
An Implementation of Non-Uniform Shuffle for Secure
Multi-Party Computation∗

Akihiro Nishimura
Graduate School of

Information Sciences,
Tohoku University

6-3 Aramaki-Aza-Aoba,
Aoba, Sendai 980-8578,

Japan

Yu-ichi Hayashi
Faculty of Engineering,

Tohoku Gakuin University
1-13-1 Chuo, Tagajo,

Miyagi 985-8537, Japan

Takaaki Mizuki
Cyberscience Center,

Tohoku University
6-3 Aramaki-Aza-Aoba,
Aoba, Sendai 980-8578,

Japan
tm-

paper+cardshimw[at]g-
mail.tohoku-university.jp

Hideaki Sone
Cyberscience Center

Tohoku University
6-3 Aramaki-Aza-Aoba,
Aoba, Sendai 980-8578,

Japan

ABSTRACT
Card-based cryptographic protocols provide secure multi-party com-
putation using a deck of physical cards. The most important prim-
itive of those protocols is the shuffling operation, and most known
protocols rely on uniform shuffles (such as the random cut and
random bisection cut) in which each possible outcome is equally
likely. However, several protocols with non-uniform shuffles have
recently been proposed by Koch et al. Compared to other protocols,
their protocols require fewer cards to securely produce a hidden
AND value, although implementation of the non-uniform shuffle
appearing in their protocols remains an open problem. This paper
presents a secure implementation of their non-uniform shuffle. To
implement the shuffle, we utilize physical cases that can store piles
of cards, such as boxes and envelopes. Therefore, humans are able
to perform the non-uniform shuffle using these everyday objects.

Keywords
Card-based cryptographic protocols; Secure multi-party computa-
tions; Real-life hand-on cryptography

1. INTRODUCTION
Card-based cryptographic protocols provide secure multi-party

computation using a deck of physical cards. A protocol consists
of a combination of rearranging, shuffling, and turning-over oper-
ations for a sequence of cards along with some encoding scheme.
∗This is the Accepted Version.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

AsiaPKC’16, May 30-29 2016, Xi’an, China
c⃝ 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4286-5/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2898420.2898425

Many protocols have been proposed to perform AND computation
(e.g. [1, 2, 4, 6, 8, 12]), XOR computation (e.g. [1, 6, 7]), and
any Boolean function (e.g. [9]). In particular, there has been con-
siderable research on designing a committed AND protocol that
produces a hidden AND value. Table 1 shows some of the known
committed AND protocols. For example, on one hand, the proto-
col proposed in [12] requires eight cards and uses a random cut, in
which the card sequence is randomly shifted; on the other hand, the
protocol proposed in [6] requires six cards and uses a random bisec-
tion cut, in which the card sequence is bisected into two piles that
are then randomly switched. Thus, the number of required cards
differs depending on individual protocols. Specifically, shuffling
operations play an important role in designing efficient protocols;
that is, the number of required cards could be decreased by adopt-
ing other shuffling operations.

Actually, a four-card committed AND protocol was recently pro-
posed by Koch et al. at Asiacrypt 2015 [3]. They succeeded in
reducing the number of cards required to securely generate a com-
mitted AND value through the use of an unconventional shuffle
operation, namely a non-uniform shuffle. In this technique, they
consider a shuffle operation that has a non-uniform probability dis-
tribution. However, finding a feasible implementation (for humans)
of the non-uniform shuffle remains an open problem [3].

This paper provides a solution to the problem; i.e., we present
a secure implementation of the non-uniform shuffle appearing in
their protocols. To implement the shuffle, we use physical cases
that can store a pile of cards, such as boxes and envelopes. There-
fore, it is possible for humans to perform the shuffle using such
everyday objects.

The remainder of this paper is organized as follows. The rest of
this section presents several notations related to card-based cryp-
tographic protocols. Section 2 introduces the two AND protocols
proposed by Koch et al. at Asiacrypt 2015 [3]. Section 3 describes
thechniques to utilize the cases that we assume. Section 4 proposes
a general description of our implementation. Section 5 explicitly
shows that the AND protocols by Koch et al. [3] can be executed
by humans. Section 6 concludes our paper.

Table 1: Committed AND protocol

Reference
of

colors
of

cards
Type of
shuffle

Avg. #
of trials

[1] 4 10 RC 6

[8] 2 12 RC 2.5

[12] 2 8 RC 2

[6] 2 6 RBC 1

RC: Random Cut, RBC: Random Bisection Cut

1.1 Preliminary Notations
Here, we provide preliminary notations regarding card-based cryp-

tographic protocols.
First, we assume that cards satisfy the following properties.

