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Abstract. Consider the holiday season, where there are n players who
would like to exchange gifts. That is, we would like to generate a ran-
dom permutation having no fixed point. It is known that such a random
permutation can be obtained in a hidden form by using a number of
physical cards of four colors with identical backs, guaranteeing that it
has no fixed point (without revealing the permutation itself). This paper
deals with such a problem and improves the known result: whereas the
known protocol needs O(n?) cards of four colors, our efficient protocol
uses only O(nlogn) cards of two colors.

1 Introduction

Consider the holiday season, where there are n players who would like to ex-
change gifts. We wish to avoid the undesirable situation in which a player must
buy a present for himself/herself. That is, we need to produce a random permu-
tation € .S, that has no fixed point, where S,, denotes the symmetric group of
degree n (throughout this paper). There is an unconventional solution to the “no
fixed point” problem, i.e., it is known that such a random permutation can be
obtained in a hidden form by using a number of physical cards of four colors, say
@ @ , and @ with identical backs|? , guaranteeing that it has no fixed
point ( Wlthout revealing the permutation 1tself) [3]. This paper deals with such
a problem and proposes an efficient approach that improves the known result.

* This paper appears in Proceedings of UCNC 2015. The final publication is available
at link.springer.com.

! Throughout this paper, we say that a card has the same “color” as another one if
they have the same pattern on their face sides.



2 Rie Ishikawa, Eikoh Chida, and Takaaki Mizuki

1.1 Known Method for Generating a Random Permutation

In 1993, Crépeau and Kilian gave a card-based protocol for generating a random
permutation 7w € S,, without any fixed point [3]. Their protocol produces a pile
of n cards that consists of (n —1) @s and one @ with their faces down (on the
table) for every player p;, 1 < i < n:

p:[2]7)-- 7] 7).

The position of card @ corresponds to the value of 7(7) when all the n cards
are revealed:

R

Thus, if player p; looks at his/her pile privately, then the information about who
p; is going to buy a present for will be kept secret.

Because the protocol produces a pile of such cards for each of the n players,
as seen above, it uses n(n — 1) @s and n @s. In addition, it requires a number
of cards of different colors, namely n?/2 S and n?/2 Es. Thus, the known
method needs 2n? cards of four colors in total?. Further details are given in
Section 2.

1.2 Our Results and Related Work

Table 1 summarizes both the known result and our results. As mentioned above,
to generate a random permutation without fixed points, the known method
[3] requires 2n? cards of four colors. In this paper, we reduce the number of
required colors and cards. First, we devise a new shuffling operation called a
“pile-scramble shuffle” in Section 3. Using this new shuffle, we can enhance the
efficiency of the known protocol, and consequently, we can show that n? cards of
two colors are sufficient. We then show in Section 4 that (2n[logn] + 6) cards?
of two colors are sufficient to solve the “no fixed point” problem by considering
another expression of each player’s index.

| | No. of colors | No. of cards |

Known protocol [3] (§2) 4 2n?
Improvement with pile-scramble shuffle (§3) 2 n?
Our main protocol (§4) 2 2nflogn] + 6

Table 1. Performance of each protocol

2 Note that we cannot use a standard deck of playing cards because each of them has
a unique pattern on its face side.
3 All logarithms are base 2 throughout this paper.
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Before presenting our protocols, we present a complete description of the
known protocol [3] in Section 2. Section 5 concludes this paper with some dis-
cussion.

Card-based cryptography allows us not only to generate a random permu-
tation, but also to have various kinds of cryptographic protocols such as se-
cure multiparty computations and zero-knowledge proof. For example, there are
known protocols for securely computing AND [1,3,7,8,10,13], XOR [3,8,9],
adder [6], 3-variable symmetric functions [12], and so on. Furthermore, the re-
lationship between playing cards and cryptography has been explored in the
literature (e.g., [2,4, 5, 14]).

2 Known Protocol

In this section, we present a complete description of the Crépeau-Kilian proto-
col [3] that generates a hidden random permutation having no fixed point.

