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ABSTRACT
In card-based cryptography, a commitment to a Boolean value is
usually represented by two face-down cards of different colors or
numbers, whose order specifies the one-bit value (namely, 0 or 1).
One of the most important primitives in card-based cryptography
is a “copy protocol,” which is supposed to make two identical copies
of a given commitment. In the literature, there are several copy
protocols, which can be categorized by kinds of shuffles they use;
this paper focuses on those using only the so-called random cut,
which is the simplest shuffle, and we propose two copy protocols
that are more efficient than the existing ones. Specifically, we first
work on a standard deck of cards and design a six-card copy protocol
using three random cuts (on average). Since the previous protocol
needs 5.5 random cuts, our protocol improves upon it. Next, we
shift our attention to the case of a two-colored deck of cards, and
construct a six-card copy protocol using three random cuts (on
average). Because the previous protocol requires eight cards, our
protocol uses two cards fewer than the previous one (although it
uses one more shuffle). In addition, going back to the standard-
deck setting, we provide a four-card XOR protocol using only one
random cut for the first time.
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1 INTRODUCTION
Card-based cryptography enables us to perform cryptographic
tasks, such as secure multiparty computations, using a deck of
physical cards. Typically, a “two-colored deck” of cards or a “stan-
dard deck” of cards is used in a card-based protocol. This paper
begins with introducing these two types of decks in Sections 1.1
and 1.2.

1.1 Two-Colored Deck of Cards
Many card-based protocols use a two-colored deck of cards, which
consists of black cards ♣ and red cards ♥ whose backs are all
identical ? (refer to [8, 18, 35] for a survey).

Depending on the order of two cards of different colors, a Boolean
value is represented as follows:

♣ ♥ = 0, ♥ ♣ = 1. (1)

Based on the above encoding rule, a player can commit his or her
private bit 𝑥 ∈ {0, 1} by placing two cards face down, keeping its
value hidden:

? ?︸︷︷︸
𝑥

.

We call such a pair of face-down cards a commitment to 𝑥 .

1.2 Standard Deck of Cards
Some card-based protocols [9, 10, 16, 24] work on a standard deck
of cards, which consists of 52 cards (except for jokers) and each
card has a unique pattern (suit and number) on its face: We regard
it as a total order on {1, 2, . . . , 52} and assume a deck consisting of
52 numbered cards:

1 2 3 4 · · · 51 52 ,

where the backs of all cards are identical ? .
Similar to the encoding rule (1), Niemi and Renvall [24] con-

sidered an encoding rule based on which of two cards is smaller:
Define

𝑖 𝑗 = 0, 𝑗 𝑖 = 1 (2)

for any two cards 𝑖 and 𝑗 with 1 ≤ 𝑖 < 𝑗 ≤ 52. Thus, if the
left card is smaller, it represents 0, and if the left card is larger, it
represents 1. Throughout this paper, we denote a commitment to
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𝑥 ∈ {0, 1} consisting of two numbered cards 𝑖 𝑗 by

? ?︸︷︷︸
[𝑥 ]{𝑖,𝑗 }

,

where we call such a set {𝑖, 𝑗} the base of the commitment. For
example,

? ?︸︷︷︸
[𝑥 ]{3,4}

is a commitment of base {3, 4}; when we turn over these two cards,
the order 3 4 implies 𝑥 = 0, and 4 3 implies 𝑥 = 1.

1.3 The History of Copy Protocols
This paper mainly deals with copy protocols; given a commitment
to 𝑎 ∈ {0, 1}, a copy protocol is supposed to make two identical
copied commitments to the bit 𝑎:

? ?︸︷︷︸
𝑎

→ · · · → ? ?︸︷︷︸
𝑎

? ?︸︷︷︸
𝑎

;

? ?︸︷︷︸
[𝑎]{𝑖,𝑗 }

→ · · · → ? ?︸︷︷︸
[𝑎]{𝑖1, 𝑗1}

? ?︸︷︷︸
[𝑎]{𝑖2, 𝑗2}

.

A copy protocol plays an important role in securely computing
an arbitrary Boolean function (as well as AND/OR/XOR/NOT pro-
tocols do), and hence, it is one of the most important primitives
studied in card-based cryptography [2, 7, 11, 16, 19, 24–26].