1. All cards of the same type (black ♣ or red ♡) are indis-
tinguishable from one another.

2. The back side of each card ? is the same, and hence, all
face-down cards are indistinguishable from one another.

Next, the encoding scheme to handle Boolean values is defined as:

♣ ♡ = 0, ♡ ♣ = 1. (1)

Given a bit x ∈ {0, 1}, when a pair of face-down cards ? ?
describes the value of x with encoding scheme (1), it is called a
commitment to x and is expressed as

? ?︸ ︷︷ ︸
x

.

Given commitments to a, b ∈ {0, 1}, the committed AND pro-
tocols listed in Table 1 produce their output as a commitment to
a ∧ b.

1.2 Computational Model
Here, we briefly introduce the computational model and the method

of describing a protocol [3, 5].
A tuple

Γ = (α1, α2, · · · , αd)

represents a sequence of d cards for some d ∈ IN where αi is a face-
down or face-up card, 1 ≤ i ≤ d. The operations that can be applied
in a protocol are defined below.

Turning Over
Given a turn set T ⊆ {1, 2, · · · , d} for a sequence Γ = (α1, α2,
· · · , αd), we write (turn, T) to express a turning-over oper-
ation where all cards whose positions in T are turned over.
For example, given a sequence of two cards

♣ ♡ ,

operation (turn, {1, 2}) results in

? ?︸ ︷︷ ︸
0

,

which is a commitment to 0.

Rearrangement
By S d, we denote the symmetric group of degree d. Given a
permutation π ∈ S d for a sequence Γ = (α1, α2, · · · , αd), we
write (perm, π) to express a rearrangement operation after
which we have the resulting sequence:

(απ−1(1), απ−1(2), · · · , απ−1(d)).

Consider cyclic permutation (1 3 4 2) as an example. For a
sequence of four face-down cards, operation (perm, (1 3 4 2))
works as

? ? ? ?
HHHj��	 @@R

����
? ? ? ? .

Shuffling
Given a probability distribution F on a permutation set Π ⊆
S d for a sequence Γ = (α1, α2, · · · , αd), we write

(shuffle,Π,F)

to represent a shuffling operation that probabilistically ap-
plies (perm, π) to Γ where π is chosen from Π according to
F .

Hereafter, id denotes the identify permutation. For example,
for two commitments

? ?︸ ︷︷ ︸
a

? ?︸ ︷︷ ︸
b

,

operation

(shuffle, {id, (1 3)(2 4)}, id 7→ 1/2, (1 3)(2 4) 7→ 1/2)

results in either

? ?︸ ︷︷ ︸
a

? ?︸ ︷︷ ︸
b

or ? ?︸ ︷︷ ︸
b

? ?︸ ︷︷ ︸
a

where each occurs with a probability of exactly 1/2. Such a
shuffling operation is called a random bisection cut [6].

The example above is a type of “uniform” shuffle; i.e., possi-
ble permutations id and (1 3)(2 4) are uniformly distributed.
In this case, we simply write (shuffle, {id, (1 3)(2 4)}). Gen-
erally, we write (shuffle,Π) instead of (shuffle,Π,F) if F is
a uniform distribution.

The random bisection cut is a popular shuffling operation,
and used in many known protocols (e.g. [3, 4, 6, 9]). Another
popular type of uniform shuffle is the random cut, which
means cyclic shifting; for example,

(shuffle, {id, (1 2 3), (1 3 2)}).

In the next section, we will describe a “non-uniform” shuffle.

Result
The operation (result, i, j) implies that the i-th and j-th cards
constitute the output commitment.

2. KOCH’S AND PROTOCOLS USING NON-
UNIFORM SHUFFLE

This section introduces the descriptions of the AND protocols
proposed by Koch et al [3]. They proposed two AND protocols: the
first is a four-card Las Vegas protocol, and the second is a five-card

finite-runtime protocol. Hereafter, we refer to the former as Koch’s
four-card AND protocol and the latter as Koch’s five-card AND
protocol; these are described in Sections 2.1 and 2.2, respectively.

2.1 Koch’s Four-Card Las Vegas AND Proto-
col

Given two commitments

? ?︸ ︷︷ ︸
a

? ?︸ ︷︷ ︸
b

,

Koch’s four-card AND protocol produces a commitment to a ∧ b.
That is, it requires only four cards to perform a committed AND
computation. It contains a “cycle” because of the "goto" operations,
and hence, it is a Las Vegas algorithm.

