique [31] combines multiple pile-scramble shuffles that can be ex-
ecuted in parallel into a single pile-scramble shuffle, thereby reducing the number of
shuffles. Simply put, after adding “identifiers” with some helping cards to the piles of
each pile-scramble shuffle, we perform a single pile-scramble shuffle together, and then
open the identifier to return each pile to the position of its original pile-scramble shuffle.
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As an example, suppose that we want to apply two random bisection cuts (RBCs) in
parallel, which appear in the MS-AND protocol, and that we want to use the batching
technique. In other words, we want to perform two RBCs[

? ? ?
��� ? ? ?

]
,
[

? ? ?
��� ? ? ?

]
simultaneously using a single shuffle by the batching technique.

1. To identify two RBCs, we use ♣ and ♡ . That is, at the head of each pile, a helping
card for identification is placed as follows:

♣ ? ? ? ♣ ? ? ? ♡ ? ? ? ♡ ? ? ? .

In the sequel, we call such helping cards identifier cards.
2. Turn over the identifier cards and apply a pile-scramble shuffle to the four piles:[

? ? ? ?
��� ? ? ? ?

��� ? ? ? ?
��� ? ? ? ?

]
→ ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? .

3. Turn the identifier cards face up. For instance, suppose that the following sequence
of cards is obtained:

♣ ? ? ? ♡ ? ? ? ♡ ? ? ? ♣ ? ? ? .

4. Sort the piles so that the pile with ♣ at the head is on the left and the pile with ♡
at the head is on the right, as when the identifier cards were inserted in Step 1. In
the example above, the fourth pile is moved in front of the second pile:

♣ ? ? ? ♡ ? ? ? ♡ ? ? ? ♣ ? ? ?
→ ♣ ? ? ? ♣ ? ? ? ♡ ? ? ? ♡ ? ? ? .

Note that sorting the piles here is done publicly as seen just above (and hence, we
need no additional shuffle).

5. Remove the face-up identifier cards; then, we have performed two RBCs by one
pile-scramble shuffle.

In this example, two sets of ♣ ♡ were used to identify the two RBCs. If we want
to identify four RBCs, two sets of

♣ ♣ ♣ ♡ ♡ ♣ ♡ ♡

suffice. That is, we can distinguish the piles by two binary digits according to the one-
card-per-bit encoding: ♣ = 0, ♡ = 1. In general, when we want to apply the batching
technique to 𝑘 RBCs, we need 2𝑘 ⌈log2 𝑘⌉ identifier cards (i.e., 𝑘 ⌈log2 𝑘⌉ free cards for
each of ♣ and ♡).

The batching technique can be applied not only to RBCs, but more generally to
multiple pile-scramble shuffles. However, this paper only utilizes it for RBCs (of six
cards each).
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3 Application of Batching to MS-AND Protocol

As seen in Sect. 1.2, executing repeatedly the MS-AND protocol provides a two-helping-
card 𝑛-input AND protocol using 𝑛 − 1 shuffles, namely 𝑛 − 1 RBCs. In this section, we
utilize the batching technique to reduce the number of shuffles.

In Sect. 3.1, we mention the idea behind our approach. In Sect. 3.2, we present how
to batch MS-AND protocols. In Sect. 3.3, we show an example of a protocol based on
our approach.

3.1 Idea

As described in Sect. 2.2, the batching technique can be used to convert multiple RBCs
into a single pile-scramble shuffle. This can be applied to the execution of multiple MS-
AND protocols to reduce the number of shuffles. Remember that, in order to perform
the batching technique, some free cards as identifier cards must be provided to identify
each pile pair. Remember furthermore that in the problem setup, only two helping cards
are available:

? ?︸︷︷︸
𝑥1

? ?︸︷︷︸
𝑥2

· · · ? ?︸︷︷︸
𝑥𝑛

♣ ♡ .

Therefore, the batching technique cannot be applied immediately (because of shortage
of free cards as identifier cards).

Let us recall the procedure of the MS-AND protocol described in Sect. 1.1; then, a
garbage commitment arises in Step 5. That is, one execution of the MS-AND protocol
yields one garbage commitment. Several garbage commitments can be turned into free
cards by shuffling all the cards (of the garbage commitments) and revealing them. This
leads to increasing the number of free cards to be used as identifier cards even if there
are only two helping cards at the beginning.