Assume that n players pi, ps, ..., pn would like to produce a random permu-
tation m € S,, without any fixed point. Their protocol consists of two phases, the
Random-Permutation Generating phase and the Fixed-Point Checking phase, as
follows.

[ Random-Permutation Generating phase |

1-1. Using n(n — 1) @S and n @S, arrange the cards as below (putting each
@ on the diagonal), and insert a “marker” after each row, where a marker

consists of n/2 s and n/2 ES (for simplicity, n is assumed to be an even
number):

O[&]--[#] - [S[S[CIO[O] - - - [ M] ]
&[0 [ [S[#[C[O]0] - [w]a]a

ala] (5] ($I8[S105] - ATaTa)
&3] (&) RE[CLO]0] - [4[a]4].

1-2. Turn over the cards so that they are all face down, and apply a random
cut, i.e., a cyclic shuffle, to the sequence of 2n? cards (obtained by row-wise
concatenation).

1-3. Reveal the first card. If the face-up card is either @ or @, go back to step
(1-2). If it is either or E, i.e., a marker, then proceed to the next step.
Note that the probability of returning to step (1-2) is exactly 1/2.

1-4. Assume that the face-up card is :

olz]--[2]-- (212 2l2]?] -7

. . .

2020121202022

?
?

|~

I FA i A e Fd Fd Fd i FA R EA Ea B
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Its right-hand card must also be a marker. Reveal the markers right next to
it one by one. After all the makers on the right side (which are ¢ s for

some ¢ and n/2 @s) are face up, reveal the remaining markers on the left
side (where the first card’s “left” is the last card), namely (n/2 —¢—1) s.
For the case where the first card is E, we manipulate the sequence of cards

similarly to the |<>|case. Note that in this case, we start revealing the markers
toward the left side first.

Remove all of the (face-up) n markers.

1-5. After all of the n markers are removed, we regard the first n cards as the
value of w(1). That is, the pile of these n cards is assigned to player p; and
corresponds to w(1):

m:[2]7] 2] [2)

1-6. Similarly, for the remaining cards, repeat steps (1-2)—(1-4) so that we obtain
piles corresponding to m(2),7(3),...,m(n).

[ Fixed-Point Checking phase ]

2-1. To verify that the generated permutation 7 has no fixed point, arrange the
piles of cards assigned to p1,pe, ..., p, as below:

?......?
20?2

pn

2-2. Reveal all the cards on the diagonal to determine if they are all @ If so,

7 has no fixed point. If one of them is @, then the pile corresponds to a
fixed point and in this case, we must return to the Random-Permutation
Generating phase.

p1:
P2

|
|~

Thus, the first phase of this protocol produces a random permutation = € S,,,
and then the second phase checks that 7 has no fixed point. In the first phase,
we need to repeat the steps until markers are found, and hence it is a Las Vegas
algorithm taking 2n trials on average. With respect to the second phase, note
that in general, the probability that a random permutation 7 € S,, has no fixed
point is Y i (—1)"/4!, which is approximately 1/e, where e is the base of the
natural logarithm [3]. Therefore, the average number of how many times we need
to execute the Fixed-Point Checking phase is approximately e =~ 2.7.

This is the existing protocol for solving the “no fixed point” problem. It uses
2n2 cards of four colors, as detailed above. We improve on this efficiency in the
succeeding sections.
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3 Pile-Scramble Shuflle

In this section, we focus on the process of producing a random permutation and
propose an efficient method for achieving this.

Remember that the known protocol [3] uses random cuts and markers to
generate a random permutation, as shown in the preceding section. That is, in
order to shuffle n piles (each of which consists of n cards and is assigned to a
player), we repeatedly apply a random cut to create each value of 7(7) one by
one, while markers are used as “delimiters.” Here, instead of using markers, we
consider a somewhat more direct way of shuffling piles.