Here, we illustrate the necessity of a copy protocol with a con-
crete function example. Consider a secure computation of the five-
input majority function, whose possible circuit is:

maj(𝑎, 𝑏, 𝑐, 𝑑, 𝑒) = (𝑎 ∧ 𝑏 ∧ 𝑐) ∨ (𝑎 ∧ 𝑏 ∧ 𝑑) ∨ (𝑎 ∧ 𝑏 ∧ 𝑒)
∨ (𝑎 ∧ 𝑐 ∧ 𝑑) ∨ (𝑎 ∧ 𝑐 ∧ 𝑒) ∨ (𝑎 ∧ 𝑑 ∧ 𝑒) ∨ (𝑏 ∧ 𝑐 ∧ 𝑑)

∨ (𝑏 ∧ 𝑐 ∧ 𝑒) ∨ (𝑏 ∧ 𝑑 ∧ 𝑒) ∨ (𝑐 ∧ 𝑑 ∧ 𝑒).

Since the bit 𝑎 appears six times in the above equation, we need six
commitments to 𝑎 in total to compute the function according to the
circuit (the same is true for the other bits). Therefore, to begin with,
we need to perform a copy protocol to duplicate the commitments.
Thus, copy protocols are indispensable.

In the literature, there are several copy protocols as shown in
Tables 1 and 2, in which we show their numbers of required cards,
those of required shuffles, and types of shuffles they use.

The first copy protocol was proposed by Crèpeau and Kilian [2]
working on a two-colored deck of cards. This protocol uses the
“random cut (RC)” (denoted by ⟨·⟩), which is a cyclic shuffling op-
eration. Although the details will be given in Section 2.2, we take
a sequence of six cards to illustrate: after applying a random cut,
the resulting sequence becomes one of the six cases with the equal

probability (i.e., 1/6) as follows:

〈 1
?

2
?

3
?

4
?

5
?

6
?
〉

−→



1
?

2
?

3
?

4
?

5
?

6
? ,

2
?

3
?

4
?

5
?

6
?

1
? ,

3
?

4
?

5
?

6
?

1
?

2
? ,

4
?

5
?

6
?

1
?

2
?

3
? ,

5
?

6
?

1
?

2
?

3
?

4
? ,

6
?

1
?

2
?

3
?

4
?

5
? .

The Crèpeau–Kilian copy protocol [2] takes a commitment to
𝑎 ∈ {0, 1} and six additional cards as input, and outputs two com-
mitments to the bit 𝑎 after applying the random cut twice without
leaking any information about the value of the bit 𝑎:

? ?︸︷︷︸
𝑎

♣ ♣ ♣ ♥ ♥ ♥ → · · · → ? ?︸︷︷︸
𝑎

? ?︸︷︷︸
𝑎

.

In 2009, Mizuki and Sone [19] introduced a new shufflingmethod,
called the “random bisection cut (RBC)” (denoted by [ · | · ]), which
bisects a sequence of cards and shuffles these two halves at random.
Although the details will be given in Section 2.3, taking a sequence
of six cards as an example, after applying a random bisection cut,
the resulting sequence becomes either of the two cases with the
equal probability (i.e., 1/2) as follows:[ 1

?
2
?

3
?
��� 4
?

5
?

6
?
]
→


1
?

2
?

3
?

4
?

5
?

6
? ,

4
?

5
?

6
?

1
?

2
?

3
? .

Making use of the random bisection cut, the Mizuki-Sone copy
protocol [19] uses only six cards (including an input commitment)
and only one shuffle:

? ?︸︷︷︸
𝑎

♣ ♣ ♥ ♥ → · · · → ? ?︸︷︷︸
𝑎

? ?︸︷︷︸
𝑎

.

In 2015, Nishimura et al. [25, 26] designed a five-card copy pro-
tocol that requires an average of two shuffles. Their protocol uses
an unfamiliar shuffling operation, namely the “unequal division
shuffle (UDS),” as follows:[ 1

?
2
?
��� 3
?

4
?

5
?
]
→


1
?

2
?

3
?

4
?

5
? ,

3
?

4
?

5
?

1
?

2
? .

It is not easy for humans to implement this shuffle (without any
special auxiliary tools).

