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ABSTRACT
Executing a card-based cryptographic protocol is an attractive way
to perform secure multiparty computation (MPC) with a deck of
physical cards. Crèpeau and Kilian at CRYPTO 1993 proposed card-
based AND and XOR protocols that can deal with a logical conjunc-
tion and exclusive-or of variables. Their protocols use a familiar
shuffling action called a random cut that can be easily implemented
by humans, while the numbers of required cards and shuffles are
not small enough to be efficient and the protocols are Las Vegas al-
gorithms, i.e., they are not finite-runtime. Several researchers have
improved upon the protocols for a quarter of a century. Eventually,
there are many AND protocols in the literature, some of which
are quite efficient and practical to execute. By contrast, there are
only three XOR protocols including the Crèpeau–Kilian protocol
mentioned above. In this paper, we design an efficient XOR protocol
using only random cuts; the numbers of required cards and shuffles
are six and two (which is fixed), respectively. Our proposed XOR
protocol is the first construction of a finite-runtime XOR protocol
if we restrict ourselves to use only random cuts.
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1 INTRODUCTION
Executing a card-based cryptographic protocol is an attractive way
to perform secure multiparty computation (MPC) with a deck of
physical cards. Since den Boer [3] produced the “five-card trick” in
1989, many card-based protocols have been invented.
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1.1 Card-Based AND and XOR Protocols
Most card-based protocols use a two-colored deck of cards, namely
red ♥ and black ♣ cards having identical backs ? . To manipu-
late Boolean values, we use the following encoding rule:

♣ ♥ = 0, ♥ ♣ = 1. (1)

According to the above encoding rule, a player having their private
bit 𝑥 ∈ {0, 1} can commit 𝑥 by putting two face-down cards on a
table:

? ?︸ ︷︷ ︸
𝑥

.

We call such a pair of face-down cards a commitment to 𝑥 .
Given two commitments to 𝑎, 𝑏 ∈ {0, 1} (along with six helping

cards1), the Crèpeau–Kilian AND protocol [2] outputs a commit-
ment to 𝑎 ∧ 𝑏 without revealing any information about the values
of 𝑎 and 𝑏:

? ?︸ ︷︷ ︸
𝑎

? ?︸ ︷︷ ︸
𝑏

♣ ♥ ♠ ♠ ♦ ♦ → · · · → ? ?︸ ︷︷ ︸
𝑎∧𝑏

.

Since the output value is derived as a commitment, it can be used
as an input commitment for another computation. The drawback of
the protocol is that the numbers of required cards and shuffles are
not small enough to be efficient and it is a Las Vegas algorithm, i.e.,
the number of required shuffles is only expectedly finite. Several
researchers have improved upon the protocol for a quarter of a
century. Eventually, there are many AND protocols as shown in
Table 1, some of which are quite efficient and practical to execute.

On the other hand, another important elementary computation
is XOR (exclusive-or). As for XOR, Crèpeau and Kilian [2] also
proposed an XOR protocol with 14 cards by modifying their AND
protocol:

? ?︸ ︷︷ ︸
𝑎

? ?︸ ︷︷ ︸
𝑏

♣ ♣ ♣ ♥ ♥ ♥ ♠ ♠ ♦ ♦ →

· · · → ? ?︸ ︷︷ ︸
𝑎⊕𝑏

.

1The Crèpeau–Kilian AND protocol uses a four-colored deck of cards.
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Table 1: The existing card-based AND protocols, where “RC” means the random cut and “RBC” means the random bisection
cut.