More specifically, for the first 𝑚 input commitments, if the MS-AND protocol is
repeated 𝑚 − 1 times, we obtain 2𝑚 − 2 free cards:

? ?︸︷︷︸
𝑥1

· · · ? ?︸︷︷︸
𝑥𝑚

♣ ♡ → ? ?︸︷︷︸
𝑥1∧𝑥2∧···∧𝑥𝑚

♣ ♡ ♣ ♡ · · · ♣ ♡︸             ︷︷             ︸
2𝑚−2 cards

Thus, some of the 2𝑚 free cards can be used as identifier cards for the batching technique.
In this way, we first apply the MS-AND protocol for the first several input commitments
to produce free cards enough for the batching technique to execute.

3.2 MSbatching: How to Batch MS-AND Protocols

This subsection describes in detail how the batching technique is applied to the execution
of multiple MS-AND protocols.

Before we begin, let us define a couple of terms. As described in Sect. 3.1, free cards
can be created by collecting garbage commitments, shuffling all the cards (constituting
the garbage commitments), and then turning them over. This procedure is called the
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garbage collection. For convenience, we will refer to a pair of free cards (of different
colors) ♣ ♡ placed face up as a free pair.

First, as an example, assume that there are four commitments

? ?︸︷︷︸
𝑦1

? ?︸︷︷︸
𝑦2

? ?︸︷︷︸
𝑦3

? ?︸︷︷︸
𝑦4

and we want to produce commitments to 𝑦1 ∧ 𝑦2 and 𝑦3 ∧ 𝑦4 by executing the MS-AND
protocol twice. Recalling the MS-AND protocol procedure, we need two helping cards,
i.e., one free pair ♣ ♡ , per run; therefore, we require two free pairs:

? ?︸︷︷︸
𝑦1

♣ ♡ ? ?︸︷︷︸
𝑦2

? ?︸︷︷︸
𝑦3

♣ ♡ ? ?︸︷︷︸
𝑦4

.

For each of these, an RBC is applied (after reordering). Using the batching technique,
this can be achieved with a single shuffle. In this case, however, two more free pairs

♣ ♡ ♣ ♡

are required (for identifier cards). After applying the batching technique and turning
over the four identifier cards, we return to the two MS-AND protocols and terminate
each protocol. Then, the following commitments are obtained:

♣ ♡ ♣ ♡ ♣ ♡ ? ?︸︷︷︸
𝑦1∧𝑦2

? ?︸︷︷︸
garbage

♣ ♡ ? ?︸︷︷︸
𝑦3∧𝑦4

? ?︸︷︷︸
garbage

.

In summary, given four commitments and four free pairs, one shuffle suffices to output
two commitments (to the AND values), four free pairs, and two garbage commitments.

Next, more generally, consider running 𝑘 MS-AND protocols in parallel (i.e., the
number of input commitments is 2𝑘). As mentioned earlier, one MS-AND protocol
requires one free pair, and hence, 𝑘 free pairs are needed for this amount. In addition,
when applying the batching technique, free cards are also needed for serving identifier
cards; as mentioned in Sect. 2.2, we require 2𝑘 ⌈log2 𝑘⌉ free cards, which are 𝑘 ⌈log2 𝑘⌉
free pairs. Thus, a total of 𝑘 + 𝑘 ⌈log2 𝑘⌉ free pairs are required:

? ?︸︷︷︸
𝑦1

? ?︸︷︷︸
𝑦2

· · · ? ?︸︷︷︸
𝑦2𝑘−1

. ? ?︸︷︷︸
𝑦2𝑘

♣ ♡︸︷︷︸
free

× (𝑘 + 𝑘 ⌈log2 𝑘⌉).

Applying the batching technique to this sequence of cards, the 2𝑘 commitments become 𝑘
commitments (to the AND values) after one shuffle, resulting in 𝑘 garbage commitments
and no change in the number of free pairs:

? ?︸︷︷︸
𝑦1∧𝑦2

· · · ? ?︸︷︷︸
𝑦2𝑘−1∧𝑦2𝑘

♣ ♡︸︷︷︸
free

× (𝑘 + 𝑘 ⌈log2 𝑘⌉) ♣ ♡︸︷︷︸
garbage

× 𝑘.