Let us shift our attention to the case of a standard deck of cards;
there are two existing copy protocols. In 1999, Niemi and Ren-
vall [24] proposed the first copy protocol using a standard deck of
cards, which uses six cards and needs 5.5 random cuts on average:

? ?︸︷︷︸
[𝑎]{1,2}

3 4 5 6 → · · · → ? ?︸︷︷︸
[𝑎]{1,2}

? ?︸︷︷︸
[𝑎]{3,4}

.

In 2016, making use of the random bisection cut, Mizuki [16] pro-
posed a six-card copy protocol that requires only one random bi-
section cut.



Table 1: Copy protocols on a two-colored deck of cards

# of cards # of shuffles Type of shuffles

Crépeau–Kilian [2] 8 2 RC
Mizuki–Sone [19] 6 1 RBC
Nishimura et al. [25] 5 2 (exp) UDS
Ours 6 3 (exp) RC

Table 2: Copy protocols on a standard deck of cards

# of cards # of shuffles Type of shuffles

Niemi–Renvall [24] 6 5.5 (exp) RC
Mizuki [16] 6 1 RBC
Ours 6 3 (exp) RC

1.4 Contribution
As mentioned above, there are several kinds of shuffles, and they
contribute to improving the efficiency of copy protocols (in terms
of the numbers of cards and shuffles). Now, let us compare these
shuffling operations from the perspective of practicality when im-
plementing them. While a random bisection cut and an unequal
division shuffle require auxiliary tools, such as special card cases,
to be performed securely [26, 40], a random cut requires no such an
auxiliary tool. Therefore, a random cut is superior to the other shuf-
fling operations in terms of practicality. This implies that seeking
a more efficient protocol using only random cuts is a meaningful
challenge in the research area of card-based cryptography. It should
be noted that Koch and Walzer [12] proposed actively secure proto-
cols depending only on random cuts and they implied that finding
card-minimal protocols using only random cuts is an interesting
open problem.

In this paper, focusing on using only random cuts, we propose
two new copy protocols which are more efficient than the existing
ones. Specifically, we first work on a standard deck of cards and
design a six-card copy protocol using three random cuts on average:

? ?︸︷︷︸
[𝑎]{1,2}

3 4 5 6 → · · · → ? ?︸︷︷︸
[𝑎]{3,4}

? ?︸︷︷︸
[𝑎]{5,6}

.

Since the previous protocol, namely the Niemi–Renvall copy proto-
col [24], uses 5.5 random cuts as mentioned before, our protocol
improves on it. See Table 2 again. Next, we shift our attention to
the case of a two-colored deck of cards, and construct a six-card
copy protocol using three random cuts on average:

? ?︸︷︷︸
𝑎

♣ ♣ ♥ ♥ → · · · → ? ?︸︷︷︸
𝑎

? ?︸︷︷︸
𝑎

.

Since the Crèpeau–Kilian copy protocol [2] uses eight cards and
two random cuts (as mentioned before), our protocol uses two cards
fewer than the previous protocol (although it requires one more
shuffle). See Table 1 again.

We will prove the correctness and security of our proposed pro-
tocols by using the KWH-tree (whose idea and notion were invented

in [13]), from which we can visually confirm state transitions of
the protocols.

In addition to the two new copy protocols, we provide a new
XOR protocol working on a standard deck without any additional
card, such as:

? ?︸︷︷︸
[𝑎]{1,2}

? ?︸︷︷︸
[𝑏 ]{3,4}

→ · · · → ? ?︸︷︷︸
[𝑎⊕𝑏 ]{1,2}

.

This is a card-minimal protocol and is the first construction of an
XOR protocol using only one random cut.

1.5 Related Work
To the best of our knowledge, no recent literature has studied ele-
mentary card-based protocols using only random cuts except for
Toyoda et al. in 2020 [39]; they proposed a six-card XOR protocol
using only random cuts, improving the existing ones [2, 20]. Apart
from secure computations of logical functions, card-based proto-
cols have attractive applications such as solving Yao’s millionaires’
problem [15, 22, 23, 27, 38], zero-knowledge proof protocols for
pencil puzzles [31–34], secure grouping [4] and lottery [37], gen-
erating a derangement [5, 6, 21], and efficient secure multi-valued
function evaluation using dihedral symmetry [36]. Instead of using
shuffles, card-based protocols relying on private operations have
been studied [1, 14, 28–30, 42, 43]. Recently, the relationship be-
tween card-based protocols and the (conventional) computational
complexity was discussed [3].