#Colors #Cards #Shuf. Runtime Type of shuf.
Crépeau–Kilian [2] 4 10 8 (exp.) Las Vegas RC
Niemi–Renvall [11] 2 12 7.5 (exp.) Las Vegas RC
Stiglic [12] 2 8 2 (exp.) Las Vegas RC
Mizuki–Sone [9] 2 6 1 finite RBC
Abe et al. [1] 2 5 7 (exp.) Las Vegas RC & RBC
Five-card KWH [6] 2 5 14/3 (exp.) finite not practical
Four-card KWH [6] 2 4 8 (exp.) Las Vegas not practical

That is, it uses 14 cards of four colors and ten shuffles on average.
The shuffle their protocol uses is a familiar shuffling action called a
random cut (which will be explained in Section 2).

To reduce the number of required cards and shuffles, Mizuki,
Uchiike, and Sone [10] in 2006 proposed a Las Vegas XOR protocol
with ten cards, improving upon the Crèpeau–Kilian protocol:

? ?︸ ︷︷ ︸
𝑎

? ?︸ ︷︷ ︸
𝑏

♣ ♣ ♣ ♥ ♥ ♥ → · · · → ? ?︸ ︷︷ ︸
𝑎⊕𝑏

.

That is, it uses ten cards of two colors and seven shuffles (random
cuts) on average. We will briefly introduce the protocol in Section 2.

Three years after that, Mizuki and Sone [9] in 2009 proposed an
efficient finite-runtime XOR protocol that requires only four cards
and one shuffle.

Thus, in contrast to AND protocols (as shown in Table 1), there
are only three XOR protocols including the Crèpeau–Kilian protocol
as shown in Table 2.2

1.2 Contribution
See Table 2 again. The Mizuki–Sone XOR protocols [9] is the most
efficient one with respect to the numbers of required cards and
shuffles. Their protocol uses a shuffling action called a random
bisection cut (not a random cut) that bisects a sequence of cards
and then shuffles the two halves. A random bisection cut can be
implemented securely by using additional tools [13]. Therefore,
the random cut is better than the random bisection cut in terms of
easy implementation. However, we note that there exists no finite-
runtime XOR protocol using only random cuts, as known from
Table 2. This means that showing the possibility or impossibility for
finding such a protocol remains a challenging task in the research
area of card-based protocols. It should be noted that in 2017 Koch
and Walzer [5] proposed actively secure protocols depending only
on random cuts and they implied that finding new protocols using
only random cuts is an interesting open challenge.

In this paper, we affirmatively answer the above question. That
is, we give a finite-runtime XOR protocol using only random cuts.
See the bottom row in Table 2. Our proposed protocol requires six
cards (i.e., two input commitments, a helping black card, and a red

2In 2015 Koch, Walzer, and Härtel [6] presented a general protocol for any
𝑛-ary Boolean function with 2𝑛 cards. This implies the existence of a secure
XOR protocol without any additional card using a non-practical shuffle, namely
(shuf, {(2 3), (1 2), (3 4), (1 3 4 2) }), although it needs to restart with a probability
of 3/4.

card):

? ?︸ ︷︷ ︸
𝑎

? ?︸ ︷︷ ︸
𝑏

♣ ♥ → · · · → ? ?︸ ︷︷ ︸
𝑎⊕𝑏

.

The number of required shuffles (namely, random cuts) is exactly
two (which is fixed).

We will prove the correctness and security of our proposed six-
card XOR protocol by using the KWH-tree (whose idea and notion
were invented in [6]), from which we can visually confirm state
transitions of the protocol.

1.3 Outline
The remainder of this paper is organized as follows. In Section 2, we
introduce the Mizuki–Uchiike–Sone XOR protocol [10] to present
what a card-based protocol is and what a random cut is. In Section 3,
we present our six-card finite-runtime XOR protocol. In Section 4,
we prove the correctness and security of our proposed protocol
by showing its KWH-tree [6]. In Section 5, we mention the idea
behind our proposed protocol. We conclude this paper in Section 6.