This procedure will henceforth be referred to as 𝑘-MSbatching.
The number of free pairs required for 𝑘-MSbatching is given by 𝑘 + 𝑘 ⌈log2 𝑘⌉, where

the specific numbers are shown in Table 1. Note that 1-MSbatching is the MS-AND
protocol itself (i.e., one run of the protocol).



Two-Helping-Card Multi-Input AND Protocols 9

Table 1: The number of free pairs required for 𝑘-MSbatching

𝑘 1 2 3 4 5 6 7 8 9

# of free pairs 1 4 9 12 20 24 28 32 45

3.3 Example of Two-Helping-Card AND Protocol by MSbatching

In this subsection, we illustrate a two-helping-card protocol by using MSbatching.
Suppose that the number of inputs is 48, i.e., 𝑛 = 48. Then, 48 commitments and

one free pair are the input sequence:

? ?︸︷︷︸
𝑥1

? ?︸︷︷︸
𝑥2

? ?︸︷︷︸
𝑥3

? ?︸︷︷︸
𝑥4

· · · ? ?︸︷︷︸
𝑥48

♣ ♡︸︷︷︸
free

.

Recall that the obvious upper bound on the number of shuffles is to repeat the MS-
AND protocol 47 times, which is 47 shuffles. The following protocol requires a smaller
number of shuffles to produce a commitment to the AND value of 48 inputs.

1. Perform 1-MSbatching 15 times for the commitments to 𝑥1, . . . , 𝑥16 to obtain a
commitment to 𝑥1 ∧ · · · ∧ 𝑥16 (by 15 shuffles):

? ?︸︷︷︸
𝑥1∧···∧𝑥16

? ?︸︷︷︸
𝑥17

? ?︸︷︷︸
𝑥18

· · · ? ?︸︷︷︸
𝑥48

♣ ♡︸︷︷︸
free

? ?︸︷︷︸
garbage

×15.

2. The garbage collection is performed to generate 15 free pairs (by one shuffle):

? ?︸︷︷︸
𝑥1∧···∧𝑥16

? ?︸︷︷︸
𝑥17

? ?︸︷︷︸
𝑥18

· · · ? ?︸︷︷︸
𝑥48

♣ ♡︸︷︷︸
free

×16.

3. Perform 4-MSbatching for 𝑥17, . . . , 𝑥24 and for 𝑥25, . . . , 𝑥32, followed by 4-MSbatching,
2-MSbatching, and 1-MSbatching, in this order, to obtain a commitment to 𝑥17 ∧
· · · ∧ 𝑥32 (by five shuffles):

? ?︸︷︷︸
𝑥1∧···∧𝑥16

? ?︸︷︷︸
𝑥17∧···∧𝑥32

? ?︸︷︷︸
𝑥33

· · · ? ?︸︷︷︸
𝑥48

♣ ♡︸︷︷︸
free

×16 ? ?︸︷︷︸
garbage

×15.

4. Perform 1-MSbatching for 𝑥1 ∧ · · · ∧ 𝑥16 and 𝑥17 ∧ · · · ∧ 𝑥32 to obtain a commitment
to 𝑥1 ∧ · · · ∧ 𝑥32 (by one shuffle):

? ?︸︷︷︸
𝑥1∧···∧𝑥32

? ?︸︷︷︸
𝑥33

· · · ? ?︸︷︷︸
𝑥48

♣ ♡︸︷︷︸
free

×16 ? ?︸︷︷︸
garbage

×16.

5. The garbage collection is performed (by one shuffle):

? ?︸︷︷︸
𝑥1∧···∧𝑥16

? ?︸︷︷︸
𝑥17∧···∧𝑥32

? ?︸︷︷︸
𝑥33

· · · ? ?︸︷︷︸
𝑥48

♣ ♡︸︷︷︸
free

×32.
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6. Execute 8-MSbatching, 4-MSbatching, 2-MSbatching, and 1-MSbatching for 𝑥33, . . . , 𝑥48
in this order to obtain a commitment to 𝑥33 ∧ · · · ∧ 𝑥48 (by four shuffles):

? ?︸︷︷︸
𝑥1∧···∧𝑥32

? ?︸︷︷︸
𝑥33∧···∧𝑥48

♣ ♡︸︷︷︸
free

×32 ? ?︸︷︷︸
garbage

×15.