Assume that there are a number of face-down cards that are divided into n
piles of the same size. We denote each pile by pile;, 1 < ¢ < n. Given a sequence
of piles (piley,piles, piles, ..., piley,), consider a shuffle operation that outputs
(pileﬂ(l),pileﬁ(m,pileﬁ(g), <y Piler(ny), where m € S, is a random permutation.
As we now have n piles, a permutation is randomly chosen from the n! possi-
bilities. We call such a shuffling operation a pile-scramble shuffle. We believe
that the pile-scramble shuffle can be easily implemented by human beings using
rubber bands, clips, envelopes, or something similar.

If steps (1-2)—(1-6) in the Random-Permutation Generating phase of the
known protocol [3] introduced in Section 2 are replaced with the pile-scramble
shuffle, it is obvious that n? cards of two colors are sufficient to produce a
random permutation. That is, we can generate a random permutation without
any marker, meaning that we do not require any trials, and hence can output
a random permutation after exactly one pile-scramble shuffle. Therefore, taking
the Fixed-Point Checking phase into account, such an improved protocol needs
only n? cards of two colors and takes an average number of about 2.7 trials
to generate a random permutation having no fixed point. Thus, we are able to
reduce the numbers of required cards and colors by half (see Table 1 again).

In the next section, we further reduce the number of required cards.

4 Owur Main Protocol

In this section, we propose a more efficient method than those mentioned pre-
viously. Our main protocol requires only (2n[logn] + 6) cards to generate a
random permutation having no fixed point.

First, in Section 4.1, we show that considering a binary representation of
players’ indices dramatically reduces the number of required cards. Next, in
Section 4.2, we present a sub-protocol to check for fixed points under such a
binary representation. Finally, in Section 4.3, by combining these components,
we present a complete description of our protocol.

4.1 Binary Representation

In the Crépeau-Kilian protocol [3] presented in Section 2, each player’s index
i € {1,2,...,n} and its permuted position 7 (i) are represented by a pile of n
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cards, i.e., (n — 1) @s and one @, say
1 2 i n 1 2 (%) n
i @@ @ @ or @@ @ @
In contrast, we represent this information using a binary representation with
2[logn] cards as follows.

To deal with Boolean values, following the previous studies (e.g., [1,3, 10,
13]), we use the encoding rule with a pair of cards:

[#[O]=0, [Of#]=1. (1)

For a bit € {0,1}, when two face-down cards have a value equaling z
according to encoding (1) above, the pair of these face-down cards is called a
commitment to x, and is written as

HEH!
——

x

Under such an encoding rule, each player’s index can be represented by [logn]
commitments, namely 2[logn] cards. Therefore, n players’ indices are repre-
sented naturally by 2n[logn] cards. Thus, we can greatly reduce the number of
required cards to express players’ indices.

It is obvious that we can easily produce a random permutation by applying
a pile-scramble shuffle (explained in Section 3) to these n piles that are based
on this binary expression.

4.2 How to Check for Fixed Points

In this subsection, we present a sub-protocol to check that a random permutation
in the form of binary representation has no fixed point.

Assume that a random permutation 7 € S,, has been generated by a pile-
scramble shuffle, as shown in Section 3, based on the binary representation shown
in Section 4.1. That is, a pile of [logn] commitments is assigned to each player

Di:

2

e |7

pi:|2]?
——

?

?

?

Qlog n az ay

where and hereafter, logn in the subscript means [logn]. Because the pile above
corresponds to 7 (i), we have

(m(i) — )10 = (Glogn - - - G2a1)2.

In order to verify that the pile is not a fixed point, namely 7 (i) # i, we check
whether the equation below holds:

(al @E)/\(QQ@E)/\"'/\(alogn@blogn):07 (2)
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where @& denotes the exclusive-or (XOR) operation and bits b1, ba, - - - , biogr are
defined as
(i —1)10 = (biogn - - - b2b1)2 .