2 MIZUKI–UCHIIKE–SONE XOR PROTOCOL
In this section, we introduce the Mizuki–Uchiike–Sone XOR pro-
tocol [10]; given two commitments to 𝑎, 𝑏 ∈ {0, 1} along with six
helping cards (three black and three red cards), it outputs a com-
mitment to 𝑎 ⊕ 𝑏:

? ?︸ ︷︷ ︸
𝑎

? ?︸ ︷︷ ︸
𝑏

♣ ♣ ♣ ♥ ♥ ♥ → · · · → ? ?︸ ︷︷ ︸
𝑎⊕𝑏

.

The protocol proceeds as follows.

(1) Put the ten cards as follows:

? ?︸ ︷︷ ︸
𝑎

? ?︸ ︷︷ ︸
𝑏

♣ ♥ ♣ ♥ ♣ ♥ .

Then, turn over the face-up cards:

? ?︸ ︷︷ ︸
𝑎

? ?︸ ︷︷ ︸
𝑏

? ?︸ ︷︷ ︸
0

? ?︸ ︷︷ ︸
0

? ?︸ ︷︷ ︸
0

.



Table 2: The existing card-based XOR protocols and our proposed protocol.

#Colors #Cards #Shuf. Runtime Type of shuf.
Crépeau–Kilian [2] 4 14 10 (exp.) Las Vegas RC
Mizuki–Uchiike–Sone [10] 2 10 7 (exp.) Las Vegas RC
Mizuki–Sone [9] 2 4 1 finite RBC
Ours 2 6 2 finite RC

(2) Apply a random cut (denoted by ⟨· · · ⟩) to the rightmost four
cards:

? ?︸ ︷︷ ︸
𝑎

? ?︸ ︷︷ ︸
𝑏

? ?︸ ︷︷ ︸
0

〈
? ?︸ ︷︷ ︸
0

? ?︸ ︷︷ ︸
0

〉
→

? ?︸ ︷︷ ︸
𝑎

? ?︸ ︷︷ ︸
𝑏

? ?︸ ︷︷ ︸
0

? ?︸ ︷︷ ︸
𝑟

? ?︸ ︷︷ ︸
𝑟

,

where 𝑟 is a random bit. A random cut is to cyclically shifts
the sequence of cards at random without changing its order.
Note that a random cut can be easily implemented with
human hands so that nobody knows the offset [14].

(3) Apply two random cuts as follows:〈
? ? ? ?

〉 〈
? ? ? ?

〉
? ?︸ ︷︷ ︸
𝑟

.

(4) Draw the first and fifth cards without revealing them:
draw︷︸︸︷
? ? ? ?

draw︷︸︸︷
? ? ? ? ? ? . (2)

Then, apply a random cut to the two drawn cards:〈
? ?

〉
,

and reveal them.
(a) If the resulting sequence is ♣ ♥ or ♣ ♥ , go to Step 5.
(b) If the resulting sequence is ♣ ♣ or ♥ ♥ , return the

two cards to the sequence (2) with their faces down. Then,
go back to Step 3.

(5) Reveal the third and seventh cards:

? ?

reveal︷︸︸︷
? ? ? ?

reveal︷︸︸︷
? ? ? ? .

(a) If the resulting sequence is ♣ ♥ or ♣ ♥ (which implies
𝑎 ⊕ 𝑏 ⊕ 0 ⊕ 𝑟 (= 𝑎 ⊕ 𝑏 ⊕ 𝑟 ) = 0), the rightmost two cards
(i.e., the commitment to 𝑟 ) form the output 𝑎 ⊕ 𝑏.

(b) If the resulting sequence is ♣ ♣ or ♥ ♥ , (which im-
plies 𝑎 ⊕𝑏 ⊕ 0⊕ 𝑟 = 1), the rightmost two cards form 𝑎 ⊕ 𝑏.
Then, reverse the order of the two cards consisting of the
commitment to 𝑎 ⊕ 𝑏 to obtain a commitment to 𝑎 ⊕ 𝑏.