7. Perform 1-MSbatching for 𝑥1 ∧ · · · ∧ 𝑥32 and 𝑥33 ∧ · · · ∧ 𝑥48 to obtain a commitment
to 𝑥1 ∧ · · · ∧ 𝑥48 (by one shuffle):

? ?︸︷︷︸
𝑥1∧···∧𝑥48

♣ ♡︸︷︷︸
free

×32 ? ?︸︷︷︸
garbage

×16.

As shown above, the total number of shuffles is 28, which is a significant reduction
from the obvious upper bound of 47 shuffles.

4 Class of MSbatching Protocols and Corresponding Problem

As seen in Sect. 3, given 𝑛 input commitments and one free pair, we can produce a
commitment to the AND value via a series of MSbatching (including 1-MSbatching)
and the garbage collection with fewer shuffles than the obvious upper bound. In this
section, we first formulate the class of two-helping-card AND protocols, called the
“MSbatching protocols,” naturally created by the combination of MSbatching and the
garbage collection. We then introduce the “MSbatching move-sequence” problem; as
seen soon, finding a protocol in the class corresponds to solving the problem.

4.1 MSbatching Protocols

This subsection clarifies the class of protocols obtained by MSbatching.
First, let 𝑘 ≥ 1 and consider the conditions under which 𝑘-MSbatching can be

performed. As mentioned in Sect. 3.2, at least 𝑘 + 𝑘 ⌈log2 𝑘⌉ free pairs are required.
Also, to be able to run the MS-AND protocol 𝑘 times in parallel, there must be at least
2𝑘 input commitments.

Next, if we want to perform the garbage collection on 𝑔 garbage commitments for
𝑔 ≥ 1, there must be at least 𝑔 garbage commitments. Hereafter, the garbage collection
for 𝑔 garbage commitments is sometimes referred to as 𝑔-GC.

Bearing these in mind, we naturally obtain a class of one-free-pair 𝑛-input AND
protocols, which we call the MSbatching protocols, as follows.

1. 𝑎 := 𝑛, 𝑏 := 1.
2. Now there are 𝑎 commitments and 𝑏 free pairs (and hence, there are 𝑛 − 𝑎 − 𝑏 + 1

garbage commitments). Perform one of the followings.
(a) Apply 𝑘-MSbatching such that 𝑎 ≥ 2𝑘 and 𝑏 ≥ 𝑘 + 𝑘 ⌈log2 𝑘⌉. In this case, the

number of commitments decreases by 𝑘 , the number of garbage commitments
increases by 𝑘 , and the number of free pairs remains the same. Thus, we set

𝑎 := 𝑎 − 𝑘, 𝑏 := 𝑏.
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(b) Apply 𝑔-GC such that 1 ≤ 𝑔 ≤ 𝑛 − 𝑎 − 𝑏 + 1. Since 𝑔 free pairs arise, we set

𝑎 := 𝑎, 𝑏 := 𝑏 + 𝑔.

3. If 𝑎 ≥ 2, then return to Step 2.

As described above, determining the strategy of selection in Step 2 stipulates one
protocol. When 𝑎 ≥ 2, 1-MSbatching is always applicable, so it is never unselectable
in Step 2. Note that the number of times Step 2 is executed is directly the number of
shuffles the protocol uses.

4.2 MSbatching Move-Sequence Problem

Each protocol in the class of MSbatching protocols defined in Sect. 4.1 changes the
current number of commitments 𝑎 and the current number of free pairs 𝑏 according to
the selection in Step 2. Therefore, let us represent the current state at each iteration of
Step 2 by a pair (𝑎, 𝑏) and consider it as a point (𝑎, 𝑏) on the 𝑎𝑏-plane.

When 𝑎 = 1, there is exactly one commitment and the protocol terminates; thus, we
call any point (1, 𝑏) a terminal point.