Aiming to compute Eq. (2) efficiently without revealing values a;, 1 < i <
[logn], we first introduce the existing copy protocol [8], and then present a “one-
input-preserving” AND protocol. Finally we describe a sub-protocol for checking
that Eq. (2) holds.

Copy Protocol Give a commitment to a bit x together with four additional
cards, the known copy protocol [8] generates two copied commitments to z, as
follows.

1. Arrange two commitments to 0:
2l2)s[os[@] - [2]7]2]?]?
g =

T x 0 0

7]

2. Rearrange the order of the sequence as:

iz

3. Bisect the sequence of six cards and switch the two portions randomly (we
call this a random bisection cut [8] and denote it by [-]-] ):

|E2Ed A 1{Ea EA Ea e FA Fd FA A FA

4. Rearrange the order of the sequence as:

2lzIzz]]]

We then have

HHHHHH
e e
xPdr T r

where 7 is a (uniformly distributed) random bit because of the random bi-

section cut.
5. Reveal the first two cards from the left. We then have

[®]O) 2] 2] 2]2] or [V]&]2]?]2]?].
e

?

xr xr xr xr
Thus, we obtain two copied commitments to x. In the latter case, we can
easily convert T to x using the NOT operation that swaps the left and right
cards. In addition, the two face-up cards @@ are available for another
computation.
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One-input-preserving AND Protocol We present a one-input-preserving
AND protocol that can keep one of input commitments after the AND computa-
tion. The protocol can be constructed immediately based on two known ideas:
the AND protocol [8] and the half-adder protocol [6].

First, we present some notation. For a pair of bits (z,y), define operations
get and shift as

get’(z,y) = ;. get'(z,y) = v,
shift’(,y) = (z,y); shift' (z,y) = (y,2).
Note that
a A b= get®®" (shift"(0,b)) (3)
for an arbitrary bit r € {0,1}. In addition, for two bits 2 and y, the expression
HHHH
[ p—

(z,y)

means

HHEEE
SN~
z y

The following is a one-input-preserving AND protocol that produces not only
a commitment to a A b but also a commitment to the input a using eight cards.

1. In addition to the input commitments to a and b, arrange two commitments
to 0 as follows:

HHUBU M HE
~—~— N~—~—
a b a 0 0 b

- [2]2)2]7]?]?]?]?].
—— =

2. Rearrange the order of the sequence as:

izl

3. Apply a random bisection cut:
(22| E)2))) — Rz e

4. Rearrange the order of the sequence as:

izl
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We then have

)

HHHHHHHE
M~
adr r shift” (0,b)

where r is a (uniformly distributed) random bit.
5. Reveal the first two cards. If they are @@, we have a®r =0, i.e., r = a.
Therefore, the output is (see Eq. (3)):

[»J Ol ?] 2] 2] 2] ?]?].
——

a aNb

If they are @@, we have a ® r = 1, i.e., r = a. Therefore, the output is:

MU HHHHEEE
N—~—— N~
a aAb

In this way, we can obtain commitments to both a A b and a. The two face-
up cards @ are still available for another computation. In addition, the two
cards of the remaining commitment can also be available after they are shuffled.

Sub-protocol for Checking Eq. (2) Given the discussion above, we are
ready to present a procedure for checking Eq. (2) to determine if there are fixed
points. Given a pile

s w . ww I
QAlog n az ay
the following sub-protocol computes the value of
(a1 @b1) A (a2 ©D2) A=+ A (arogn © Diogn) s
where
(i — 1)10 = (blogn - - - bab1)2 -

1. Arrange [logn] input commitments and six additional cards as follows:

212)- 20 2] 2] 2] 27 ][O 8] #] ).
—— ===

Qlogn as a2 ay

2. Copy the commitment to a; using the copy protocol [8] mentioned above:

22)- 2l 2] 2l 2] 2] 2] 2] 2 e %] 9]
—— ===

Qlogn as a2 al ay
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Apply the NOT computation depending on the values of b; and by so that
we have

HEEHHHHEERED SO
_—— S

log n a3 ao@®by a1 @by 1

Note that each value of b; is public.