The numbers of required cards and shuffles for this XOR protocol
are ten and seven (which is an expected number), respectively; this
is a Las Vegas protocol because the protocol (in Step 4) has the
possibility of going back to the previous step (with a probability of
1/2). See Table 2 again.

3 OUR XOR PROTOCOL
In this section, we construct a six-card finite-runtime XOR protocol
using only random cuts.

3.1 Description
Here, we give the description of our protocol.

(1) Put the two input commitments and the two helping cards
as follows:

? ?︸ ︷︷ ︸
𝑎

? ?︸ ︷︷ ︸
𝑏

♥ ♣ .

Then, turn over the two face-up cards:

? ?︸ ︷︷ ︸
𝑎

? ?︸ ︷︷ ︸
𝑏

? ? .

(2) Rearrange the order of the sequence as follows:

? ? ? ? ? ?

��	@@R
? ? ? ? ? ? .

(3) Apply a random cut to the sequence of six cards:〈
? ? ? ? ? ?

〉
→ ? ? ? ? ? ? .

(4) Reveal the first and the third cards:
reveal︷︸︸︷
? ?

reveal︷︸︸︷
? ? ? ? .

(a) If ♣ ♣ appears, then turn them face down:

♣ ? ♣ ? ? ? → ? ? ? ? ? ? ,

and then rearrange the order as follows:

? ? ? ? ? ?
XXXXXXz��	��	��	��	

? ? ? ? ? ? .

(b) If ♥ ♥ appears, then turn them face down:

♥ ? ♥ ? ? ? → ? ? ? ? ? ? ,

and then rearrange the order as follows:

? ? ? ? ? ?
�������9

HHHj @@R@@R@@R
? ? ? ? ? ? .



(c) If ♣ ♥ appears, then reveal the second card:

♣

reveal︷︸︸︷
? ♥ ? ? ? .

(i) If ♣ appears, then turn over the three face-up cards:

♣ ♣ ♥ ? ? ? → ? ? ? ? ? ? ,

and then rearrange the order as follows:
? ? ? ? ? ?

�
��� @@R@@R

? ? ? ? ? ? .

(ii) If ♥ appears, then turn over the three face-up cards:

♣ ♥ ♥ ? ? ? → ? ? ? ? ? ? ,

and then rearrange the order as follows:
? ? ? ? ? ?
XXXXXXXz

��	

������9

? ? ? ? ? ? .

(d) If ♥ ♣ appears, then reveal the second card.
(i) If ♣ appears, then turn over the three face-up cards:

♥ ♣ ♣ ? ? ? → ? ? ? ? ? ? ,

and then rearrange the order as follows:
? ? ? ? ? ?
PPPPPq

�
���

H
HHj
�����)

? ? ? ? ? ? .

(ii) If ♥ appears, then turn over the three face-up cards:

♥ ♥ ♣ ? ? ? → ? ? ? ? ? ? ,

and then rearrange the order as follows:
? ? ? ? ? ?
H
HHj

PPPPPq
�����)

�
���

? ? ? ? ? ? .

(5) Apply a random cut to the sequence of six cards:〈
? ? ? ? ? ?

〉
→ ? ? ? ? ? ? .

(6) Reveal the first card.
(a) If ♣ appears, then reveal the fifth card:

♣ ? ? ?

reveal︷︸︸︷
? ? .

(i) If ♣ appears, then the second and sixth cards form a
commitment to 𝑎 ⊕ 𝑏:

♣ ? ? ? ♣ ?

@@R
����

? ?︸ ︷︷ ︸
𝑎⊕𝑏

.

(ii) If ♥ appears, then the fourth and second cards form a
commitment to 𝑎 ⊕ 𝑏:

♣ ? ? ? ♥ ?
HH

Hj
�

�	
? ?︸ ︷︷ ︸
𝑎⊕𝑏

.

(b) If ♥ appears, then reveal the third card.
(i) If ♣ appears, then the sixth and fourth cards form a

commitment to 𝑎 ⊕ 𝑏:
♥ ? ? ?? ♣

?
�����)

? ?︸ ︷︷ ︸
𝑎⊕𝑏

.

