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ABSTRACT
In card-based cryptography, which uses a physical deck of cards to

realize secure multiparty computations, a one-bit value is usually

encoded by a pair of cards. Thus, when performing a secure com-

putation of an 𝑛-input Boolean function, a sequence of 2𝑛 cards

representing 𝑛 bits is needed for input, and some helping cards are

typically added to form a protocol. In 2020, Ruangwises and Itoh

constructed a card-based protocol for a symmetric Boolean func-

tion with an arbitrary range using two helping cards. (Note that a

symmetric Boolean function depends only on the number of 1s in

its input). At the same time, they showed that the helping cards can

be eliminated if the target function is limited to “doubly symmetric”

Boolean functions (also known as symmetric self-anti-dual func-

tions). A doubly symmetric Boolean function satisfies the following

for all 𝑘 : when inputting exactly a number 𝑘 of 1s, the output is

the same as the output when inputting exactly a number 𝑛 − 𝑘 of

1s. In this paper, we loosen the restriction on doubly symmetric

Boolean functions by fixing 𝑘 = 0, and construct new protocols

which require less than two helping cards for that wider class of

symmetric Boolean functions. Specifically, we design a one-helping-

card protocol for any 𝑛 > 4, and helping-card-free protocols for

𝑛 = 3 and 𝑛 = 4.
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1 INTRODUCTION
Secure multiparty computations enable us to obtain the output value

of a predetermined function while keeping information on input
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values secret. Card-based cryptography achieves secure multiparty

computations using a deck of physical cards, and the research area

has been significantly growing in recent years (c.f. [18, 19]); refer

to [9, 10, 22, 35] for surveys.

In card-based cryptography, a one-bit value is typically repre-

sented with the order of a black card ♣ and a red card ♥ according

to the two-card-per-bit encoding:

♣ ♥ = 0, ♥ ♣ = 1. (1)

When two face-down cards represent a bit 𝑥 ∈ {0, 1} according to
Eq. (1), we call these two cards a commitment to 𝑥 and denote it by

? ?︸︷︷︸
𝑥

,

where we assume that all black ♣ and red cards ♥ have the identical

backs ? .

Given a number of commitments as input, a card-based crypto-
graphic protocol (simply referred to as a protocol often hereinafter)

should perform a secure multiparty computation via a series of

actions, such as turning over and shuffling cards.

1.1 Protocol for Symmetric Functions
This paper deals with card-based cryptographic protocols for “sym-

metric” Boolean functions. An𝑛-input Boolean function 𝑓 : {0, 1}𝑛 →
𝑅 with some set 𝑅 (as its range) is said to be symmetric if 𝑓 satisfies

the following for every 𝑖 and 𝑗 , 1 ≤ 𝑖, 𝑗 ≤ 𝑛:

𝑓 (𝑥1, . . . , 𝑥𝑖 , . . . , 𝑥 𝑗 , . . . , 𝑥𝑛) = 𝑓 (𝑥1, . . . , 𝑥 𝑗 , . . . , 𝑥𝑖 , . . . , 𝑥𝑛) .

Because one bit is encoded with two cards as per the encoding

rule (1) above, any protocol for an𝑛-input Boolean function requires

at least 2𝑛 cards. That is, it takes 𝑛 commitments corresponding to

𝑛 inputs 𝑥1, 𝑥2, . . . , 𝑥𝑛 ∈ {0, 1}

? ?︸︷︷︸
𝑥1

? ?︸︷︷︸
𝑥2

· · · ? ?︸︷︷︸
𝑥𝑛

.

In addition to the 𝑛 input commitments, some helping cards (like

♣ ♥ ♣ ♥ ) are often required as input. Thus, a protocol for an

𝑛-input Boolean function 𝑓 takes 𝑛 commitments to 𝑥1, 𝑥2, . . . , 𝑥𝑛
along with some helping cards as input, applies a series of actions,

such as revealing and shuffling cards, and outputs only the value
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of 𝑓 (𝑥1, 𝑥2, . . . , 𝑥𝑛):

? ?︸︷︷︸
𝑥1

? ?︸︷︷︸
𝑥2

· · · ? ?︸︷︷︸
𝑥𝑛

♣ ♥ ♣ ♥ · · ·

→ · · · → 𝑓 (𝑥1, 𝑥2, . . . , 𝑥𝑛).

When devising new protocols, a smaller number of helping cards is

considered to be preferable.

In 2020, Ruangwises and Itoh [30, 32] proposed a generic way for

constructing a protocol with two helping cards for any symmetric

Boolean function 𝑓 : {0, 1}𝑛 → 𝑅 with an arbitrary range 𝑅:i

? ?︸︷︷︸
𝑥1

? ?︸︷︷︸
𝑥2

· · · ? ?︸︷︷︸
𝑥𝑛

♣ ♥ → . . . → 𝑓 (𝑥1, 𝑥2, · · · , 𝑥𝑛) .

This is a non-trivial upper bound on the number of required helping

cards for any symmetric Boolean function having an arbitrary range

𝑅 (which is not necessarily two-valued but can be multi-valued,

say 𝑅 = {0, 1, 2, . . . , 𝑛}). It is open to determine whether the upper

bound, i.e., two helping cards, are necessary or could be lowered.

Ruangwises and Itoh [30, 32] also considered the class of “doubly

symmetric” Boolean functions as a subclass of symmetric Boolean

functions to construct a helping-card-free protocol, as follows. If a

symmetric Boolean function 𝑓 satisfies

𝑓 (𝑥1, 𝑥2, . . . , 𝑥𝑛) = 𝑓 (𝑥1, 𝑥2, . . . , 𝑥𝑛)

for all 𝑥1, 𝑥2, . . . , 𝑥𝑛 ∈ {0, 1}, then 𝑓 is called a doubly symmetric
Boolean function (also known as a symmetric anti-self-dual func-

tion). For any doubly symmetric Boolean function 𝑓 : {0, 1}𝑛 → 𝑅

with an arbitrary range 𝑅, they constructed a protocol without any

helping card:

? ?︸︷︷︸
𝑥1

? ?︸︷︷︸
𝑥2

· · · ? ?︸︷︷︸
𝑥𝑛

→ . . . → 𝑓 (𝑥1, 𝑥2, · · · , 𝑥𝑛) .

Thus, we have a helping-card-free protocol for any function in this

narrow class.

To summarize, the existing research [30, 32] gives the following

theorem.

Theorem 1.1 ([30, 32]). Let 𝑛 ≥ 2, let 𝑅 be an arbitrary set, and
let 𝑓 : {0, 1}𝑛 → 𝑅 be a symmetric Boolean function.

