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ABSTRACT

In card-based cryptography, which uses a physical deck of cards to
realize secure multiparty computations, a one-bit value is usually
encoded by a pair of cards. Thus, when performing a secure com-
putation of an n-input Boolean function, a sequence of 2n cards
representing n bits is needed for input, and some helping cards are
typically added to form a protocol. In 2020, Ruangwises and Itoh
constructed a card-based protocol for a symmetric Boolean func-
tion with an arbitrary range using two helping cards. (Note that a
symmetric Boolean function depends only on the number of 1s in
its input). At the same time, they showed that the helping cards can
be eliminated if the target function is limited to “doubly symmetric”
Boolean functions (also known as symmetric self-anti-dual func-
tions). A doubly symmetric Boolean function satisfies the following
for all k: when inputting exactly a number k of 1s, the output is
the same as the output when inputting exactly a number n — k of
1s. In this paper, we loosen the restriction on doubly symmetric
Boolean functions by fixing k = 0, and construct new protocols
which require less than two helping cards for that wider class of
symmetric Boolean functions. Specifically, we design a one-helping-
card protocol for any n > 4, and helping-card-free protocols for
n=3andn=4.
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1 INTRODUCTION

Secure multiparty computations enable us to obtain the output value
of a predetermined function while keeping information on input
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values secret. Card-based cryptography achieves secure multiparty
computations using a deck of physical cards, and the research area
has been significantly growing in recent years (c.f. [18, 19]); refer
to [9, 10, 22, 35] for surveys.

In card-based cryptography, a one-bit value is typically repre-
sented with the order of a black card [#] and a red card [?]according
to the two-card-per-bit encoding:

[#[9]=0, [0]#]=1. 1)

When two face-down cards represent a bit x € {0, 1} according to
Eq. (1), we call these two cards a commitment to x and denote it by

221,
——

X

where we assume that all black@and red cards @have the identical
backs .

Given a number of commitments as input, a card-based crypto-
graphic protocol (simply referred to as a protocol often hereinafter)
should perform a secure multiparty computation via a series of
actions, such as turning over and shuffling cards.

1.1 Protocol for Symmetric Functions

This paper deals with card-based cryptographic protocols for “sym-
metric” Boolean functions. An n-input Boolean function f : {0,1}" —
R with some set R (as its range) is said to be symmetric if f satisfies
the following for every iand j, 1 < i,j < n:

. oxi o xj, o xn) = fxn L X, Xy X)),

Because one bit is encoded with two cards as per the encoding
rule (1) above, any protocol for an n-input Boolean function requires
at least 2n cards. That is, it takes n commitments corresponding to
n inputs x1, x2,...,xp € {0,1}

elusiioaf

In addition to the n input commitments, some helping cards (like
[#][©] #][]) are often required as input. Thus, a protocol for an
n-input Boolean function f takes n commitments to xi, Xa, ..., Xn
along with some helping cards as input, applies a series of actions,
such as revealing and shuffling cards, and outputs only the value
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of f(x1,x2,...,xp):

MWMM[@H%HO]
B " x" — - > f(x,x2,...,Xn).

When devising new protocols, a smaller number of helping cards is
considered to be preferable.

In 2020, Ruangwises and Itoh [30, 32] proposed a generic way for
constructing a protocol with two helping cards for any symmetric
Boolean function f : {0,1}"* — R with an arbitrary range R:!

MMM[&HO] — ... fx,x2, 0, xn).

This is a non-trivial upper bound on the number of required helping
cards for any symmetric Boolean function having an arbitrary range
R (which is not necessarily two-valued but can be multi-valued,
say R=1{0,1,2,...,n}).Itis open to determine whether the upper
bound, i.e., two helping cards, are necessary or could be lowered.

Ruangwises and Itoh [30, 32] also considered the class of “doubly
symmetric” Boolean functions as a subclass of symmetric Boolean
functions to construct a helping-card-free protocol, as follows. If a
symmetric Boolean function f satisfies

flenxz,..,xn) = f(L, X2, ..., Xn)

for all x1,x3,...,x € {0, 1}, then f is called a doubly symmetric
Boolean function (also known as a symmetric anti-self-dual func-
tion). For any doubly symmetric Boolean function f : {0,1}" — R
with an arbitrary range R, they constructed a protocol without any
helping card:

Thus, we have a helping-card-free protocol for any function in this
narrow class.