Apply the one-input-preserving AND protocol presented above to obtain
commitments to (a1 @ b1) A (az © by) and (ag © be). Furthermore, apply the
NOT computation to the latter commitment depending on the value of bs.
We then have

2122z 212) 2lfz)z]e]ole]o).
——=—

Qlog n as (¢11€BH)/\(¢12€9E) az ai

Similarly, obtain commitments to (a; @ by) A (az @ b2) A (a3 @ bz) and as:

HHHHHHEDMLE
—~— —— ——

@logn  (a1@b1)A(a2®b2)A(as®bs) 3 22 01

Repeat this until we have

HEEHHHHHHDNL
N~ N~ SN~ NN
(al@a)/\(@@E)/\'“/\(alogn@@) QAlog n as a2 ai

Reveal the commitment to (a1 @ b1) A (a2 ® ba) A -+ A (Glogn @ biogn)- If
the value is 1, then this is a fixed point. Otherwise, it is not a fixed point.
It should be noted that in either case, any commitments to a1, az, ..., Glogn
are not lost.

4.3 Description of Our Proposed Protocol

We are now ready to present an efficient protocol for generating a random permu-
tation having no fixed point. Our protocol uses (2n[logn] + 6) cards to produce
n piles corresponding to this random permutation.

1.

Using n[logn] @S and n[logn] @S, arrange n[logn| commitments accord-
ing to players’ indices based on the binary representation:

p: 2] 2] 2] 2] 2]2)
—— ==

0 0 0
p2:2]?)-(2]?] 2] 7]
e e

-
0 0 1

pe:2]2] (2] 2] 2] 2]
—— ===

1 1 1
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2. Regarding each row as a pile, apply a pile-scramble shuffle to the n piles; we
then obtain a random permutation 7 in which the i-th pile corresponds to

m(i):

22 (2] 7] ]7]

pe:[2]7]- 2] 2] 7] 7]

?

po:[2]2] 2] 2] 2]2)-

3. Using six additional cards, apply the sub-protocol presented in Section 4.2
to confirm that m has no fixed point, that is, to verify that p; is not a fixed
point for every ¢, 1 < ¢ < n, in turns. If we find a fixed point, then we go
back to step (2). If we confirm that there is no fixed point, the permutation
7 is a desired one.

This is our main protocol for solving the “no fixed point” problem with
O(nlogn) cards.

5 Conclusions

The known protocol [3] requires 2n? cards of four colors to generate a random
permutation having no fixed point. In this paper, we first devised a new shuffle
operation called a pile-scramble shuffle that immediately enabled us to achieve
the same task using only n? cards of two colors. Furthermore, we showed that
using a binary representation dramatically reduces the number of required cards,
that is, (2n[logn] + 6) cards of two colors are sufficient.

In our protocol, the 2n[logn] cards are used to hold each players’ index, and
the remaining six cards correspond to the additional cards |&||Q?||&||Q?||&||Q?| re-
quired to execute the sub-protocol for checking fixed points. This comes from the
fact that the one-input-preserving AND protocol given in Section 4.2 requires
four additional cards. Recently, it was shown that such a one-input-preserving
AND computation can be done with only two additional cards [11]. Therefore,
applying this recently invented protocol [11], we can reduce the number of re-
quired cards to 2n[logn| + 4.

In addition to the protocol solving the “no fixed point” problem, Crépeau
and Kilian designed a general protocol for producing a random permutation that
satisfies a predetermined condition such as having no short cycle of length at
most k, and showed that it can be applied to the “Discreet Solitary Games” [3].
Thus, it is intriguing future work to design an efficient way to determine whether
a given permutation based on our binary representation has k-cycles.

Although the card-based protocol is an unconventional way to secure multi-
party computations, this approach has many advantages. The most important
feature is that even nonspecialists are able to easily understand why the com-
putation is secure.
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