1.6 Outline
The remainder of this paper is organized as follows. In Section 2,
we introduce a formal description of actions and the notions of two
kinds of shuffles. In Section 3, we present our copy protocol on
a standard deck. In Section 4, we present our copy protocol on a
two-colored deck. In Section 5, we present our XOR protocol on a
standard deck. We conclude this paper in Section 6.

2 PRELIMINARIES
In this section, we first present a formal treatment of actions appear-
ing in card-based protocols (which has been developed in [7, 17, 18]).



Then, we introduce two important kinds of shuffles, i.e., the random
cut and the random bisection cut.

2.1 Actions
Assume that we have a sequence of 𝑛 face-down cards on a table:

1
?

2
? · · ·

𝑛

? ,

where we attach the number 𝑖 , 1 ≤ 𝑖 ≤ 𝑛, to the 𝑖-th card (from the
left) for convenience sake. Let 𝑆𝑛 denote the symmetric group of
degree 𝑛. We present four actions, as follows.

Permuting. Apply a permutation 𝜋 ∈ 𝑆𝑛 to the sequence of 𝑛
cards. We denote this action by (perm, 𝜋):

1
?

2
? · · ·

𝑛

?
(perm,𝜋 )
−−−−−−−−→

𝜋−1 (1)
?

𝜋−1 (2)
? · · ·

𝜋−1 (𝑛)
? .

Turning. Turn over all cards whose positions are in 𝑇 ⊆
{1, . . . , 𝑛} to check the numbers or colors of the cards: We
denote this action by (turn,𝑇 ). For instance, if 𝑇 = {𝑡},

1
?

2
? · · ·

𝑡

? · · ·
𝑛

?
(turn,{𝑡 })
−−−−−−−−→

1
?

2
? · · ·

𝑡

3 · · ·
𝑛

? ;
1
?

2
? · · ·

𝑡

? · · ·
𝑛

?
(turn,{𝑡 })
−−−−−−−−→

1
?

2
? · · ·

𝑡

♥ · · ·
𝑛

? .

Shuffle. Apply a permutation 𝜋 ∈ Π chosen uniformly ran-
domly from a permutation set Π ⊆ 𝑆𝑛 . We denote this action
by (shuf,Π):

1
?

2
? · · ·

𝑛

?
(shuf,Π)
−−−−−−−→

𝜋−1 (1)
?

𝜋−1 (2)
? · · ·

𝜋−1 (𝑛)
? .

Note that nobody can know which permutation in Π was
applied. In the next two subsections, we show two specific
kinds of shuffles.

Result. Specify positions of output commitments. In a copy
protocol, (result, (𝑖1, 𝑖2), ( 𝑗1, 𝑗2)) means that two copied com-
mitments are obtained at the corresponding positions:

1
? · · ·

𝑖1

? · · ·
𝑖2

? · · ·
𝑗1

? · · ·
𝑗2

? · · ·
𝑛

?
(result,(𝑖1,𝑖2),( 𝑗1, 𝑗2))−−−−−−−−−−−−−−−−−→

𝑖1

?
𝑖2

?︸︷︷︸
𝑎

𝑗1

?
𝑗2

?︸︷︷︸
𝑎

.

Note that, technically, the order of 𝑖1, 𝑖2, 𝑗1, 𝑗2 can be arbi-
trary.

2.2 Random Cut
As seen in the previous subsection, a shuffle is mathematically
defined by giving a permutation setΠ. In this sense, we can consider
any shuffles. However, when constructing practical card-based
protocols, it is crucial how easy-to-implement the shuffles to be
used are.

The simplest and most easy-to-implement shuffle is the random
cut (RC), denoted by ⟨·⟩, that shifts a sequence of cards cyclically and
randomly. If a random cut is applied to a sequence of 𝑛 cards, then
the resulting sequence becomes one of the following 𝑛 sequences,

each of which occurs with a probability of 1/𝑛:

〈 1
?

2
?

3
? · · ·

𝑛−1
?

𝑛

?
〉

−→



1
?

2
?

3
? · · ·

𝑛−1
?

𝑛

? ,
2
?

3
?

4
? · · ·

𝑛

?
1
? ,

.

.

.
𝑛−1
?