To summarize, the existing research [30, 32] gives the following
theorem.

THEOREM 1.1 ([30, 32]). Letn > 2, let R be an arbitrary set, and
let f : {0,1}" — R be a symmetric Boolean function.

o There is a two-helping-card protocol for f.
o If f is doubly symmetric, there is a helping-card-free protocol

for f.

To provide better bounds on the number of required helping
cards (than Theorem 1.1) is an important open problem.

1.2 Contribution

This paper tackles the aforementioned open problem and presents
a partial answer to it. For this purpose, we define “partially doubly
symmetric” Boolean functions as a wider subclass of symmetric
Boolean functions than the class of doubly symmetric Boolean
functions, and construct a protocol requiring less than two helping
cards for any function in that wider class.

11t should be noted that, as will be seen in Sect. 3, the output value is not given as a
simple encoding.
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To define “partially doubly symmetric” Boolean functions, first,
let us review the basic properties of symmetric Boolean functions.
Let f : {0,1}"" — R be a symmetric Boolean function. The value of
its output f(x1,x2, ..., x,) depends only on the number of 1s in the
input, i.e., the sum 2?21 x;. In other words, there exists a function
g:{0,1,...,n} — Rsuch that

Foei,xa, %) =g (Z xl-) @)

i=1
for every x1, x2, ...,xp € {0, 1}. Bearing this in mind, observe that
for a doubly symmetric Boolean function, the output value when
the sum is k is equal to the one when the sum is n — k. Thus, for a
doubly symmetric Boolean function f, the corresponding function
g in Eq. (2) satisfies the following:

g(0) = g(n),
g(1) =g(n-1),

: ®)
9(L(n-1)/2]) =g(n - L(n-1)/2]).

As known from the list of equations (3) above, doubly symmetric
Boolean functions represent a quite restricted subclass within the
class of symmetric Boolean functions. In this paper, we relax the re-
striction and consider a class that imposes only the topmost restric-
tion g(0) = g(n) in the list (3), which we call “{0}-partially doubly
symmetric” Boolean functions; we will construct few-helping-card
protocols for this wider class.

More generally, forasetI C {0,1,...,[(n—1)/2]}, we define
an I-partially doubly symmetric Boolean function, as follows.

Definition 1.2. Let f : {0,1}" — R be a symmetric Boolean
function, let g : {0,1,...,n} — R be the function satisfying Eq. (2),
andletI € {0,1,...,|[(n—1)/2]}.1f g(k) = g(n—k) for every k € I,
then f is called an I-partially doubly symmetric Boolean function.

Under this definition, a doubly symmetric Boolean function
is redefined as a {0,1,..., [ (n — 1)/2]}-partially doubly symmet-
ric Boolean function, and a symmetric Boolean function is an 0-
partially doubly symmetric Boolean function (where @ denotes the
empty set).

As mentioned above, the main target of this paper is {0}-partially
doubly symmetric Boolean functions. That is, we will design a
protocol for any symmetric Boolean function that outputs the same
value when the number of 1s in the input is 0 and when it is n;
more simply, our target is any n-input symmetric Boolean function
f such that £(0,0,...,0) = f(1,1,...,1).

Specifically, we will construct few-helping-card protocols, di-
vided into three cases, n = 3, n = 4, and n > 5. First, for the case
of n = 3, we will show that one can obtain a protocol without any
helping card (Sect. 4):

—
—— —— ——

X1 X2 X3

— fx1,x2,%3) .

Next, for the case of n = 4, we will also show that we need no
helping card (Sect. 5):
212] [202] [2]2] [2]2] - -
—— —— —— ——
X1 X2 X3 X4

— f(x1,x2,x3,%4) .
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Next, we will design a protocol with one helping card for the case
of n > 5 (Sect. 6):

wm@@@ — = f(xnxg,. ., X0)

Finally, when n = 2, we will state that for any 2-input symmetric
Boolean function, without limiting ourselves to partially doubly
symmetric Boolean functions, a helping-card-free protocol can be
constructed by simply making use of the existing method (Sect. 7):

-
—— ——

X1 X2

— f(x1,x2).