Assume a point (𝑎, 𝑏) which is not terminal; from the point (𝑎, 𝑏), we transition to
another point by either of the following operations.

1. Transition to the point (𝑎 − 𝑘, 𝑏) by 𝑘-MSbatching (provided that 𝑎 ≥ 2𝑘 and
𝑏 ≥ 𝑘 + 𝑘 ⌈log2 𝑘⌉). Denote this by 𝐵𝑘 (𝑎, 𝑏) = (𝑎 − 𝑘, 𝑏).

2. Transition to the point (𝑎, 𝑏 + 𝑔) by 𝑔-GC (provided that 1 ≤ 𝑔 ≤ 𝑛 − 𝑎 − 𝑏 + 1).
Denote this by 𝐺𝐶𝑔 (𝑎, 𝑏) = (𝑎, 𝑏 + 𝑔).

In the 𝑎𝑏-plane, starting from point (𝑛, 1), the current state (𝑎, 𝑏)moves by Transition
1 or 2. Transition 1 moves horizontally (left) and Transition (2) moves vertically (up). The
number of transitions required to reach a terminal point from the start (𝑛, 1) corresponds
to the number of shuffles. That is, the length of the move-sequence connecting the start
and terminal points corresponds to the number of shuffles used in the corresponding
protocol. Figure 1 shows the move-sequence corresponding to the protocol illustrated in
Sect. 3.3.

Figure 2 illustrates the area to which Transition 1 can be applied. From the lightest
color to the darkest, they represent the regions to which 𝑘-MSbatching can be applied
with 𝑘 = 2, 3, . . . , 9.

The MSbatching move-sequence problem is defined as easily imagined: given a start
point (𝑛, 1), find a move-sequence to an terminal point on the 𝑎𝑏-plane where only
Transitions 1 and 2 are applicable. Such a move-sequence uniquely corresponds an
MSbatching protocol, and the length of the move-sequence corresponds to the number
of shuffles. Therefore, finding a shortest move-sequence is equivalent to constructing an
optimal MSbatching protocol in terms of the number of shuffles.

5 Proposed Protocol

In this section, we propose a generic construction for an 𝑛-input MSbatching protocol
by giving how to choose Transitions 1 and 2.
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Fig. 1: The 48-input MSbatching protocol given in Sect. 3.3

5.1 Description of Proposed Protocol

First, we explain the idea of how to choose Transitions 1 and 2 in the proposed protocol.
Basically, 𝑘-MSbatching to be applied is limited to those where 𝑘 is a power of 2. If the
garbage collection would allow for a larger MSbatching size compared to the currently
applicable MSbatching, then perform the garbage collection.

To describe the above idea formally, the proposed protocol chooses a transition for
a point (𝑎, 𝑏) such that 𝑎 ≥ 2 as follows, where let 𝑘𝑏 be the maximum value of 𝑘 that
satisfies 𝑎 ≥ 2𝑘 and 𝑏 ≥ 𝑘 + 𝑘 ⌈log2 𝑘⌉, and let 𝑘𝑏+𝑔 be the maximum value of 𝑘 that
satisfies 𝑎 ≥ 2𝑘 and 𝑏 + 𝑔 ≥ 𝑘 + 𝑘 ⌈log2 𝑘⌉.

– If 𝑘𝑏+𝑔 > 𝑘𝑏 and 𝑘𝑏+𝑔 = 2𝑖 for some integer 𝑖, perform (𝑛 − 𝑎 − 𝑏 + 1)-GC and
transition to 𝐺𝐶 (𝑛−𝑎−𝑏+1) (𝑎, 𝑏) = (𝑎, 𝑛 − 𝑎 + 1).

– Otherwise, perform 𝑘𝑏-MSbatching and transition to 𝐵𝑘𝑏 (𝑎, 𝑏) = (𝑎 − 𝑘𝑏, 𝑏).

5.2 Proposed Protocol for 𝒏 = 48

Here, we illustrate the proposed protocol for the case of 𝑛 = 48 as an example. That is,
Figure 3 shows the move-sequence of the proposed protocol in the case of 48 inputs.