• There is a two-helping-card protocol for 𝑓 .
• If 𝑓 is doubly symmetric, there is a helping-card-free protocol
for 𝑓 .

To provide better bounds on the number of required helping

cards (than Theorem 1.1) is an important open problem.

1.2 Contribution
This paper tackles the aforementioned open problem and presents

a partial answer to it. For this purpose, we define “partially doubly

symmetric” Boolean functions as a wider subclass of symmetric

Boolean functions than the class of doubly symmetric Boolean

functions, and construct a protocol requiring less than two helping

cards for any function in that wider class.

i
It should be noted that, as will be seen in Sect. 3, the output value is not given as a

simple encoding.

To define “partially doubly symmetric” Boolean functions, first,

let us review the basic properties of symmetric Boolean functions.

Let 𝑓 : {0, 1}𝑛 → 𝑅 be a symmetric Boolean function. The value of

its output 𝑓 (𝑥1, 𝑥2, . . . , 𝑥𝑛) depends only on the number of 1s in the

input, i.e., the sum

∑𝑛
𝑖=1 𝑥𝑖 . In other words, there exists a function

𝑔 : {0, 1, . . . , 𝑛} → 𝑅 such that

𝑓 (𝑥1, 𝑥2, . . . , 𝑥𝑛) = 𝑔

(
𝑛∑︁
𝑖=1

𝑥𝑖

)
(2)

for every 𝑥1, 𝑥2, . . . , 𝑥𝑛 ∈ {0, 1}. Bearing this in mind, observe that

for a doubly symmetric Boolean function, the output value when

the sum is 𝑘 is equal to the one when the sum is 𝑛 − 𝑘 . Thus, for a
doubly symmetric Boolean function 𝑓 , the corresponding function

𝑔 in Eq. (2) satisfies the following:

𝑔(0) = 𝑔(𝑛),
𝑔(1) = 𝑔(𝑛 − 1),

.

.

. (3)

𝑔(⌊(𝑛 − 1)/2⌋) = 𝑔(𝑛 − ⌊(𝑛 − 1)/2⌋) .
As known from the list of equations (3) above, doubly symmetric

Boolean functions represent a quite restricted subclass within the

class of symmetric Boolean functions. In this paper, we relax the re-

striction and consider a class that imposes only the topmost restric-

tion 𝑔(0) = 𝑔(𝑛) in the list (3), which we call “{0}-partially doubly

symmetric” Boolean functions; we will construct few-helping-card

protocols for this wider class.

More generally, for a set 𝐼 ⊆ {0, 1, . . . , ⌊(𝑛 − 1)/2⌋}, we define
an 𝐼 -partially doubly symmetric Boolean function, as follows.

Definition 1.2. Let 𝑓 : {0, 1}𝑛 → 𝑅 be a symmetric Boolean

function, let 𝑔 : {0, 1, . . . , 𝑛} → 𝑅 be the function satisfying Eq. (2),

and let 𝐼 ⊆ {0, 1, . . . , ⌊(𝑛−1)/2⌋}. If 𝑔(𝑘) = 𝑔(𝑛−𝑘) for every 𝑘 ∈ 𝐼 ,
then 𝑓 is called an I-partially doubly symmetric Boolean function.

Under this definition, a doubly symmetric Boolean function

is redefined as a {0, 1, . . . , ⌊(𝑛 − 1)/2⌋}-partially doubly symmet-

ric Boolean function, and a symmetric Boolean function is an ∅-
partially doubly symmetric Boolean function (where ∅ denotes the
empty set).

As mentioned above, the main target of this paper is {0}-partially
doubly symmetric Boolean functions. That is, we will design a

protocol for any symmetric Boolean function that outputs the same

value when the number of 1s in the input is 0 and when it is 𝑛;

more simply, our target is any 𝑛-input symmetric Boolean function

𝑓 such that 𝑓 (0, 0, . . . , 0) = 𝑓 (1, 1, . . . , 1).
Specifically, we will construct few-helping-card protocols, di-

vided into three cases, 𝑛 = 3, 𝑛 = 4, and 𝑛 ≥ 5. First, for the case

of 𝑛 = 3, we will show that one can obtain a protocol without any

helping card (Sect. 4):

? ?︸︷︷︸
𝑥1

? ?︸︷︷︸
𝑥2

? ?︸︷︷︸
𝑥3

→ · · · → 𝑓 (𝑥1, 𝑥2, 𝑥3) .

Next, for the case of 𝑛 = 4, we will also show that we need no

helping card (Sect. 5):

? ?︸︷︷︸
𝑥1

? ?︸︷︷︸
𝑥2

? ?︸︷︷︸
𝑥3

? ?︸︷︷︸
𝑥4

→ · · · → 𝑓 (𝑥1, 𝑥2, 𝑥3, 𝑥4) .
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Next, we will design a protocol with one helping card for the case

of 𝑛 ≥ 5 (Sect. 6):

? ?︸︷︷︸
𝑥1

? ?︸︷︷︸
𝑥2

· · · ? ?︸︷︷︸
𝑥𝑛

♥ → · · · → 𝑓 (𝑥1, 𝑥2, . . . , 𝑥𝑛) .

Finally, when 𝑛 = 2, we will state that for any 2-input symmetric

Boolean function, without limiting ourselves to partially doubly

symmetric Boolean functions, a helping-card-free protocol can be

constructed by simply making use of the existing method (Sect. 7):

? ?︸︷︷︸
𝑥1

? ?︸︷︷︸
𝑥2

→ · · · → 𝑓 (𝑥1, 𝑥2) .

The following theorem summarizes our contribution in this pa-

per.

Theorem 1.3. Let 𝑛 ≥ 2, let 𝑅 be an arbitrary set, and let 𝑓 :

{0, 1}𝑛 → 𝑅 be a symmetric Boolean function.
• If 3 ≤ 𝑛 ≤ 4 and 𝑓 is {0}-partially doubly symmetric, there is
a helping-card-free protocol for 𝑓 .
• If 𝑛 ≥ 5 and 𝑓 is {0}-partially doubly symmetric, there is a
one-helping-card protocol for 𝑓 .
• If 𝑛 = 2, there is a helping-card-free protocol for 𝑓 .

The above results and the existing studies are summarized in

Table 1.

Before going to the next subsection, we display an example

of a {0}-partially doubly symmetric Boolean function. Define a

symmetric Boolean function ℎ : {0, 1}9 → {0, 1, 2} as

ℎ(𝑥1, 𝑥2, . . . , 𝑥9) =


1 if

∑
9

𝑖=1 𝑥𝑖 = 4,

2 if

∑
9

𝑖=1 𝑥𝑖 = 8,

0 otherwise.