The following theorem summarizes our contribution in this pa-
per.

THEOREM 1.3. Let n > 2, let R be an arbitrary set, and let f :
{0,1}" — R be a symmetric Boolean function.
o If3 < n <4andf is {0}-partially doubly symmetric, there is
a helping-card-free protocol for f.
e Ifn > 5 and f is {0}-partially doubly symmetric, there is a
one-helping-card protocol for f.
o Ifn =2, there is a helping-card-free protocol for f.

The above results and the existing studies are summarized in
Table 1.

Before going to the next subsection, we display an example
of a {0}-partially doubly symmetric Boolean function. Define a
symmetric Boolean function k : {0,1}° — {0,1,2} as

1Y) x=4,
h(x1,x2,...,x9) =12 ifX)_ x; =8, 4)
0 otherwise.

Then, h is a {0}-partially doubly symmetric Boolean function (be-
cause h(0,0,...,0) = h(1,1,...,1) = 0). A secure computation of
this function h allows nine players to know only if four or eight peo-
ple among them want to play a four-player game, such as mahjong,
without awkwardness.

1.3 Related Work

The purpose of this paper is to construct protocols with a small
number of helping cards for symmetric Boolean functions with
arbitrary ranges.

Although protocols for arbitrary functions (having arbitrary
domains and ranges) can be constructed if a sufficient number
of helping cards are available [2], most of the existing research
has focused on Boolean functions with range {0, 1}, i.e., functions
f:{0,1}" — R with R = {0, 1}. It is known that any Boolean func-
tion with range {0, 1} can be securely computed using six helping
cards [25]; this is a general upper bound’. It was also shown that
two helping cards are sufficient when limited to symmetric Boolean
functions [25]. A recent study [34] has shown that no helping card is
needed for symmetric Boolean functions f : {0,1}" — {0, 1} when
n > 8. There are also several specific functions for which there exist
helping-card-free protocols: the two-input AND function [12, 20],
the three-input AND function [7, 17], the XOR function [23], the

iIf we allow protocols to fail with a high probability, there is a helping-card-free
protocol for any Boolean function [12].
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three-input majority function [41], and the three-input equality
function [6, 36].

Remember that our target functions f : {0,1}" — R in this
paper have arbitrary ranges R.

As mentioned at the beginning of this paper, the research area
of card-based cryptography is very active recently, especially, in
the following topics: private-model secure computations [1, 13,
24], zero-knowledge proof protocols [3, 28, 29, 33], novel shuffling
operations [16], secure sorting [5], multi-valued protocols with a
direction encoding [39], the half-open action [15], standard-deck
protocols [4, 11], and applications to private simultaneous messages
protocols [38].

2 PRELIMINARIES

In this section, we describe the existing encoding and methods as
well as the shuffling operation our protocols use.

Card-based cryptographic protocols are formally defined via ab-
stract machines [8, 21, 22]. Roughly speaking, a protocol consists of
three actions, (turn, T), (perm, xr), and (shuf, IT), which represent
turning over, permuting, and shuffling cards, respectively (where
T is a set of positions, 7 is a permutation, and II is a set of permu-
tations). In the sequel, for simplicity, instead of giving an abstract
machine, we use a natural language to describe a protocol.

2.1 Encoding of Integer by Card Position

As mentioned in Sect. 1.2, the output value of a symmetric Boolean
function depends on the sum of the input bits. Thus, to securely
compute a symmetric Boolean function, given n commitments

Gefu: s

and some helping cards, we want to obtain the sum } | x; being
kept secret. For this, we need to encode integers with cards (to
maintain the sum).

The existing Ruangwises—Itoh protocols [30, 32] employ the
following integer encoding. Suppose that k > 2 and that we want
to represent an integer i, 0 < i < k — 1, with cards. Using k cards
consisting ofone@and k-1 @s, the integer i is encoded by placing
the E] at the (i + 1)-st as follows:

B - Bl -
Hereinafter, such a sequence of face-down cards (representing i) is
denoted by E;:(l) and written as:

—
ER (i)

Exchanging the colors (% and ©), EZ(i) is defined in a similar way.