(ii) If ♥ appears, then the second and sixth cards form a
commitment to 𝑎 ⊕ 𝑏:

♥ ? ? ?? ♥

@
@R

��
��

? ?︸ ︷︷ ︸
𝑎⊕𝑏

.

This is our XOR protocol. Since this protocol has no loop, it
terminates within a fixed number of shuffles (namely, random cuts),
which is exactly two. See the bottom row in Table 2 again.

3.2 Pseudocode
The following is a pseudocode for our protocol, where we define

RC6
def
= {id, (1 2 3 4 5 6), (1 2 3 4 5 6)2,

(1 2 3 4 5 6)3, (1 2 3 4 5 6)4, (1 2 3 4 5 6)5},
(perm, 𝜋) for a permutation 𝜋 means to permute the sequence of
cards according to 𝜋 , (turn,𝑇 ) for a set of positions of cards𝑇 means
to turn over all cards whose positions are in 𝑇 , (shuf,Π) for a set
of permutations Π means to apply (perm, 𝜋) such that 𝜋 is drawn
from Π uniformly, and (result, 𝑖, 𝑗) specifies output positions.

input set:{( ?
♥ ,

?
♣ ,

?
♥ ,

?
♣ ,

?
♥ ,

?
♣

)
,

( ?
♥ ,

?
♣ ,

?
♣ ,

?
♥ ,

?
♥ ,

?
♣

)
,( ?

♣ ,
?
♥ ,

?
♥ ,

?
♣ ,

?
♥ ,

?
♣

)
,

( ?
♣ ,

?
♥ ,

?
♣ ,

?
♥ ,

?
♥ ,

?
♣

)}
(perm, (4 5))

(shuf,RC6)
(turn, {1, 3})
if visible seq. = (♣, ?, ♣, ?, ?, ?) then

(turn, {1, 3})
(perm, (2 6 5 4 3))

else if visible seq. = (♥, ?,♥, ?, ?, ?) then
(turn, {1, 3})



(perm, (1 2 4 5 6))
else if visible seq. = (♣, ?,♥, ?, ?, ?) then

(turn, {2})
if visible seq. = (♣, ♣,♥, ?, ?, ?) then

(turn, {1, 2, 3})
(perm, (3 4 5))

else if visible seq. = (♣,♥,♥, ?, ?, ?) then
(turn, {1, 2, 3})
(perm, (1 6 5))

else if visible seq. = (♥, ?, ♣, ?, ?, ?) then
(turn, {2})
if visible seq. = (♥, ♣, ♣, ?, ?, ?) then

(turn, {1, 2, 3})
(perm, (1 4 6 3))

else if visible seq. = (♥,♥, ♣, ?, ?, ?) then
(turn, {1, 2, 3})
(perm, (1 3 6 4))

(shuf,RC6)
(turn, {1})
if visible seq. = (♣, ?, ?, ?, ?, ?) then

(turn, {5})
if visible seq. = (♣, ?, ?, ?, ♣, ?) then

(result, 2, 6)
else if visible seq. = (♣, ?, ?, ?,♥, ?) then

(result, 4, 2)
else if visible seq. = (♥, ?, ?, ?, ?, ?) then

(turn, {3})
if visible seq. = (♥, ?, ♣, ?, ?, ?) then

(result, 6, 4)
else if visible seq. = (♥, ?,♥, ?, ?, ?) then

(result, 2, 6)

In the next section, we confirm that our protocol definitively
produces a commitment to 𝑎 ⊕ 𝑏 without leaking any information
about 𝑎 and 𝑏.

4 CORRECTNESS AND SECURITY
In this section, we verify the correctness and security of the protocol
presented in Section 3.