For further explanation, 1-MSbatching is performed until enough garbage commit-
ments have been accumulated for 2-MSbatching, i.e., for 𝑎 = 48, 47, 46. Next, after per-
forming 3-GC when 𝑎 = 45 is reached, 2-MSbatching is applied. Then, 2-MSbatching
is performed until enough garbage commitments are accumulated for 4-MSbatching,
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Fig. 2: The area to which 𝑘-MSbatching can be applied

i.e., until 𝑎 = 39. When 𝑎 = 37 is reached, 8-GC is performed and then 4-MSbatching is
applied. In the same way, continue 4-MSbatching for a while and apply 8-MSbatching at
𝑎 = 17. Then apply 4-MSbatching, 2-MSbatching, and 1-MSbatching for 𝑎 = 9, 5, 3, 2.

Since the number of transitions above is 20, the number of shuffles in the proposed
protocol is 20. Since the number of shuffles for the protocol introduced in Sect. 3.3 is
28, it is a successful improvement.

We show the number of shuffles in our protocol for 2 ≤ 𝑛 ≤ 50 in Figure 4.

6 Search for Optimal Protocols

In this section, we verify whether the protocol proposed in Sect. 5 is optimal in the sense
that it minimizes the number of shuffles among all the MSbatching protocols. Specifi-
cally, we find shortest move-sequences in the MSbatching move-sequence problem by a
dynamic programming algorithm in the range up to 𝑛 = 500.

First, in Sect. 6.1, two lemmas are given to narrow the space where we have to
search. Next, in Sect. 6.2, we present the strategy for finding shortest move-sequences.
After that, in Sect. 6.3, we compare the number of shuffles in the proposed protocol with
the minimum number of shuffles.
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Fig. 3: Proposed protocol for 𝑛 = 48

6.1 Lemmas to Narrow Search Space

When searching for shortest move-sequences in the MSbatching move-sequence problem
presented in Sect. 4, the following two lemmas imply that there are transitions that do
not need to be considered, narrowing the search space. Hereafter, 𝑛 is fixed and 𝑀 (𝑎, 𝑏)
denotes the shortest move-sequence length from point (𝑎, 𝑏) to a terminal point.

The following Lemma 1 indicates that whenever the garbage collection is performed,
it should be done on all the remaining garbage commitments.

Lemma 1 For any 𝑔 and 𝑔′ such that 1 ≤ 𝑔 < 𝑔′ ≤ 𝑛 − 𝑎 − 𝑏 + 1, 𝑀 (𝑎, 𝑏 + 𝑔) ≥
𝑀 (𝑎, 𝑏 + 𝑔′).

Proof. We prove that 𝑀 (𝑎, 𝑏 + 𝑔) ≥ 𝑀 (𝑎, 𝑏 + 𝑔 + 1) because it implies the lemma.
Let 𝑃 be a shortest move-sequence from point (𝑎, 𝑏 + 𝑔) to a terminal point, and
use induction on the length of 𝑃. When 𝑃 has length 1, (𝑎, 𝑏 + 𝑔) is terminated by
some 𝑘-MSbatching. Since the same 𝑘-MSbatching can be applied to (𝑎, 𝑏 + 𝑔 + 1),
𝑀 (𝑎, 𝑏 + 𝑔) = 𝑀 (𝑎, 𝑏 + 𝑔 + 1) = 1 and the claim holds. Assume inductively that when
𝑃 has length 2 or more, the claim holds for those having a smaller length. When the first
move of 𝑃 transitions upward from the point (𝑎, 𝑏 + 𝑔) to 𝐺𝐶𝑔′′ (𝑎, 𝑏) = (𝑎, 𝑏 + 𝑔′′), the
point (𝑎, 𝑏+𝑔+1) can also transition to the same point (𝑎, 𝑏+𝑔′′) (or 𝑏+𝑔+1 = 𝑏+𝑔′′),
and hence, 𝑀 (𝑎, 𝑏 + 𝑔) = 𝑀 (𝑎, 𝑏 + 𝑔′′) +1 and 𝑀 (𝑎, 𝑏 + 𝑔+1) ≤ 𝑀 (𝑎, 𝑏 + 𝑔′′) +1, from
which we have 𝑀 (𝑎, 𝑏 + 𝑔) ≥ 𝑀 (𝑎, 𝑏 + 𝑔 + 1) as desired. When the first move of 𝑃 is
leftward, some 𝑘-MSbatching transitions to 𝐵𝑘 (𝑎, 𝑏+𝑔) = (𝑎−𝑘, 𝑏+𝑔) and 𝑀 (𝑎, 𝑏+𝑔) =
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Fig. 4: Number of shuffles in our protocol for 2 ≤ 𝑛 ≤ 50