(4)

Then, ℎ is a {0}-partially doubly symmetric Boolean function (be-

cause ℎ(0, 0, . . . , 0) = ℎ(1, 1, . . . , 1) = 0). A secure computation of

this functionℎ allows nine players to know only if four or eight peo-

ple among them want to play a four-player game, such as mahjong,

without awkwardness.

1.3 Related Work
The purpose of this paper is to construct protocols with a small

number of helping cards for symmetric Boolean functions with

arbitrary ranges.

Although protocols for arbitrary functions (having arbitrary

domains and ranges) can be constructed if a sufficient number

of helping cards are available [2], most of the existing research

has focused on Boolean functions with range {0, 1}, i.e., functions
𝑓 : {0, 1}𝑛 → 𝑅 with 𝑅 = {0, 1}. It is known that any Boolean func-

tion with range {0, 1} can be securely computed using six helping

cards [25]; this is a general upper bound
ii
. It was also shown that

two helping cards are sufficient when limited to symmetric Boolean

functions [25]. A recent study [34] has shown that no helping card is

needed for symmetric Boolean functions 𝑓 : {0, 1}𝑛 → {0, 1} when
𝑛 ≥ 8. There are also several specific functions for which there exist

helping-card-free protocols: the two-input AND function [12, 20],

the three-input AND function [7, 17], the XOR function [23], the

ii
If we allow protocols to fail with a high probability, there is a helping-card-free

protocol for any Boolean function [12].

three-input majority function [41], and the three-input equality

function [6, 36].

Remember that our target functions 𝑓 : {0, 1}𝑛 → 𝑅 in this

paper have arbitrary ranges 𝑅.

As mentioned at the beginning of this paper, the research area

of card-based cryptography is very active recently, especially, in

the following topics: private-model secure computations [1, 13,

24], zero-knowledge proof protocols [3, 28, 29, 33], novel shuffling

operations [16], secure sorting [5], multi-valued protocols with a

direction encoding [39], the half-open action [15], standard-deck

protocols [4, 11], and applications to private simultaneous messages

protocols [38].

2 PRELIMINARIES
In this section, we describe the existing encoding and methods as

well as the shuffling operation our protocols use.

Card-based cryptographic protocols are formally defined via ab-

stract machines [8, 21, 22]. Roughly speaking, a protocol consists of

three actions, (turn,𝑇 ), (perm, 𝜋), and (shuf,Π), which represent

turning over, permuting, and shuffling cards, respectively (where

𝑇 is a set of positions, 𝜋 is a permutation, and Π is a set of permu-

tations). In the sequel, for simplicity, instead of giving an abstract

machine, we use a natural language to describe a protocol.

2.1 Encoding of Integer by Card Position
As mentioned in Sect. 1.2, the output value of a symmetric Boolean

function depends on the sum of the input bits. Thus, to securely

compute a symmetric Boolean function, given 𝑛 commitments

? ?︸︷︷︸
𝑥1

? ?︸︷︷︸
𝑥2

· · · ? ?︸︷︷︸
𝑥𝑛

and some helping cards, we want to obtain the sum

∑𝑛
𝑖=1 𝑥𝑖 being

kept secret. For this, we need to encode integers with cards (to

maintain the sum).

The existing Ruangwises–Itoh protocols [30, 32] employ the

following integer encoding. Suppose that 𝑘 ≥ 2 and that we want

to represent an integer 𝑖 , 0 ≤ 𝑖 ≤ 𝑘 − 1, with cards. Using 𝑘 cards

consisting of one ♣ and 𝑘−1 ♥ s, the integer 𝑖 is encoded by placing

the ♣ at the (𝑖 + 1)-st as follows:
1

♥
2

♥ · · ·
𝑖

♥
𝑖+1
♣

𝑖+2
♥ · · ·

𝑘

♥ .

Hereinafter, such a sequence of face-down cards (representing 𝑖) is

denoted by 𝐸♣
𝑘
(𝑖) and written as:

? ? · · · ?︸        ︷︷        ︸
𝐸♣
𝑘
(𝑖 )

.

Exchanging the colors (♣ and ♥), 𝐸♥
𝑘
(𝑖) is defined in a similar way.

As will be seen later, the existing Ruangwises–Itoh protocol [30,

32] and our proposed protocols perform the addition of input com-

mitments based on the integer encoding above in order to compute

symmetric Boolean functions.
iii

iii
This integer encoding is also used in card-based zero-knowledge protocols [27, 31],

secure ranking protocols [40], and card-based Yao’s millionaire protocols [14].
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.

Table 1: Numbers of helping cards required by the existing and our proposed protocols for 𝐼 -partially doubly symmetric Boolean
functions with 𝑛 inputs

𝐼 𝑛 # of helping cards

Ruangwises and Itoh [30, 32] ∅ ≥ 2 2

Ruangwises and Itoh [30, 32] {0, . . . , ⌊𝑛−1
2
⌋} ≥ 2 0

This paper, §4 {0} 3 0

This paper, §5 {0} 4 0

This paper, §6 {0} ≥ 5 1

This paper, §7 ∅ 2 0

Note that a commitment to 𝑎 ∈ {0, 1} together with a free card

♥ can be converted to 𝐸♣
3
(𝑎), i.e., place the ♥ to the right of the

commitment and turn it over:

? ?︸︷︷︸
𝑎

♥ → ? ? ?︸  ︷︷  ︸
𝐸♣
3
(𝑎)

,

because the commitment satisfies the encoding:

♣ ♥ = 0, ♥ ♣ = 1 .

Similarly, a commitment to 𝑎 ∈ {0, 1} together with a ♣ can be

converted to 𝐸♥
3
(𝑎) by swapping the two cards of the commitment:

? ?︸︷︷︸
𝑎

♣ →
←→
? ?︸︷︷︸
𝑎

♣ → ? ? ?︸  ︷︷  ︸
𝐸♥
3
(𝑎)

.

2.2 Pile-Shifting Shuffle
We describe one of the most commonly used shuffling operations

in card-based protocols: the pile-shifting shuffle [26, 37]. As an

example, let us assume that there are nine cards divided into three

piles.

(1) Divide a sequence of nine cards into piles of the same number

of cards:

1

?
2

?
3

?
��� 4

?
5

?
6

?
��� 7

?
8

?
9

? .