An XOR protocol is said to be correct if, given input commitments
to 𝑥,𝑦, it always produces a commitment to 𝑥 ⊕𝑦. We call a protocol
is secure if it leaks no information for any run of the protocol (in
other words, random variables 𝐼 and𝑉 denoting the inputs and the
visible sequence trace, respectively, are stochastically independent,
where the visible sequence trace means what can be observed on the
table). See [6–8] for the more formal definitions based on abstract
machine and information theory.

To confirm that our protocol is correct and secure, we make
use of the KWH-tree, which is a beautiful tool developed by Koch,
Walzer, and Härtel [6]. That is, if one is able to write a KWH-tree
satisfying some properties for a protocol, then it automatically
implies that the protocol is correct and secure; see [4, 6, 8] for the
details.

We describe the KWH-tree of our proposed protocol in Figure 1.
In this figure, we call each box a state. The first state (box) in Figure 1

Table 3: Possible sequences of six cards divided into four
equivalent classes, based on cyclic rotations.

(A) (B) (C) (D)
(♥♣♥♣♥♣) (♥♥♥♣♣♣) (♥♥♣♥♣♣) (♥♥♣♣♥♣)
(♣♥♣♥♣♥) (♥♥♣♣♣♥) (♥♣♥♣♣♥) (♥♣♣♥♣♥)

(♥♣♣♣♥♥) (♣♥♣♣♥♥) (♣♣♥♣♥♥)
(♣♣♣♥♥♥) (♥♣♣♥♥♣) (♣♥♣♥♥♣)
(♣♣♥♥♥♣) (♣♣♥♥♣♥) (♥♣♥♥♣♣)
(♣♥♥♥♣♣) (♣♥♥♣♥♣) (♣♥♥♣♣♥)

corresponds to an initial sequence, consisting of two input commit-
ments and two helping cards; 𝑋00, 𝑋01, 𝑋10, and 𝑋11 represent the
probabilities of

(𝑎, 𝑏) = (0, 0), (𝑎, 𝑏) = (0, 1), (𝑎, 𝑏) = (1, 0), and (𝑎, 𝑏) = (1, 1),

respectively. A polynomial annotating a card sequence in a state,
such as 1/6𝑋00, represents the conditional probability that the cur-
rent sequence is the one next to the polynomial, given the visible
sequence trace observed so far on the table. From the four states
(boxes) at the bottom, one can see that a commitment to 𝑎 ⊕ 𝑏 is
definitively obtained. Furthermore, in each state, the sum of all
polynomials is equal to 𝑋00 + 𝑋01 + 𝑋10 + 𝑋11, implying that no
information about 𝑎 and 𝑏 leaks, i.e., the inputs and visible sequence
trace are stochastically independent. It should be noted that when
a turn action is applied, for each possible visible sequence, there is
a constant 𝑐 such that its probability is 𝑐 (𝑋00 + 𝑋01 + 𝑋10 + 𝑋11).

Thus, the KWH-tree in Figure 1 guarantees that our proposed
protocol is correct and secure. (As stated in Proposition 1 of [4], the
KWH-tree is a witness for the correctness and security.)

5 IDEA BEHIND OUR PROTOCOL
In this section, we explain the idea behind our protocol.

As seen in Figure 1, the initial state of our protocol can be written
as

{(♥♣♥♣♥♣, 𝑋11), (♥♣♣♥♥♣, 𝑋10),
(♣♥♥♣♥♣, 𝑋01), (♣♥♣♥♥♣, 𝑋00)}.

To generate a commitment to 𝑎 ⊕ 𝑏, we want to “mix” 𝑋11 and 𝑋00
(where the result is 1 ⊕ 1 = 0 ⊕ 0 = 0) and mix 𝑋10 and 𝑋01 (where
the result is 1 ⊕ 0 = 0 ⊕ 1 = 1) so that we have the bottom-most
states in Figure 1, such as

{(♣♣♥♥♣♥, 𝑋11 + 𝑋00), (♣♥♥♥♣♣, 𝑋10 + 𝑋01)}.