𝑛

?
1
? · · ·

𝑛−3
?

𝑛−2
? ,

𝑛

?
1
?

2
? · · ·

𝑛−2
?

𝑛−1
? .

This random cut is formally described as

(shuf, {id, 𝜋, 𝜋2 , . . . , 𝜋𝑛−1})

for a cyclic permutation 𝜋 = (1 2 3 · · · 𝑛), where id ∈ 𝑆𝑛 denotes
the identity permutation.

In the sequel, we use RC1,2,...,𝑛 to represent {id, 𝜋, 𝜋2 , . . . , 𝜋𝑛−1}.
For example, (shuf,RC1,2,3,4,5,6) is a random cut to a sequence of
six face-down cards: 〈

? ? ? ? ? ?
〉
.

A random cut can be easily performed by human hands; a secure
implementation called the Hindu cut is well known [40, 41].

2.3 Random Bisection Cut
The random bisection cut (RBC) is another major shuffle action
invented in 2009 [19]. This shuffle, denoted by [ · | · ], bisects a
sequence of 2𝑛 cards and randomly swaps the two halves; the
resulting sequence becomes one of the following two sequences:[ 1

? · · ·
𝑛

?
��� 𝑛+1? · · ·

2𝑛
?
]
→


1
? · · ·

𝑛

?
𝑛+1
? · · ·

2𝑛
? ,

𝑛+1
? · · ·

2𝑛
?

1
? · · ·

𝑛

? .

That is, the resulting sequence either remains the same as the
original one, or becomes a sequence such that the two halves are
swapped with a probability of 1/2. This random bisection can be
expressed as

(shuf, {id, (1 𝑛+1) (2 𝑛+2) · · · (𝑛 2𝑛)}).

A few secure implementations of a random bisection cut were
shown in [40]. One is a method called the spinning throw using a
rubber band and a separator. In this method, a separator is put in
the middle of a sequence of cards so that the sequence is bisected,
and the separator and the two halves are fixed by using a rubber
band. Then, they are thrown in a spinning manner so that the two
halves are shuffled randomly. Another method employs the vertical
asymmetricity of the backs of cards and reduces applying a random
bisection cut to applying a random cut.

3 COPY PROTOCOL ON STANDARD DECK
In this section, working on a standard deck of cards, we present a
new copy protocol that uses only three random cuts (on average).

In Section 3.1, we provide a basic technique: We show that a
random bisection cut (RBC) with opening leading cards can be
conducted via a series of random cuts (RCs) if we are working on a
standard deck. Applying this basic technique, we construct our copy



protocol in Section 3.2, followed by its pseudocode in Section 3.3.
We prove that our protocol is correct and secure in Section 3.4.

3.1 Basic Technique: RBC and Opening
Leading Cards via RCs

Assume that we have 2𝑛 face-down cards (of a standard deck) whose
first and (𝑛+1)-st cards are 𝑖 𝑗 or 𝑗 𝑖 and that we want to reveal
the first card after applying a random bisection cut:

1
? · · ·

𝑛

?
𝑛+1
? · · ·

2𝑛
? →

[
? · · · ?

��� ? · · · ?
]
→

?︸︷︷︸
reveal

· · · ? ? · · · ? . (3)

We assume that everyone knows that the 2𝑛 cards consist of cards
numbered 1 through 2𝑛, and hence, 1 ≤ 𝑖 ≠ 𝑗 ≤ 2𝑛.

As mentioned in Section 2.3, secure implementations of a ran-
dom bisection cut are known [40] under certain constraints. For
commercially available standard decks of cards, however, the back
of every card is often vertically symmetric, i.e., a secure implemen-
tation using the vertical asymmetricity of the backs does not work.
Moreover, it might happen that no auxiliary tool such as a rubber
band is available.

Fortunately, we can consider the following (partial) implementa-
tion of a random bisection cut via the random cut.

1. Apply a random cut to the sequence of 2𝑛 cards:〈 1
? · · ·

𝑛

?
𝑛+1
? · · ·

2𝑛
?
〉

→ ? · · · · · · ?︸       ︷︷       ︸
2𝑛

.

2. Turn over the first card. If it is 𝑖 or 𝑗 , this means that a
random bisection cut was applied to the sequence, i.e., we
have achieved the goal (3). Otherwise, turn the first card
face down, and return to Step 1. Note that this step leaks no
information because the revealed card is chosen uniformly
from the sequence of 2𝑛 cards at random.