(2) Cyclically shuffle the three piles without changing the order

of the three cards within each pile. The resulting order of

the piles will be one of the following three patterns, each

with equal probability:[ 1

?
2

?
3

?
��� 4

?
5

?
6

?
��� 7

?
8

?
9

?
]

→



1

?
2

?
3

?
4

?
5

?
6

?
7

?
8

?
9

? ,
7

?
8

?
9

?
1

?
2

?
3

?
4

?
5

?
6

? ,
4

?
5

?
6

?
7

?
8

?
9

?
1

?
2

?
3

? .

We denote the application of a pile-shifting shuffle by [ · | · · · | · ].

2.3 Addition of Encoded Integers
Ruangwises and Itoh [30, 32] proposed the following method for

adding two encoded integers. Our proposed protocol also employs

this integer addition method.

(1) We have sequences of 𝐸♣
𝑘
(𝑎) and 𝐸♥

𝑘
(𝑏) representing two

integers 𝑎 and 𝑏, respectively. For convenience, each card is

named as follows:

𝐸♣
𝑘
(𝑎) : ?

𝑥0

?
𝑥1

· · · ?
𝑥𝑘−1

, 𝐸♥
𝑘
(𝑏) : ?

𝑦0

?
𝑦1

· · · ?
𝑦𝑘−1

.

(2) Rearrange the sequences as follows:

?
𝑥0

𝑦𝑘−1

? ?
𝑥1

𝑦𝑘−2

? · · · ?
𝑥𝑘−1

𝑦0

? .

(3) Apply a pile-shifting shuffle as follows:[
?
𝑥0

𝑦𝑘−1
?

����� ?𝑥1 𝑦𝑘−2?
����� · · ·

����� ?
𝑥𝑘−1

𝑦0

?

]
→ ?

𝑥0+𝑟

𝑦𝑘−1−𝑟

? ?
𝑥1+𝑟

𝑦𝑘−2−𝑟

? · · · ?
𝑥𝑘−1+𝑟

𝑦0−𝑟

? ,

where 𝑟 is a random value.

(4) Rearrange these as they were before, as follows:

𝐸♣
𝑘
(𝑎 − 𝑟 ) : ?

𝑥0+𝑟
?

𝑥1+𝑟
· · · ?

𝑥𝑘−1+𝑟
,

𝐸♥
𝑘
(𝑏 + 𝑟 ) : ?

𝑦0−𝑟
?

𝑦1−𝑟
· · · ?

𝑦𝑘−1−𝑟
,

where 𝑎 is subtracted by 𝑟 and 𝑏 is added by 𝑟 .

(5) Reveal the sequence of 𝐸♥
𝑘
(𝑏 + 𝑟 ), and let 𝑠 = 𝑏 + 𝑟 . Then,

cyclically shift the sequence of 𝐸♣
𝑘
(𝑎 − 𝑟 ) to the right by 𝑠 ,

i.e., 𝑠 is added to 𝑎 − 𝑟 :

𝐸♣
𝑘
(𝑎 − 𝑟 ) : ?

𝑥0+𝑟
?

𝑥1+𝑟
· · · ?

𝑥𝑘−1+𝑟

↓

𝐸♣
𝑘
(𝑎 + 𝑏) : ?

𝑥0+𝑟−𝑠
?

𝑥1+𝑟−𝑠
· · · ?

𝑥𝑘−1+𝑟−𝑠
.

Note that when the sequence of 𝐸♥
𝑘
(𝑏 + 𝑟 ) is revealed, the

value of 𝑏 does not leak because the random value 𝑟 was

added to 𝑏.

This is a secure computation of (𝑎 − 𝑟 ) + (𝑏 + 𝑟 ) = 𝑎 + 𝑏 without

leaking the values of 𝑎 and 𝑏. That is, a sequence of 𝐸♣
𝑘
(𝑎 + 𝑏) is

obtained.
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In the current explanation, 𝐸♣
𝑘
(𝑎) and 𝐸♥

𝑘
(𝑏) are added; other

types of pairs, such as a pair of 𝐸♥
𝑘
(𝑎) and 𝐸♣

𝑘
(𝑏) and a pair of 𝐸♣

𝑘
(𝑎)

and 𝐸♣
𝑘
(𝑏), can be also added, of course.

2.4 Addition of Two Commitments
Shikata et al. [34] proposed the following helping-card-free two-
commitment addition that produces 𝐸♣

3
(𝑎 + 𝑏) or 𝐸♥

3
(𝑎 + 𝑏) from

two given commitments to 𝑎, 𝑏 ∈ {0, 1} (without any helping card).

(1) Apply a pile-shifting shuffle to the commitments to 𝑎 and 𝑏

as follows:

? ?︸︷︷︸
𝑎

? ?︸︷︷︸
𝑏

→
[
? ?

�� ? ?
]
→ ? ? ? ? .

(Such a shuffle is also called a random bisection cut [23].)
(2) Apply a pile-shifting shuffle to the middle two cards (in this

case, it is a normal shuffle):

?
[
?

�� ? ]
? → ? ? ? ? .

(3) Reveal the second card from the left.

(a) If it is ♣ , we obtain a sequence of 𝐸♣
3
(𝑎+𝑏) by rearranging

as follows:

1

?
2

♣
3

?
4

? →
1

?
3

?
4

?︸  ︷︷  ︸
𝐸♣
3
(𝑎 + 𝑏 )

2

♣ .

(b) If it is ♥ , we obtain a sequence of 𝐸♥
3
(𝑎+𝑏) by rearranging

as follows:

1

?
2

♥
3

?
4

? →
4

?
3

?
1

?︸  ︷︷  ︸
𝐸♥
3
(𝑎 + 𝑏 )

2

♥ .

In this way, from commitments to 𝑎 and 𝑏, we obtain a sequence

of either 𝐸♣
3
(𝑎 + 𝑏) or 𝐸♥

3
(𝑎 + 𝑏) (with a probability of 1/2) as well

as one free card. This subprotocol will be also employed in our

proposed protocols.

3 IDEA BEHIND OUR PROPOSED PROTOCOLS
In this section, we describe the idea behind our proposed protocols

for {0}-partially doubly symmetric Boolean functions. We first

give an overview of the two existing protocols of Ruangwises and

Itoh [30, 32]: one is for symmetric Boolean functions and the other

is for doubly symmetric Boolean functions. We then present the

properties of {0}-partially doubly symmetric Boolean functions,

and based on them, we show the strategy for reducing the number

of helping cards.