As will be seen later, the existing Ruangwises-Itoh protocol [30,
32] and our proposed protocols perform the addition of input com-
mitments based on the integer encoding above in order to compute
symmetric Boolean functions. !

iiThis integer encoding is also used in card-based zero-knowledge protocols [27, 31],
secure ranking protocols [40], and card-based Yao’s millionaire protocols [14].
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Table 1: Numbers of helping cards required by the existing and our proposed protocols for I-partially doubly symmetric Boolean

functions with n inputs

I n  # of helping cards
Ruangwises and Itoh [30, 32] 0 >2 2
Ruangwises and Itoh [30,32] {0,...,[ %51} >2 0

This paper, §4
This paper, §5
This paper, §6
This paper, §7

{o} 3 0
{o} 4 0
{0} >5 1

0 2 0

Note that a commitment to a € {0, 1} together with a free card
@ can be converted to E;’(a), i.e., place the @ to the right of the
commitment and turn it over:

@ﬁ@ - [2]2]?

——
a E3(a)

>

because the commitment satisfies the encoding:

[#[o]=0. [“]#]=1.

Similarly, a commitment to a € {0,1} together with a[#] can be
converted to E? (a) by swapping the two cards of the commitment:

EBE - 712) [ — ).

—— ———
a a EJ(a)

2.2 Pile-Shifting Shuffle
We describe one of the most commonly used shuffling operations
in card-based protocols: the pile-shifting shuffle [26, 37]. As an
example, let us assume that there are nine cards divided into three
piles.
(1) Divide a sequence of nine cards into piles of the same number
of cards:

(2122|222 | 2T

(2) Cyclically shuffle the three piles without changing the order
of the three cards within each pile. The resulting order of
the piles will be one of the following three patterns, each
with equal probability:

| (222 2T | 2T |

l';'ll'z'll'z'll?llgll'zll}zll'z’llgl,
— 222 (27 21202

2 2] (222 [2 )20,

We denote the application of a pile-shifting shuffleby [ -] --- |- ].

2.3 Addition of Encoded Integers

Ruangwises and Itoh [30, 32] proposed the following method for
adding two encoded integers. Our proposed protocol also employs
this integer addition method.

(1) We have sequences of E]‘:(a) and EZ(b) representing two
integers a and b, respectively. For convenience, each card is
named as follows:

Ep(a):[2]2]-- 2, EZ ) :[2]2] - 7).
X0 X1 Xk-1 Yo Y1 Yk-1
(2) Rearrange the sequences as follows:
Yk-1  Yk-

2 Yo
1

Xk-1

Xo

(3) Apply a pile-shifting shuffle as follows:
Yk-1 Yk-2
X0 X1

where r is a random value.
(4) Rearrange these as they were before, as follows:

Ef(a-r): ,

Yo Yk—i—r Yk-2-r Yo-r
k-1 k=

Xo+r  X1+r Xk—Hr

X047 X147 Xk—1+r
Ep(b+r): - 2]
Yo-r Y1-r Yk-1-r

where a is subtracted by r and b is added by .

(5) Reveal the sequence of E]f(b +7r),and lets = b + r. Then,
cyclically shift the sequence of EZ(a — r) to the right by s,
ie,sisaddedtoa—r:

Et(a-r):

X0+r X147 Xk-1+r
1
E*(a+D):
X0+r—s X1+r—s Xk—1+4r-s

Note that when the sequence of EZ(b +r) is revealed, the
value of b does not leak because the random value r was
added to b.
This is a secure computation of (a — r) + (b +r) = a + b without
leaking the values of a and b. That is, a sequence of E;:(a +b)is
obtained.
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In the current explanation, E]‘:(a) and EZ(b) are added; other
types of pairs, such as a pair ofEZ (a) and E]‘: (b) and a pair ofE]':'(a)
and EZ(b), can be also added, of course.