𝑀 (𝑎−𝑘, 𝑏+𝑔)+1. Since the same 𝑘-MSbatching can be applied to the point (𝑎, 𝑏+𝑔+1)
and 𝐵𝑘 (𝑎, 𝑏+𝑔+1) = (𝑎− 𝑘, 𝑏+𝑔+1), we have 𝑀 (𝑎, 𝑏+𝑔+1) ≤ 𝑀 (𝑎− 𝑘, 𝑏+𝑔+1) +1.
Also, from the induction assumption, 𝑀 (𝑎 − 𝑘, 𝑏 + 𝑔) ≥ 𝑀 (𝑎 − 𝑘, 𝑏 + 𝑔 + 1). Therefore,
the claim holds. ⊓⊔

The following Lemma 2 indicates that when MSbatching is perfomed, it should be
the largest size.

Lemma 2 If 𝑎 < 𝑎′, then 𝑀 (𝑎, 𝑏) ≤ 𝑀 (𝑎′, 𝑏).

Proof. We prove that 𝑀 (𝑎, 𝑏) ≤ 𝑀 (𝑎 + 1, 𝑏) because it implies the lemma. Let 𝑃 be a
shortest move-sequence from point (𝑎 + 1, 𝑏) to a terminal point, and use induction on
the length of 𝑃. When 𝑃 has length 1, we have 𝑎 + 1 = 2, i.e., 𝑎 = 1. Therefore, since
𝑀 (𝑎, 𝑏) = 0, the claim holds. Assume inductively that when 𝑃 has length 2 or more,
the claim holds for those having a smaller length. When the first move of 𝑃 is upward,
there exists some 𝑔 such that 𝑀 (𝑎 +1, 𝑏) = 𝑀 (𝑎 +1, 𝑏 + 𝑔) +1. Also, from the induction
assumption, 𝑀 (𝑎, 𝑏 + 𝑔) ≤ 𝑀 (𝑎 + 1, 𝑏 + 𝑔). Since 𝑀 (𝑎, 𝑏) ≤ 𝑀 (𝑎, 𝑏 + 𝑔) + 1, the claim
holds. When the first move of 𝑃 is leftward, by some 𝑘-MSbatching, 𝑀 (𝑎 + 1, 𝑏) =
𝑀 (𝑎 − 𝑘 + 1, 𝑏) + 1 and 𝑎 + 1 ≥ 2𝑘 . Therefore, 𝑀 (𝑎, 𝑏) ≤ 𝑀 (𝑎 − (𝑘 − 1), 𝑏) + 1 =
𝑀 (𝑎−𝑘+1, 𝑏)+1 since (𝑘−1)-MSbatching can be applied to the point (𝑎, 𝑏). Therefore,
the claim holds. ⊓⊔
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Algorithm 1 Shortest move-sequence search
.
1: function MIN_ COST(𝑛)
2: 𝑛← number of inputs
3: SMS[𝑛] [𝑛 + 1]
4: for 1 ≤ 𝑎 ≤ 𝑛 do
5: for 𝑛 − 𝑎 + 1 ≥ 𝑏 ≥ 1 do
6: if 𝑏 == 𝑛 − 𝑎 + 1 then
7: SMS[𝑎] [𝑏] = SMS[𝑎 − 𝑘𝑏] [𝑏] + 1
8: else if 𝑏 < 𝑛 − 𝑎 + 1 then
9: if SMS[𝑎] [𝑛 − 𝑎 + 1] ≤ SMS[𝑎 − 𝑘𝑏] [𝑏] then

10: SMS[𝑎] [𝑏] = SMS[𝑎] [𝑛 − 𝑎 + 1] + 1
11: else
12: SMS[𝑎] [𝑏] = SMS[𝑎 − 𝑘𝑏] [𝑏] + 1
13: end if
14: end if
15: end for
16: end for
17: end function

6.2 Shortest Move-Sequence Search

Here, the shortest move-sequence length for each 𝑛 ≤ 500 is obtained by running a
dynamic programming algorithm for the search space of the MSbatching move-sequence
problem, which is narrowed by Lemmas 1 and 2 in Sect. 6.1. The pseudo code for the
search is shown in Algorithm 1. The algorithm is explained below.