3.1 Existing Protocols
Let 𝑓 : {0, 1}𝑛 → 𝑅 be a symmetric Boolean function, and let

𝑔 : {0, 1, . . . , 𝑛} → 𝑅 be the function satisfying Eq. (2). The existing

protocol [30, 32] takes commitments to 𝑥1, 𝑥2, . . . , 𝑥𝑛 ∈ {0, 1} and
two helping cards as input and uses the integer addition described

in Sect. 2.3 repeatedly to obtain a sequence encoding

∑𝑛
𝑖=1 𝑥𝑖 , i.e.,

𝐸♣
𝑛+1 (

∑𝑛
𝑖=1 𝑥𝑖 ):

? ?︸︷︷︸
𝑥1

? ?︸︷︷︸
𝑥2

· · · ? ?︸︷︷︸
𝑥𝑛

♣ ♥ → · · · → ? ? ? · · · ?︸           ︷︷           ︸
𝐸♣
𝑛+1 (

∑𝑛
𝑖=1 𝑥𝑖 )

.

Notice that if the (𝑖 + 1)-st face-down card in 𝐸♣
𝑛+1 (

∑𝑛
𝑖=1 𝑥𝑖 ) is ♣,

then 𝑓 (𝑥1, 𝑥2, . . . , 𝑥𝑛) = 𝑔(𝑖). Therefore, for each 𝑗 ∈ 𝑅, we collect
all (𝑖 + 1)-st cards such that 𝑔(𝑖) = 𝑗 , shuffle all the collected cards,

and reveal them; if a ♣ appears, then it implies 𝑓 (𝑥1, 𝑥2, . . . , 𝑥𝑛) = 𝑗 .

As an example, let 𝑓 be the parity function, i.e., if 𝑖 is even, 𝑔(𝑖) =
0; otherwise, 𝑔(𝑖) = 1. Then, after collecting all cards whose posi-

tions are odd numbers in 𝐸♣
𝑛+1 (

∑𝑛
𝑖=1 𝑥𝑖 ), we shuffle all the collected

cards and reveal them. If a ♣ appears, then 𝑓 (𝑥1, 𝑥2, . . . , 𝑥𝑛) = 0;

otherwise, 𝑓 (𝑥1, 𝑥2, . . . , 𝑥𝑛) = 1.

For another example, let 𝑓 be the function ℎ defined in Eq. (4)

in Sect. 1.2. Then, we reveal the fifth and ninth cards to see if a

♣ appears, i.e., if ℎ(𝑥1, 𝑥2, . . . , 𝑥9) = 1 and ℎ(𝑥1, 𝑥2, . . . , 𝑥9) = 2,

respectively (here, we do not have to shuffle a single card).

In this way, from 𝐸♣
𝑛+1 (

∑𝑛
𝑖=1 𝑥𝑖 ), we can know only the value of

𝑓 (𝑥1, 𝑥2, . . . , 𝑥𝑛), i.e., we can securely compute 𝑓 (𝑥1, 𝑥2, . . . , 𝑥𝑛).
For the case of doubly symmetric Boolean functions, Ruangwises

and Itoh [30, 32] pointed out that two cards can be revealed by

adding a common random bit to all input commitments, so that

they become two free cards. The obtained two free cards can be

used in the integer addition. Based on these ideas, they proposed

a helping-card-free protocol for any doubly symmetric Boolean

function.

3.2 Our Approach
As mentioned before, this paper focuses on {0}-partially doubly

symmetric Boolean functions 𝑓 : {0, 1}𝑛 → 𝑅. In this case, the

function 𝑔 satisfying Eq. (2) has the property that 𝑔(0) = 𝑔(𝑛).
Therefore, the function 𝑔 also satisfies

𝑔

(
𝑛∑︁
𝑖=1

𝑥𝑖

)
= 𝑔

(
𝑛∑︁
𝑖=1

𝑥𝑖 mod 𝑛

)
.

Because 0 ≤ (∑𝑛
𝑖=1 𝑥𝑖 mod 𝑛) ≤ 𝑛 − 1, this value is represented

by 𝑛 cards. This implies that instead of 𝐸♣
𝑛+1 (

∑𝑛
𝑖=1 𝑥𝑖 ), it suffices to

obtain 𝐸♣𝑛 (
∑𝑛
𝑖=1 𝑥𝑖 mod 𝑛):

? ? · · · ?︸        ︷︷        ︸
𝐸♣𝑛 (

∑𝑛
𝑖=1 𝑥𝑖 mod 𝑛)

,

That is, one less card can be used for encoding, which contributes

to reducing the number of required helping cards, as will be seen

in the next sections.

4 PROPOSED PROTOCOL FOR 𝑛 = 3

In this section, we construct a helping-card-free protocol for an

arbitrary {0}-partially doubly symmetric Boolean function for the

case of 𝑛 = 3.

Let 𝑓 : {0, 1}3 → 𝑅 be a {0}-partially doubly symmetric Boolean

function to be securely computed. Since the proposed protocol

requires no helping card, the input to the protocol is

? ?︸︷︷︸
𝑥1

? ?︸︷︷︸
𝑥2

? ?︸︷︷︸
𝑥3

.

Our protocol proceeds as follows.

(1) For the commitments to 𝑥1 and 𝑥2, apply the helping-card-

free two-commitment addition described in Sect. 2.4. Assume
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.

Table 2: Value of 𝑥1 + 𝑥2 + 𝑥3 and the sequence of cards

𝑥1 + 𝑥2 + 𝑥3 Sequence of cards

0 ♣ ♥ ♥

1 ♥ ♣ ♥

2 ♥ ♥ ♣

3 ♣ ♥ ♥

without loss of generality that 𝐸♣
3
(𝑥1 + 𝑥2) and a free black

card ♣ are obtained:

? ?︸︷︷︸
𝑥1

? ?︸︷︷︸
𝑥2

? ?︸︷︷︸
𝑥3

→ ? ? ?︸  ︷︷  ︸
𝐸♣
3
(𝑥1 + 𝑥2 )

♣ ? ?︸︷︷︸
𝑥3

.

(2) Convert the commitment to 𝑥3 together with the free card

♣ to 𝐸♥
3
(𝑥3) by the method mentioned in Sect. 2.1:

? ? ?︸  ︷︷  ︸
𝐸♣
3
(𝑥1+𝑥2 )

? ?︸︷︷︸
𝑥3

♣ → ? ? ?︸  ︷︷  ︸
𝐸♣
3
(𝑥1+𝑥2 )

? ? ?︸  ︷︷  ︸
𝐸♥
3
(𝑥3 )

.