Let us show how to achieve this, as below.
Note that there are 20 combinations of possible sequences of

six cards (three red cards and three black cards). Considering that
the random cut is a cyclic shuffling operation, let us divide these
sequences into four equivalent classes, as shown in Table 3. When a
random cut is applied to a sequence, the resulting sequence equally
likely becomes one of the sequences that belong to the same class.
For example, if we apply a random cut to a state

{(♥♣♥♥♣♣, 𝑋11)}, 3
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Figure 1: The KWH-tree of our six-card finite-runtime XOR protocol.



the resulting state will be

{(♥♥♣♣♥♣, 1/6𝑋11), (♥♣♣♥♣♥, 1/6𝑋11),
(♣♣♥♣♥♥, 1/6𝑋11), (♣♥♣♥♥♣, 1/6𝑋11),
(♥♣♥♥♣♣, 1/6𝑋11), (♣♥♥♣♣♥, 1/6𝑋11)}.

For another example, if we apply a random cut to a state

{(♥♣♥♥♣♣, 𝑋11), (♣♥♣♥♥♣, 𝑋00)},

the resulting state will be

{(♥♥♣♣♥♣, 1/6(𝑋11 + 𝑋00)), (♥♣♣♥♣♥, 1/6(𝑋11 + 𝑋00)),
(♣♣♥♣♥♥, 1/6(𝑋11 + 𝑋00)), (♣♥♣♥♥♣, 1/6(𝑋11 + 𝑋00)),
(♥♣♥♥♣♣, 1/6(𝑋11 + 𝑋00)), (♣♥♥♣♣♥, 1/6(𝑋11 + 𝑋00))}.

As in this second example, we are able to mix 𝑋11 and 𝑋00 by
a random cut, i.e., from the resulting sequence we cannot know
whether the input is (0,0) or (1,1). Because just applying a random
cut to the initial state

{(♥♣♥♣♥♣, 𝑋11), (♥♣♣♥♥♣, 𝑋10),
(♣♥♥♣♥♣, 𝑋01), (♣♥♣♥♥♣, 𝑋00)}

cannot mix 𝑋11 and 𝑋00, we first apply a permutation (4 5) so
that some of the resulting sequences after a random cut become
cyclically equivalent. Thus, 𝑋11 and 𝑋00 are now mixed as shown
in the third state from the top in Figure 1.

Next, we want to mix 𝑋10 and 𝑋01. For this, we first reveal some
cards to “reduce” the number of possibilities. For example, if we
reveal the first and third cards and they are both black, then the
resulting state will be

{(♣♥♣♥♥♣, 𝑋11 + 𝑋00), (♣♥♣♣♥♥, 𝑋10), (♣♣♣♥♥♥, 𝑋01)}.

Then, it suffices to apply a permutation (2 6 5 4 3) to make the last
two sequences belong to the same class (while keeping the first
sequence in a distinct class). In other cases as well, by applying a
permutation corresponding to each state and applying a random
cut, we can mix 𝑋10 and 𝑋01 as shown in the third state from the
bottom in Figure 1.

Finally, we turn over two cards to obtain a commitment to 𝑎 ⊕ 𝑏.
For example, if we reveal the first and fifth cards and they are both
black, then the resulting state will be

{(♣♣♥♥♣♥, 𝑋11 + 𝑋00), (♣♥♥♥♣♣, 𝑋10 + 𝑋01)},

and the second and sixth cards constitute a commitment to 𝑎 ⊕ 𝑏.

6 CONCLUSION
In this paper, we constructed a six-card finite-runtime XOR protocol
using only random cuts; it uses exactly only two random cuts. This
is the first finite-runtime XOR protocol using only random cuts.

It is an interesting open problem whether there is an XOR proto-
col that uses only random cuts and less than six cards.

3Note that this example never appears in any secure XOR protocol.
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