To search the entire move-sequence space from point (𝑛, 1) to a terminal point,
we define a 2-dimensional array named SMS (Shortest Move Sequence) in Line 3 of
Algorithm 1.

First, the search range is explained. Since it is assumed that the move-sequence is
explored in reverse, 𝑎 is processed in ascending order over the range of 1 ≤ 𝑎 ≤ 𝑛 and 𝑏
is processed in descending order over the range of 1 ≤ 𝑏 ≤ 𝑛−𝑎+1. When 𝑏 = 𝑛−𝑎+1,
it means that there is no garbage commitment, which is the boundary. Figure 5 shows
the search area (boundary) when 𝑛 = 48, for example.

Next, the transition selection method is explained. Line 6 is the condition on the
boundary 𝑏 = 𝑛 − 𝑎 + 1 shown in Figure 5. Since no further GC can be performed on
the boundary, add 1 to the value at the transition moved to the left by 𝑘𝑏-MSbatching,
i.e., SMS[𝑎 − 𝑘𝑏] [𝑏]. The conditions from Line 8 are about the inside of the search
area. Line 9 adds 1 to SMS[𝑎] [𝑛 − 𝑎 + 1] since Transition 2 is better. Line 11 adds 1 to
SMS[𝑎 − 𝑘𝑏] [𝑏] because Transition 1 is better.

This algorithm was executed on a computer for up to 𝑛 = 500.

6.3 Comparison

Here, we compare the number of shuffles for the protocol proposed in Sect. 5 with the
shortest move-sequence length calculated in Sect. 6.2.
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Fig. 5: Possible points to visit for 𝑛 = 48

As mentioned above, the search was performed within 𝑛 ≤ 500 of inputs, and the
shortest move-sequence lengths were obtained by a computer. Compared to the number
of shuffles for the proposed protocol in Sect. 5, in many cases they are consistent and the
proposed protocol is optimal. On the other hand, in some cases, the proposed protocol is
not optimal, and specifically, there is a protocol that is better than the proposed protocol
at 𝑛 as shown in Table 2.

As shown in Table 2, the number of shuffles of the proposed protocol is found to be
minimum or only one more than the minimum. Although only the shortest lengths are
shown in Table 2 when the proposed protocol is not optimal, the shortest move-sequences
themselves were of course obtained for all the range 𝑛 ≤ 500.

No rule of thumb has been found for cases where the proposed protocol is not
optimal. Nor is the specific procedure for giving an optimal protocol known. While it
is interesting to consider these issues, since card-based cryptography is expected to be
performed by human hands, it may be sufficient to have optimal protocols up to 𝑛 = 500
figured out.

7 Conclusion

In this paper, we gave a natural class of committed-format two-helping-card 𝑛-input
AND protocols based on the batching technique and the MS-AND protocol, and showed
optimal protocols among them in terms of the minimum number of shuffles up to
𝑛 = 500.
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.
Table 2: Numbers of inputs that do not minimize the number of shuffles in the proposed
protocol

Number of inputs 𝑛 Proposed protocol’s shuffles Shortest length

48 - 49 20 19
56 21 20
104 27 26

112 - 115 28 27
128 - 129 29 28
240 - 247 36 35
256 - 271 37 36
288 - 295 38 37
320 - 323 39 38

352 40 39

Note that the “optimality” here was discussed within the class of MSbatching pro-
tocols, and hence, it is still open to determine whether the upper bounds on the number
of shuffles obtained in this paper are also lower bounds on the number of shuffles for
any committed-format two-helping-card AND protocols (that are not necessarily based
on the MS-AND protocol or the batching technique).
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