2.4 Addition of Two Commitments

Shikata et al. [34] proposed the following helping-card-free two-
commitment addition that produces E;(a + D) or Eg(a + b) from
two given commitments to a, b € {0, 1} (without any helping card).
(1) Apply a pile-shifting shuffle to the commitments to a and b
as follows:
(202] [22) - [[212][[2]2]] - [2l2 )2 )2).
—_————
a b
(Such a shuffle is also called a random bisection cut [23].)
(2) Apply a pile-shifting shuffle to the middle two cards (in this
case, it is a normal shuffle):

(2] (2] - 222 )2).

(3) Reveal the second card from the left.
(a) Ifitis[#], we obtain a sequence of E} (a+b) by rearranging
as follows:

2Jal2]2] (222wl

———
E*(a+b)

(b) Ifit is@, we obtain a sequence of E? (a+b) by rearranging

as follows:
123 4 431 2
[Iol?]2] - 2]

N
EY(a+b)

In this way, from commitments to a and b, we obtain a sequence
of either E;(a +b) or E;’(a + b) (with a probability of 1/2) as well
as one free card. This subprotocol will be also employed in our
proposed protocols.

3 IDEA BEHIND OUR PROPOSED PROTOCOLS

In this section, we describe the idea behind our proposed protocols
for {0}-partially doubly symmetric Boolean functions. We first
give an overview of the two existing protocols of Ruangwises and
Itoh [30, 32]: one is for symmetric Boolean functions and the other
is for doubly symmetric Boolean functions. We then present the
properties of {0}-partially doubly symmetric Boolean functions,
and based on them, we show the strategy for reducing the number
of helping cards.

3.1 Existing Protocols

Let f : {0,1}" — R be a symmetric Boolean function, and let
g :{0,1,...,n} — R be the function satisfying Eq. (2). The existing
protocol [30, 32] takes commitments to x1, X3, ..., x, € {0,1} and
two helping cards as input and uses the integer addition described
in Sect. 2.3 repeatedly to obtain a sequence encoding }, x;, i.e.,

E:+1(Z?:l xi):

[ ({12 -~ [ B - -
SO *n ESL (51 %)
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Notice that if the (i + 1)-st face-down card in Ezﬂ (X xi) is &,
then f(x1,x2,...,xn) = g(i). Therefore, for each j € R, we collect
all (i + 1)-st cards such that g(i) = j, shuffle all the collected cards,
and reveal them; ifaE]appears, then it implies f(x1,x2,...,%n) = J.

As an example, let f be the parity function, i.e., if i is even, g(i) =
0; otherwise, g(i) = 1. Then, after collecting all cards whose posi-
tions are odd numbers in E; 1 (21, xi), we shuffle all the collected
cards and reveal them. If a E] appears, then f(x1,x2,...,x,) = 0;
otherwise, f(x1,x2,...,x,) = 1.

For another example, let f be the function h defined in Eq. (4)
in Sect. 1.2. Then, we reveal the fifth and ninth cards to see if a
E] appears, ie., if h(x1,x2,...,x9) = 1 and h(x1,x2,...,x9) = 2,
respectively (here, we do not have to shuffle a single card).

In this way, from E; 1 (X, x1), we can know only the value of
f(x1,%x2,...,%xpn), ie., we can securely compute f(x1,xz,...,Xp).

For the case of doubly symmetric Boolean functions, Ruangwises
and Itoh [30, 32] pointed out that two cards can be revealed by
adding a common random bit to all input commitments, so that
they become two free cards. The obtained two free cards can be
used in the integer addition. Based on these ideas, they proposed
a helping-card-free protocol for any doubly symmetric Boolean
function.

3.2 Our Approach

As mentioned before, this paper focuses on {0}-partially doubly
symmetric Boolean functions f : {0,1}" — R. In this case, the
function g satisfying Eq. (2) has the property that g(0) = g(n).
Therefore, the function g also satisfies

n n
g(Zx,—) :g(Zx,— mod n)
i=1 i=1

Because 0 < (X7, x; mod n) < n — 1, this value is represented

by n cards. This implies that instead of E¥ (X7, x;), it suffices to
obtain Ef (X7, x; mod n):

E} (XL, x; mod n)

That is, one less card can be used for encoding, which contributes
to reducing the number of required helping cards, as will be seen
in the next sections.