Note that the expected number of random cuts for finishing the
above procedure is 𝑛.

More usefully, along with 2𝑛 cards, if we have a commitment
which we want to reveal after shuffling, the goal (3) can be achieved
using random cuts as follows.

1. Assume that we have a commitment to 𝑎 ∈ {0, 1} whose
base is {1, 2}. Place the commitment and the sequence of 2𝑛
cards as follows:

? ?︸︷︷︸
[𝑎]{1,2}

1
? · · ·

𝑛

?
𝑛+1
? · · ·

2𝑛
? .

Note that the sequence of 2𝑛 cards contains neither 1 nor
2 .

2. Move the right card of the commitment to the middle as
follows:

? ?︸︷︷︸
[𝑎]{1,2}

1
? · · ·

𝑛

?
𝑛+1
? · · ·

2𝑛
? → ?

1
? · · ·

𝑛

? ?
𝑛+1
? · · ·

2𝑛
? .

3. Apply a random cut to the sequence of all cards:〈
?

1
? · · ·

𝑛

? ?
𝑛+1
? · · ·

2𝑛
?
〉

→ ? · · · · · · ?︸       ︷︷       ︸
2𝑛 + 2 cards

.

4. Turn over the first card; if it is 1 or 2 , reveal the (𝑛 + 2)-nd
card (i.e., the other card constituting the commitment to 𝑎)
as well. Otherwise, return to Step 3.

Since the probability of returning to Step 3 in Step 4 is 1
𝑛+1 , the

expected number of required shuffles is 𝑛 + 1.
Using this technique, we can simulate the six-card copy protocol

invented by Mizuki [16], which uses a random bisection cut once,
so that we obtain a six-card copy protocol using only random cuts,
as seen in the next subsection.

3.2 Protocol Description
Now, we are ready to present our copy protocol on a standard deck.
Given a commitment to 𝑎 ∈ {0, 1} whose base is {1, 2} along with
four additional cards 3 4 5 6 , our copy protocol outputs two
commitments to 𝑎 whose bases are {3, 4} and {5, 6}:

? ?︸︷︷︸
[𝑎]{1,2}

3 4 5 6 → · · · → ? ?︸︷︷︸
[𝑎]{3,4}

? ?︸︷︷︸
[𝑎]{5,6}

.

The protocol proceeds as follows.
1. Apply the technique shown in Section 3.1 to the commitment

to 𝑎 and the sequence of additional four cards, as follows.
(a) Rearrange the sequence:

1
?

2
?

3
?

4
?

5
?

6
? →

1
?

3
?

5
?

2
?

4
?

6
? .

(b) Apply a random cut to the sequence of all cards:〈
? ? ? ? ? ?

〉
→ ? ? ? ? ? ? .

(c) Turn over the first card; if it is 1 , swap the third and fifth
cards. If it is 2 , apply a permutation (2 3 6 5). Otherwise,
return to Step 1(b).

2. Then we have

1 ? ?︸︷︷︸
[𝑎]{3,4}

? ? ?︸︷︷︸
[𝑎]{5,6}

or 2 ? ?︸︷︷︸
[𝑎]{3,4}

? ? ?︸︷︷︸
[𝑎]{5,6}

.

Thus, our copy protocol uses three random cuts on average. Note
that Step 1(c) rearranges the cards so that they are in order; in the
pseudocode below, we will omit this rearrangement.

3.3 Pseudocode
In this subsection, we show a pseudocode for our copy protocol
described in Section 3.2.

input set:{( ?
1
,
?
2
,
?
3
,
?
4
,
?
5
,
?
6

)
,

( ?
2
,
?
1
,
?
3
,
?
4
,
?
5
,
?
6

)}
(perm, (2 4 5 3))

1 (shuf,RC1,2,3,4,5,6)
(turn, {1})



if visible seq. = (1, ?, ?, ?, ?, ?) then
(result, (2, 5), (3, 6))

else if visible seq. = (2, ?, ?, ?, ?, ?) then
(result, (5, 2), (6, 3))

else
(turn, {1})
go to 1

3.4 Correctness and Security
In this subsection, we verify the correctness and security of the
protocol presented in Section 3.2.