(3) Apply the integer addition described in Sect. 2.3 to 𝐸♣
3
(𝑥1+𝑥2)

and 𝐸♥
3
(𝑥3):

? ? ?︸  ︷︷  ︸
𝐸♣
3
(𝑥1+𝑥2 )

? ? ?︸  ︷︷  ︸
𝐸♥
3
(𝑥3 )

→ · · · → ? ? ?︸  ︷︷  ︸
𝐸♣
3
(𝑥1 + 𝑥2 + 𝑥3 mod 3)

♣ ♣ ♥ .

Here, as shown in Table 2, if 𝑥1 + 𝑥2 + 𝑥3 = 3, the result-

ing three-card sequence becomes 𝐸♣
3
(0). Therefore, we have

𝐸♣
3
(𝑥1 + 𝑥2 + 𝑥3 mod 3).

This is how 𝐸♣
3
(𝑥1 +𝑥2 +𝑥3 mod 3) is generated for 𝑛 = 3, and as

explained in Sect. 3, it is possible to securely compute 𝑓 (𝑥1, 𝑥2, 𝑥3)
from this.

5 PROPOSED PROTOCOL FOR 𝑛 = 4

In this section, we construct a helping-card-free protocol for an

arbitrary {0}-partially doubly symmetric Boolean function for the

case of 𝑛 = 4.

Let 𝑓 : {0, 1}4 → 𝑅 be a {0}-partially doubly symmetric Boolean

function to be securely computed. Since the proposed protocol

requires no helping card, the input to the protocol is

? ?︸︷︷︸
𝑥1

? ?︸︷︷︸
𝑥2

? ?︸︷︷︸
𝑥3

? ?︸︷︷︸
𝑥4

.

We first present a subprotocol in Sect. 5.1 and then show the

main protocol in Sect. 5.2.

5.1 Color Conversion Subprotocol
In our protocol presented in this section, we have a probabilistic case

where an integer encoding based on some color must be converted

to the other color. For this, we propose a subprotocol to convert a

three-card encoding of either color obtained by the helping-card-

free two-commitment addition described in Sect. 2.3 to the other

color with one helping card.

.

(shuf, id, 1 3 2 4 )

♣♡♡♣ 𝑋2

♣♡♣♡ 𝑋1

♣♣♡♡ 𝑋0

♣♡♡♣ Τ1 2𝑋2

♡♣♣♡ Τ1 2𝑋2

♣♡♣♡ 𝑋1

♣♣♡♡ Τ1 2𝑋0

♡♡♣♣ Τ1 2𝑋0

(shuf, id, 1 2 3 4 )

♣♡♡♣ Τ1 2𝑋2

♡♣♣♡ Τ1 2𝑋2

♣♡♣♡ Τ1 2𝑋1

♡♣♡♣ Τ1 2𝑋1

♣♣♡♡ Τ1 2𝑋0

♡♡♣♣ Τ1 2𝑋0

(turn, 1 )

♡♣♣♡ 𝑋2

♡♣♡♣ 𝑋1

♡♡♣♣ 𝑋0

-> (result, 2,3,4)

♡? ? ?

♣? ? ?

Figure 1: KWH-tree for the color conversion subprotocol

Here, we explain the case of converting 𝐸♣
3
(𝑥) to 𝐸♥

3
(𝑥).

(1) Place a helping card and turn it over as follows:

♣ ? ? ?︸  ︷︷  ︸
𝐸♣
3
(𝑥 )

→ ? ? ? ? .

(2) Apply a random bisection cut as follows:[
? ?

�� ? ?
]
→ ? ? ? ? .

(3) After rearranging the middle two cards, apply a random

bisection cut, and then rearrange the middle two cards again:

?
←→
? ? ? →

[
? ?

�� ? ?
]
→ ?

←→
? ? ? .

(4) Reveal the left-most card:

?
↑

turn

? ? ? .

(a) If it is ♥ , then the remaining face-down cards represent

𝐸♥
3
(𝑥):

♥ ? ? ?︸  ︷︷  ︸
𝐸♥
3
(𝑥 )

.

(b) If it is ♣ , then turn over the revealed card again, and

return to Step 2.

This is the color conversion subprotocol, converting 𝐸♣
3
(𝑥) to 𝐸♥

3
(𝑥).

If we want to convert 𝐸♥
3
(𝑥) to 𝐸♣

3
(𝑥), then it suffices to just reverse

♥ and ♣ and perform the same operations.

The security and correctness of this subprotocol is proved by its

KWH-tree [12] depicted in Fig. 1. Note that this subprotocol has a

loop and is a Las Vegas algorithm.

5.2 Protocol Description
The proposed protocol for 𝑛 = 4 proceeds as follows.
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.

Table 3: Value of 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 and the sequence of cards

𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 Sequence of cards

0 ♣ ♥ ♥ ♥

1 ♥ ♣ ♥ ♥

2 ♥ ♥ ♣ ♥

3 ♥ ♥ ♥ ♣

4 ♣ ♥ ♥ ♥

(1) For the commitments to 𝑥1 and 𝑥2, apply the helping-card-

free two-commitment addition described in Sect. 2.4. Assume

without loss of generality that we obtain 𝐸♣
3
(𝑥1 + 𝑥2) and a

free black card ♣ :

? ?︸︷︷︸
𝑥1

? ?︸︷︷︸
𝑥2

? ?︸︷︷︸
𝑥3

? ?︸︷︷︸
𝑥4

→ ? ? ?︸  ︷︷  ︸
𝐸♣
3
(𝑥1 + 𝑥2 )

♣ ? ?︸︷︷︸
𝑥3

? ?︸︷︷︸
𝑥4

.

(2) For the commitments to 𝑥3 and 𝑥4, apply the helping-card-

free two-commitment addition described in Sect. 2.4. Here,

we want to obtain the addition of 𝑥3+𝑥4 with a different color
encoding to the addition of 𝑥1 + 𝑥2 obtained in the previous

step. Therefore, after the addition of 𝑥3 and 𝑥4, we proceed

to the next step if 𝐸♥
3
(𝑥3 + 𝑥4) is obtained. If 𝐸♣

3
(𝑥3 + 𝑥4)

is obtained, then apply the color conversion subprotocol

described in Sect. 5.1 to it. In any case, the resulting sequence

after the operation is as follows:

? ? ?︸  ︷︷  ︸
𝐸♣
3
(𝑥1 + 𝑥2 )

♣ ? ?︸︷︷︸
𝑥3

? ?︸︷︷︸
𝑥4

→ ? ? ?︸  ︷︷  ︸
𝐸♣
3
(𝑥1+𝑥2 )

♣ ? ? ?︸  ︷︷  ︸
𝐸♥
3
(𝑥3+𝑥4 )

♥ .