4 PROPOSED PROTOCOL FORn =3

In this section, we construct a helping-card-free protocol for an
arbitrary {0}-partially doubly symmetric Boolean function for the
case of n = 3.

Let f : {0,1}%> — Rbe a {0}-partially doubly symmetric Boolean
function to be securely computed. Since the proposed protocol
requires no helping card, the input to the protocol is

[2]2].
—— —— ——

X1 X2 X3
Our protocol proceeds as follows.

(1) For the commitments to x; and x2, apply the helping-card-
free two-commitment addition described in Sect. 2.4. Assume
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Table 2: Value of x; + x2 + x3 and the sequence of cards

X1 +Xx2 + X3

0 [+l
1 l+]°]
2 ll4]
3 [#]°]°]

Sequence of cards

without loss of generality that Eg’ (x1 + x2) and a free black
card E] are obtained:
[212] [2]2] [212] — [2][2]2] ] [2]2].
—_—— —— —— ——— ——
X1 X2 X3 E3 (x1 +x2) X3

(2) Convert the commitment to x3 together with the free card
E] to Eg (x3) by the method mentioned in Sect. 2.1:
2I202] [2l2][s] - [2]202] [22020.
——— —— —_——— ——
E3(x14xy) X3 E3(x14x3)  EJ (x3)

(3) Apply the integer addition described in Sect. 2.3 to E‘; (x1+x2)
and E? (x3):

[202]2] [2]2]2] -
—— —

E} (x1+x2)  E5(x3)

- = [22[2][a]4]9].

E3 (x1 + x2 + x3 mod 3)

Here, as shown in Table 2, if x; + x2 + x3 = 3, the result-
ing three-card sequence becomes E3 (0). Therefore, we have
E; (x1 + x2 + x3 mod 3).
This is how E;‘ (x1+x2 +x3 mod 3) is generated for n = 3, and as
explained in Sect. 3, it is possible to securely compute f(x1, x2, x3)
from this.

5 PROPOSED PROTOCOL FOR n = 4

In this section, we construct a helping-card-free protocol for an
arbitrary {0}-partially doubly symmetric Boolean function for the
case of n = 4.

Let f : {0,1}* — Rbe a {0}-partially doubly symmetric Boolean
function to be securely computed. Since the proposed protocol
requires no helping card, the input to the protocol is

[212] [2]2] [2][2] [2][2] .
—_——— —— ——
X1 X2 X3 X4

We first present a subprotocol in Sect. 5.1 and then show the
main protocol in Sect. 5.2.

5.1 Color Conversion Subprotocol

In our protocol presented in this section, we have a probabilistic case
where an integer encoding based on some color must be converted
to the other color. For this, we propose a subprotocol to convert a
three-card encoding of either color obtained by the helping-card-
free two-commitment addition described in Sect. 2.3 to the other
color with one helping card.
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L IvawZ X,
L IVZ V) X,
L X VAV Xo

l (shuf, {id, (1 3)(2 9)})
S®O0S 1/, X,
OR®O 1/,X,
LIV V) X1
SO0 1/, X,
QQdd 1/,X,

(shuf, {id, (1 2)(34H)})

L IVAVE SRV
QO 1/,X,

l (turn, {1})

2727
Q& X,
QO X,
Qs Xo
-> (result, 2,3,4)

Figure 1: KWH-tree for the color conversion subprotocol

Here, we explain the case of converting E‘; (x) to Eg (x).
(1) Place a helping card and turn it over as follows:

[#][2]2]2] — [2]2]2]2].

———
E3 (x)

(2) Apply a random bisection cut as follows:

(2]2]|[2]2]] — [2]2]2]2].

(3) After rearranging the middle two cards, apply a random
bisection cut, and then rearrange the middle two cards again:

Fe2E - [FEED] - EREE.