A copy protocol is said to be correct if, given an input com-
mitment to 𝑎, it always produces two commitments to 𝑎. We say
a protocol is secure if it leaks no information for any run of the
protocol (in other words, random variables 𝐼 and 𝑉 denoting the
inputs and the visible sequence trace, respectively, are stochasti-
cally independent, where the visible sequence trace means what
can be observed on the table). See [13, 17, 18] for the more formal
definitions based on abstract machine and information theory.

We describe the KWH-tree (which is a nice way of depicting a di-
agram developed by Koch, Walzer, and Härtel [13]) of our proposed
protocol in Figure 2. In this figure, we call each box a state. The first
state (box) in Figure 2 corresponds to an initial sequence, consisting
of an input commitment and four additional cards; 𝑋0 and 𝑋1 repre-
sent the probabilities of 𝑎 = 0 and 𝑎 = 1, respectively. A polynomial
annotating a card sequence in a state, such as +1/6𝑋0, represents
the conditional probability that the current sequence is the one next
to the polynomial, given the visible sequence trace observed so far
on the table. The two states (boxes) at the bottom imply that two
commitments to 𝑎 are definitively obtained. Furthermore, in each
state, the sum of all polynomials is equal to 𝑋0 + 𝑋1, implying that
no information about 𝑎 leaks, i.e., the inputs and visible sequence
trace are stochastically independent.

Thus, the KWH-tree in Figure 1 guarantees that our proposed
protocol is correct and secure. (As stated in [7], the KWH-tree is a
witness for the correctness and security.)

4 COPY PROTOCOL ON TWO-COLORED
DECK

In this section, we present a new copy protocol that uses only the
random cut (three times on average) with a two-colored deck of
cards. We show the description of our protocol in Section 4.1 and its
pseudocode in Section 4.2. We verify the correctness and security
of our protocol in Section 4.3.

4.1 Description
Here, we give the description of our copy protocol working on a
two-colored deck.

1. Place a commitment to 𝑎 ∈ {0, 1} and four additional cards
as follows:

? ?︸︷︷︸
𝑎

♥ ♣ ♣ ♥ .

Then, turn over the four face-up cards:

? ?︸︷︷︸
𝑎

? ? ? ? .

2. Apply a random cut to the sequence of six cards:〈
? ? ? ? ? ?

〉
→ ? ? ? ? ? ? .

3. Reveal the first and the fourth cards:

reveal︷︸︸︷
? ? ?

reveal︷︸︸︷
? ? ? .

(a) If ♥ ♥ or ♣ ♣ appears, then turn them face down and go
back to Step 2.

(b) If ♥ ♣ or ♣ ♥ appears, then we obtain two commitments
to 𝑎 as follows:

♥ ? ? ♣ ? ?
J
Ĵ



�

J
Ĵ



�

? ?︸︷︷︸
𝑎

? ?︸︷︷︸
𝑎

or

♣ ? ? ♥ ? ?
J
Ĵ



�

J
Ĵ



�

? ?︸︷︷︸
𝑎

? ?︸︷︷︸
𝑎

.

This is our copy protocol. As noticed, this protocol is very simple
and takes an average of three random cuts to complete. Since the
previous protocol using random cuts, i.e., the Crèpeau–Kilian copy
protocol, requires six additional cards, our protocol is more efficient
in this regard, although it uses one more shuffle (on average). See
the bottom row in Table 1 again.

4.2 Pseudocode
The following is a pseudocode for our copy protocol.

input set:{( ?
♥ ,

?
♣ ,

?
♥ ,

?
♣ ,

?
♣ ,

?
♥

)
,

( ?
♣ ,

?
♥ ,

?
♥ ,

?
♣ ,

?
♣ ,

?
♥

)}
1 (shuf,RC1,2,3,4,5,6)
(turn, {1, 4})
if visible seq. = (♥, ?, ?,♥, ?, ?) or (♣, ?, ?, ♣, ?, ?) then
(turn, {1, 4})
go to 1

else if visible seq. = (♥, ?, ?, ♣, ?, ?) or (♣, ?, ?,♥, ?, ?) then
(result, (3, 2), (6, 5))

In the next subsection, we confirm that our protocol definitively
produces two commitments to 𝑎 without leaking any information
about 𝑎.