(3) Convert 𝐸♣
3
(𝑥1 + 𝑥2) and 𝐸♥

3
(𝑥3 + 𝑥4) together with the free

cards ♥ and ♣ to 𝐸♣
4
(𝑥1 + 𝑥2) and 𝐸♥

4
(𝑥3 + 𝑥4), respectively,

in a similar way to the method mentioned in Sect. 2.1:

? ? ?︸  ︷︷  ︸
𝐸♣
3
(𝑥1+𝑥2 )

♣ ? ? ?︸  ︷︷  ︸
𝐸♥
3
(𝑥3+𝑥4 )

♥ → ? ? ?︸  ︷︷  ︸
𝐸♣
3
(𝑥1+𝑥2 )

♥ ? ? ?︸  ︷︷  ︸
𝐸♥
3
(𝑥3+𝑥4 )

♣

→ ? ? ? ?︸      ︷︷      ︸
𝐸♣
4
(𝑥1+𝑥2 )

? ? ? ?︸      ︷︷      ︸
𝐸♥
4
(𝑥3+𝑥4 )

.

(4) Apply the integer addition described in Sect. 2.3 to 𝐸♣
4
(𝑥1+𝑥2)

and 𝐸♥
4
(𝑥3 + 𝑥4):

? ? ? ?︸      ︷︷      ︸
𝐸♣
4
(𝑥1+𝑥2 )

? ? ? ?︸      ︷︷      ︸
𝐸♥
4
(𝑥3+𝑥4 )

→ · · · → ? ? ? ?︸      ︷︷      ︸
𝐸♣
4
(𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 mod 4)

♥ ♣ ♣ ♣ .

Here, as shown in Table 3, if 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 = 4, the

resulting four-card sequence becomes 𝐸♣
4
(0). Therefore, we

have 𝐸♣
4
(𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 mod 4).

This is how 𝐸♣
4
(𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 mod 4) is generated for 𝑛 = 4,

and as explained in Sect. 3, it is possible to securely compute

𝑓 (𝑥1, 𝑥2, 𝑥3, 𝑥4) from this.

6 PROPOSED PROTOCOL FOR 𝑛 ≥ 5

In this section, we construct a protocol for an arbitrary 𝑛-input

{0}-partially doubly symmetric Boolean function such that 𝑛 ≥ 5.

The proposed protocol requires one helping card ♥ , and hence, the

input to the protocol is

? ?︸︷︷︸
𝑥1

? ?︸︷︷︸
𝑥2

· · · ? ?︸︷︷︸
𝑥𝑛

♥ .

The protocol proceeds as follows.

(1) For the commitments to 𝑥𝑛−3 and 𝑥𝑛−2, apply the helping-

card-free two-commitment addition described in Sect. 2.4.

Assume without loss of generality that 𝐸♣
3
(𝑥𝑛−3 +𝑥𝑛−2) and

a free black card ♣ are obtained:

? ?︸︷︷︸
𝑥1

· · · ? ?︸︷︷︸
𝑥𝑛−3

? ?︸︷︷︸
𝑥𝑛−2

? ?︸︷︷︸
𝑥𝑛−1

? ?︸︷︷︸
𝑥𝑛

♥

→ ? ?︸︷︷︸
𝑥1

· · · ? ? ?︸  ︷︷  ︸
𝐸♣
3
(𝑥𝑛−3+𝑥𝑛−2 )

♣ ? ?︸︷︷︸
𝑥𝑛−1

? ?︸︷︷︸
𝑥𝑛

♥ .

(2) To the commitments to 𝑥𝑛−1 and 𝑥𝑛 together with the free

cards ♣ and ♥ , apply the integer addition described in

Sect. 2.3:

? ?︸︷︷︸
𝑥1

· · · ? ? ?︸  ︷︷  ︸
𝐸♣
3
(𝑥𝑛−3+𝑥𝑛−2 )

♣ ? ?︸︷︷︸
𝑥𝑛−1

? ?︸︷︷︸
𝑥𝑛

♥

→ · · · → ? ?︸︷︷︸
𝑥1

· · · ? ? ?︸  ︷︷  ︸
𝐸♣
3
(𝑥𝑛−3+𝑥𝑛−2 )

? ? ?︸  ︷︷  ︸
𝐸♥
3
(𝑥𝑛−1+𝑥𝑛 )

♣ ♥ ♥ .

Note that we apply the addition so that 𝐸♥
3
(𝑥𝑛−1 + 𝑥𝑛) is

obtained.

(3) Convert the commitments to 𝑥1 and 𝑥2 together with ♥
and ♣ to 𝐸♣

3
(𝑥1) and 𝐸♥

3
(𝑥2), and apply the integer addition

described in Sect. 2.3, obtaining 𝐸♣
3
(𝑥1 + 𝑥2):

? ?︸︷︷︸
𝑥1

♥ ? ?︸︷︷︸
𝑥2

♣ → ? ? ?︸  ︷︷  ︸
𝐸♣
3
(𝑥1 + 𝑥2 )

♣ ♣ ♥ .

(4) Similar to the previous step, add the commitments to 𝑥3, 𝑥4,

. . .,𝑥𝑛−4 to 𝐸♣
3
(𝑥1+𝑥2) one by one, obtaining 𝐸♣𝑛−3 (

∑𝑛−4
𝑘=1

𝑥𝑘 ):

? ? ?︸  ︷︷  ︸
𝐸♣
3
(𝑥1+𝑥2 )

? ?︸︷︷︸
𝑥3

· · · ? ?︸︷︷︸
𝑥𝑛−4

♣ ♣ ♥ ♥

→ ? ? ? ?︸      ︷︷      ︸
𝐸♣
4
(𝑥1+𝑥2+𝑥3 )

· · · ? ?︸︷︷︸
𝑥𝑛−4

♣ ♣ ♣ ♥ ♥

→ · · · → ? ? ? · · · ?︸           ︷︷           ︸
𝐸♣
𝑛−3 (

∑𝑛−4
𝑘=1

𝑥𝑘 )

(𝑛 − 4) cards︷           ︸︸           ︷
♣ ♣ ♣ · · · ♣ ♥ ♥ .