(4) Reveal the left-most card:

Eﬂﬂﬂ-

turn

(a) Ifitis @ then the remaining face-down cards represent

Eg (x):
2]2]2].
——
E5 (x)
(b) If it is [#], then turn over the revealed card again, and
return to Step 2.
This is the color conversion subprotocol, converting E; (x) to Eg (x).
If we want to convert Eg (x) to E; (x), then it suffices to just reverse
© and & and perform the same operations.
The security and correctness of this subprotocol is proved by its

KWH-tree [12] depicted in Fig. 1. Note that this subprotocol has a
loop and is a Las Vegas algorithm.

5.2 Protocol Description

The proposed protocol for n = 4 proceeds as follows.
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Table 3: Value of x; + x2 + x3 + x4 and the sequence of cards

X1+ x2 +x3+x4 Sequence of cards

0 [+[olol9]
1 l+]]o]
2 lol[%]
3 lolo]s]
4 [+[olol9]

(1) For the commitments to x; and x2, apply the helping-card-
free two-commitment addition described in Sect. 2.4. Assume
without loss of generality that we obtain E; (x1+x2) and a
free black card [#]:

[2]2] [22] [2]2] [2][2] — [22]2][s] [2]2] [2]2] -
—— —— —— —— ——— —— ——
X1 X2 X3 X4 E} (x1 +x3) X3 X4

(2) For the commitments to x3 and x4, apply the helping-card-
free two-commitment addition described in Sect. 2.4. Here,
we want to obtain the addition of x3+x4 with a different color
encoding to the addition of x; + x2 obtained in the previous
step. Therefore, after the addition of x3 and x4, we proceed
to the next step if E5 (x3 + x4) is obtained. If E} (x3 + x4)
is obtained, then apply the color conversion subprotocol
described in Sect. 5.1 to it. In any case, the resulting sequence
after the operation is as follows:

l?ll?ll?l@@?/l @l‘ — [2]2]2][s][2]2]2][<].
E} (x1 +x2) x3 X4

E}(x14+x2)  E5 (x3+x4)

(3) Convert E; (x1 + x2) and E;’ (3 + x4) together with the free
cards[?]and [#]to E} (x1 +x2) and EJ (x3 + x4), respectively,
in a similar way to the method mentioned in Sect. 2.1:

(212 ]2] [a] [2[2]2] (] - [21202] [0 [2]2] 2] []

—— S~—— —— ——
E} (x+x2)  EJ(x3+x4) E} (x1+x2)  EJ (x3+x4)
- [2[2l2]2][2]2]?]z2].
[ R —
E} (x1+x)  EJ (x3+x4)

(4) Apply the integer addition described in Sect. 2.3 to EZ‘ (x1+x2)
and E‘? (x3 +x4):

2222 2]2]2]2] — -
E}(x1+x2)  Ef (x3+x4)

— [2]2]2]?][0]a]+]+].
E} (x1 + %2 + x3 + x4 mod 4)

Here, as shown in Table 3, if x; + x3 + x3 + x4 = 4, the
resulting four-card sequence becomes EZ'(O). Therefore, we
have EZ (x1 +x2 + x3 + x4 mod 4).
This is how EZ(xl + x2 + x3 + x4 mod 4) is generated for n = 4,
and as explained in Sect. 3, it is possible to securely compute
f(x1, x2,x3, x4) from this.
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6 PROPOSED PROTOCOLFORn > 5

In this section, we construct a protocol for an arbitrary n-input
{0}-partially doubly symmetric Boolean function such that n > 5.
The proposed protocol requires one helping card@, and hence, the
input to the protocol is

0703 - DL

The protocol proceeds as follows.

(1) For the commitments to x,—3 and x,—2, apply the helping-
card-free two-commitment addition described in Sect. 2.4.
Assume without loss of generality that E;‘ (xp—3 +xn-2) and
a free black card[#]are obtained:

(2] -+~ [ ] () ) [
- *UU (7)) & ) [T
x1 E} (Xp3+Xpo) Xn-1  Xn

(2) To the commitments to x,—1 and x, together with the free
cards E] and @ apply the integer addition described in

Sect. 2.3:
(202] - [2]2]2] (4] [212] [2]2] [
N B o
— oo [2]2] 2] [2]R]2][#]@]9).
TR —

Note that we apply the addition so that Ey (xp—1 + xp) is
obtained.