4.3 Correctness and Security
We can show the correctness and security of this protocol in the
same way as we did with a standard deck in Section 3.4. The KWH-
tree in Figure 2 guarantees that our proposed protocol is correct
and secure.
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Figure 1: The KWH-tree of our six-card copy protocol on a standard deck
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Figure 2: The KWH-tree of our six-card copy protocol on a two-colored deck



5 XOR PROTOCOL USING ONLY RANDOM
CUT

In this section, going back to the standard-deck case, we construct
a new XOR protocol by applying the idea behind the technique
presented in Section 3.1. This makes it possible to perform a secure
XOR computation where the number of cards and the number of
shuffles are both minimized and the used shuffle is a random cut.

5.1 Protocol Description
Given two commitments to 𝑎, 𝑏 ∈ {0, 1}, our protocol proceeds as
follows.

1. Place the input commitments:

? ?︸︷︷︸
[𝑎]{1,2}

? ?︸︷︷︸
[𝑏 ]{3,4}

.

2. Rearrange the sequence:
1
?

2
?

3
?

4
? →

1
?

3
?

2
?

4
? .

3. Apply a random cut to the sequence of four cards:〈
? ? ? ?

〉
→ ? ? ? ? .

4. Turn over the first card. If it is 1 or 4 , swap the second
and third cards. If it is 2 or 3 , permute the cards according
to (2 4 3).

5. Then we have

1 ? ? ?︸︷︷︸
[𝑎⊕𝑏 ]{3,4}

, 2 ? ? ?︸︷︷︸
[𝑎⊕𝑏 ]{3,4}

,

3 ? ? ?︸︷︷︸
[𝑎⊕𝑏 ]{1,2}

or 4 ? ? ?︸︷︷︸
[𝑎⊕𝑏 ]{1,2}

.

Thus, our protocol requires only one random cut and does not
require any additional card. Since the existing XOR protocol using
only random cuts, namely Niemi and Renvall’s XOR protocol [24],
requires an average of seven shuffles, as shown in Table 3, our
protocol is superior to it. Furthermore, under the encoding rule (2),
our protocol is optimal in terms of both the number of cards and the
number of shuffles, and is no worse than the existing XOR protocol
using a random bisection cut proposed by Mizuki [16].

5.2 Pseudocode
The following is a pseudocode for our XOR protocol on a standard
deck.

input set:{( ?
2
,
?
1
,
?
4
,
?
3

)
,

( ?
2
,
?
1
,
?
3
,
?
4

)
,

( ?
1
,
?
2
,
?
4
,
?
3

)
,

( ?
1
,
?
2
,
?
3
,
?
4

)}
(perm, (2 3))
(shuf,RC1,2,3,4)
(turn, {1})
if visible seq. = (1, ?, ?, ?) or (4, ?, ?, ?) then
(perm, (2 3))

else if visible seq. = (2, ?, ?, ?) or (3, ?, ?, ?)then

(perm, (2 4 3))
(result, (3, 4))

5.3 Correctness and Security
We can show the correctness and security of this protocol in the
same way as we did thus far. The KWH-tree in Figure 3 guaran-
tees that our proposed protocol is correct and secure. Note that,
contrary to the previous XOR protocols [16, 24], the base of output
commitment is not deterministic, i.e., is either {1, 2} or {3, 4}.

6 CONCLUSION
In card-based cryptography, the random cut is believed to be the
most easy-to-implement shuffle, and hence, card-based protocols
that rely only on random cuts are much preferable. In this paper,
we have constructed three new protocols using only random cuts
as shuffle actions.

Specifically, the first protocol is a six-card copy protocol working
on a standard deck, and uses three random cuts on average. The
second one is also a six-card copy protocol with three random cuts,
working on a two-colored deck. The third one is a standard-deck
XOR protocol using only one random cut without any additional
card. Every protocol is superior to the existing ones in terms of the
number of cards or shuffles.

Because our copy protocols produce two copied commitments,
an intriguing open problem is to extend our results to constructing
copy protocols which generate more than two copied commitments.
Note that our protocol presented in Section 3 can be generalized
(based on the basic technique shown in Section 3.1) although it
would increase the expected number of shuffles. In particular, to
make 𝑘 copied commitments, we use 2𝑘 additional cards and 𝑘 + 1
shuffles (on average).
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