(5) Convert𝐸♣
𝑛−3 (

∑𝑛−4
𝑘=1

𝑥𝑘 ) and𝐸♥3 (𝑥𝑛−1+𝑥𝑛) to𝐸
♣
𝑛−1 (

∑𝑛−4
𝑘=1

𝑥𝑘 )
and 𝐸♥

𝑛−1 (𝑥𝑛−1 + 𝑥𝑛), respectively, in a similar way to the
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method described in Sect. 2.1:

? ? ? · · · ?︸           ︷︷           ︸
𝐸♣𝑛−3 (

∑𝑛−4
𝑘=1 𝑥𝑘 )

♥ ♥ ? ? ?︸  ︷︷  ︸
𝐸♥
3
(𝑥𝑛−1 + 𝑥𝑛 )

(𝑛 − 4) cards︷           ︸︸           ︷
♣ ♣ ♣ · · · ♣

→ ? ? ? · · · ?︸           ︷︷           ︸
𝐸♣
𝑛−1 (

∑𝑛−4
𝑘=1

𝑥𝑘 )

? ? ? · · · ?︸           ︷︷           ︸
𝐸♥
𝑛−1 (𝑥𝑛−1+𝑥𝑛 )

.

(6) Apply the integer addition presented in Sect. 2.3 to𝐸♣
𝑛−1 (

∑𝑛−4
𝑘=1

𝑥𝑘 )
and 𝐸♥

𝑛−1 (𝑥𝑛−1 + 𝑥𝑛) derived in the previous step:

? ? ? · · · ?︸           ︷︷           ︸
𝐸♣
𝑛−1 (

∑𝑛−4
𝑘=1

𝑥𝑘 )

? ? ? · · · ?︸           ︷︷           ︸
𝐸♥
𝑛−1 (𝑥𝑛−1+𝑥𝑛 )

→ ? ? ? · · · ?︸           ︷︷           ︸
𝐸♥𝑛−1 (

∑𝑛−4
𝑘=1 𝑥𝑘 + 𝑥𝑛−1 + 𝑥𝑛 )

♣

(𝑛 − 2) cards︷           ︸︸           ︷
♥ ♥ ♥ · · · ♥ .

(7) Convert 𝐸♣
3
(𝑥𝑛−3 +𝑥𝑛−2) and 𝐸♥𝑛−1 (

∑𝑛−4
𝑘=1

𝑥𝑘 +𝑥𝑛−1 +𝑥𝑛) to
𝐸♣𝑛 (𝑥𝑛−3 +𝑥𝑛−2) and 𝐸♥𝑛 (

∑𝑛−4
𝑘=1

𝑥𝑘 +𝑥𝑛−1 +𝑥𝑛), respectively,
in a similar way to the method described in Sect. 2.1:

? ? ?︸  ︷︷  ︸
𝐸♣
3
(𝑥𝑛−3 + 𝑥𝑛−2 )

(𝑛 − 3) cards︷           ︸︸           ︷
♥ ♥ ♥ · · · ♥ ? ? ? · · · ?︸           ︷︷           ︸

𝐸♥𝑛−1 (
∑𝑛−4

𝑘=1 𝑥𝑘 + 𝑥𝑛−1 + 𝑥𝑛 )

♣ ♥

→ ? ? ? · · · ?︸           ︷︷           ︸
𝐸♣𝑛 (𝑥𝑛−3+𝑥𝑛−2 )

? ? ? · · · ?︸           ︷︷           ︸
𝐸♥𝑛 (

∑𝑛−4
𝑘=1

𝑥𝑘+𝑥𝑛−1+𝑥𝑛 )

♥ .

(8) Apply the integer addition described in Sect. 2.3 to 𝐸♣𝑛 (𝑥𝑛−3+
𝑥𝑛−2) and 𝐸♥𝑛 (

∑𝑛−4
𝑘=1

𝑥𝑘 + 𝑥𝑛−1 + 𝑥𝑛):

? ? ? · · · ?︸           ︷︷           ︸
𝐸♣𝑛 (𝑥𝑛−3+𝑥𝑛−2 )

? ? ? · · · ?︸           ︷︷           ︸
𝐸♥𝑛 (

∑𝑛−4
𝑘=1

𝑥𝑘+𝑥𝑛−1+𝑥𝑛 )

♥

→ ? ? ? · · · ?︸           ︷︷           ︸
𝐸♥𝑛 (

∑𝑛
𝑘=1 𝑥𝑘 mod 𝑛)

♣

𝑛 cards︷           ︸︸           ︷
♥ ♥ ♥ · · · ♥ .

Here, as shown in Table 4, if

∑𝑛
𝑘=1

𝑥𝑘 = 𝑛, the resulting se-

quence becomes𝐸♥𝑛 (0). Therefore, we have𝐸♥𝑛 (
∑𝑛
𝑘=1

𝑥𝑘 mod

𝑛).
This is how 𝐸♥𝑛 (

∑𝑛
𝑘=1

𝑥𝑘 mod 𝑛) is obtained for 𝑛 ≥ 5, and as

explained in Sect. 3, it is possible to compute any {0}-partially
doubly symmetric Boolean function from this sequence.

7 CONCLUSION
In this paper, we aimed to construct new card-based protocols re-

quiring fewer helping cards within the class of symmetric Boolean

functions. To this end, we considered the class of {0}-partially dou-

bly symmetric Boolean functions as a subclass, and designed generic

protocols for them using less than two helping cards. Specifically,

Table 4: Value of
∑𝑛
𝑘=1

𝑥𝑘 and the sequence of cards

Value of

∑𝑛
𝑘=1

𝑥𝑘 Sequence of cards

0 ♥ ♣ ♣ · · · ♣ ♣

1 ♣ ♥ ♣ · · · ♣ ♣

2 ♣ ♣ ♥ · · · ♣ ♣
.
.
.

.

.

.

𝑛 − 1 ♣ ♣ ♣ · · · ♣ ♥

𝑛 ♥ ♣ ♣ · · · ♣ ♣

our results show that no helping card is required for 𝑛 = 3, 4, and

only one helping card suffices for 𝑛 ≥ 5.

As for the case of𝑛 = 2, given commitments to 𝑥1, 𝑥2, the helping-

card-free two-commitment addition described in Sect. 2.4 produces

𝐸♣
3
(𝑥1 + 𝑥2) or 𝐸♥

3
(𝑥1 + 𝑥2), from which we can securely compute

any two-input symmetric Boolean function having an arbitrary

range. Therefore, for the case of 𝑛 = 2, without the restriction,

there is a helping-card-free protocol for any symmetric Boolean

function; see Table 1 again.

For future work, we will address whether there exists a protocol

with less than two helping cards for any 𝑛-input (unrestricted)

symmetric Boolean function having an arbitrary range such that

𝑛 ≥ 3.
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