(3) Convert the commitments to x; and x together with @
and E] to E'3" (x1) and Eg (x2), and apply the integer addition
described in Sect. 2.3, obtaining E;’ (x1 + x2):

@@@ME} - [2[2]2][+]4]v].

E3 (x1 +x2)

X1 X2

(4) Similar to the previous step, add the commitments to x3, x4,
.. Xp—4to E; (x1+x2) one by one, obtaining E;—a (Zz;f Xp):

[22]2] @ @@l*ll*ll@ll@l

E} (x14x3) X3 Xn—4
— [2[2]2]?]- - @ﬁl*”*“*””“@l
E}(x1+x2+%3) Xn—4

(n —4) cards

— - =222 [2][a]a]4] - [#][0]].

E} (R x)

(5) Convert E2—3(ZZ: xi) and Eg (xn—1+xp) to E:_l (Zz;f Xx)
and E:_l (xn—1 + xn), respectively, in a similar way to the



E; (Xp-3 +Xp-2)
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method described in Sect. 2.1:

(n —4) cards

2I202] - [l 21212 [a]+]4] - [+]

———

ES (Xn-1+Xy)
- [2]2[2] - 22202 - 2]

Eb_ (SRS xk) By (noitxn)

E* (270 x)

(6) Apply the integer addition presented in Sect. 2.3 to E} _, (Zz;f Xk)
and EZ—I (xp—1 + xp) derived in the previous step:

[2]202] - 2] 2] 22 - 2]

Eb_ (UpTx) By (Xno1txn)

(n - 2) cards

- [2[2[2]--- Rl[slefef] - [9].

EZ_I(ZZ;‘ Xk + Xpn-1 + Xn)

(7) Convert E; (xp—3 +xp—2) and E:_l (ergf X +Xp—1+Xp) to
E*(xp—3 +xp—2) and E;, (ZZ;;‘ Xj +Xn—1+Xn), respectively,
in a similar way to the method described in Sect. 2.1:

(n — 3) cards

lelR]lol9] - [l [2]2]2] - [2][#]@]

Ey_((ZR5) X + Xno1 + Xn)

Ef (Xn-3+Xn-2) E5(ZPC) xXp+Xn_1+%n)

(8) Apply the integer addition described in Sect. 2.3 to E} (xp—3+
Xn—2) and EZ(ZZ;;1 X + Xn—1 + Xn):

[2)---[2] [9

E; (xn,3+xn,2) EZ (ZZ;;‘ xk+x,,_1+xn)

n cards

E; (Y-, xx mod n)

Here, as shown in Table 4, if 22:1 X = n, the resulting se-
quence becomes Ey, (0). Therefore, we have E;, (Xf_; Xk mod
n).

This is how EZ(ZZZI X, mod n) is obtained for n > 5, and as

explained in Sect. 3, it is possible to compute any {0}-partially
doubly symmetric Boolean function from this sequence.

7 CONCLUSION

In this paper, we aimed to construct new card-based protocols re-
quiring fewer helping cards within the class of symmetric Boolean
functions. To this end, we considered the class of {0}-partially dou-
bly symmetric Boolean functions as a subclass, and designed generic
protocols for them using less than two helping cards. Specifically,

Hayato Shikata, Daiki Miyahara, and Takaaki Mizuki

Table 4: Value of Z'klzl X and the sequence of cards

Sequence of cards

[+]4]
[+]4]
[+]4]

Value of 31/ xx

0 s3] -
1 IR -

: SO0RS

[+]°]
[+]4]

our results show that no helping card is required for n = 3,4, and
only one helping card suffices for n > 5.

As for the case of n = 2, given commitments to x1, x2, the helping-
card-free two-commitment addition described in Sect. 2.4 produces
E; (x1 +x2) or Eg (x1 + x2), from which we can securely compute
any two-input symmetric Boolean function having an arbitrary
range. Therefore, for the case of n = 2, without the restriction,
there is a helping-card-free protocol for any symmetric Boolean
function; see Table 1 again.

For future work, we will address whether there exists a protocol
with less than two helping cards for any n-input (unrestricted)
symmetric Boolean function having an arbitrary range such that
n 3.
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