Koch’s four card AND protocol.
(shuffle, {id, (1 3)(2 4)})
(shuffle, {id, (2 3)})
(turn, {2})
if (visible seq. is ? ♣ ? ?) then

(turn, {2})
(shuffle, {id, (1 3)})

• (shuffle, {id, (1 2)(3 4)}, id 7→ 1/3, (1 2)(3 4) 7→ 2/3)
(turn, {4})
if (visible seq. is ? ? ? ♣) then

(result, 1, 2)
else if (visible seq. is ? ? ? ♡) then

(turn, {4})
(shuffle, {id, (1 3)})
(perm, (1 3 4 2))
goto ◦

else if (visible seq. is ? ♡ ? ?) then
turn,{2})
(shuffle, {id, (3 4)})

◦ (shuffle, {id, (1 3)(2 4)}, id 7→ 1/3, (1 3)(2 4) 7→ 2/3)
(turn, {1})
if (visible seq. is ♡ ? ? ?) then

(result, 2, 4)
else if (visible seq. is ♣ ? ? ?) then

(turn, {1})
(shuffle, {id, (3 4)})
(perm, (1 2 4 3))
goto •

As seen above, this protocol relies on two types of non-uniform
shuffle:

(shuffle, id 7→ 1/3, (1 2)(3 4) 7→ 2/3) (2)

and

(shuffle, id 7→ 1/3, (1 3)(2 4) 7→ 2/3), (3)

where we omit the descriptions of permutation sets {id, (1 2)(3 4)}
and {id, (1 3)(2 4)}. (Hereafter, we simply write (shuffle,F) instead
of (shuffle,Π,F) as above if F is a non-uniform distribution.) The
latter shuffle (3) means, given

1

?
2

?
3

?
4

? ,

we have
1

?
2

?
3

?
4

? 7→ 1/3 ,
3

?
4

?
1

?
2

? 7→ 2/3,

and hence, it is a sort of random bisection cut although the two pos-
sible outcomes are not uniformly distributed. The former shuffle (2)
means

1

?
2

?
3

?
4

? 7→ 1/3 ,
2

?
1

?
4

?
3

? 7→ 2/3.

Because an implementation of these shuffling operations has not
appeared in the literature, we will provide a solution in Sections 4
and 5.

2.2 Koch’s Five-Card Finite-Runtime AND Pro-
tocol

Koch et al. slightly modified the four-card protocol to create a
five-card finite-runtime AND protocol. Using five cards, it allows
a "break-out" of the cycle, that is, given

? ?︸ ︷︷ ︸
a

? ?︸ ︷︷ ︸
b

♡ ,

the protocol proceeds as follows.

Koch’s five-card AND protocol.
(turn, {5})
(shuffle, {id, (1 3)(2 4)})
(shuffle, {id, (2 3)})
(turn, {2})
if (visible seq. is ? ♣ ? ? ?) then

(turn, {2})
(shuffle, {id, (1 3)})

• (perm, (1 5 2 4))
(shuffle, id 7→ 2/3, (5 4 3 2 1) 7→ 1/3)
(turn, {5})
if (visible seq. is ? ? ? ? ♣) then

(result, 4, 3)
else if (visible seq. is ? ? ? ? ♡) then

(result, 3, 1)
else if (visible seq. is ? ♡ ? ? ?) then

(turn,{2})
(shuffle, {id, (3 4)})
(shuffle, id 7→ 1/3, (1 3)(2 4) 7→ 2/3)
(turn, {1})
if (visible seq. is ♡ ? ? ? ?) then

(result, 2,4)
else if (visible seq. is ♣ ? ? ? ?) then

(turn, {1})
(shuffle, {id, (3 4)})
(perm, (1 2 4 3))
goto •

The first non-uniform shuffle in this protocol is

(shuffle, id 7→ 2/3, (5 4 3 2 1) 7→ 1/3). (4)

On the other hand, the second non-uniform shuffle already appears
in Koch’s four card AND protocol presented in the previous sub-
section.

As mentioned above, finding an implementation of the non-uniform
shuffle remains an open problem. We will solve it in the succeeding
sections.

3. CARD CASES FOR NON-UNIFORM SHUF-
FLE

In this section, we discuss how to implement a non-uniform shuf-
fle through the use of “card cases.”

3.1 How to Utilize Cases
Nishimura et al. considered the card cases shown in Figure 1 to

implement unequal division shuffles [10]. We also utilize the same
type of cases to implement non-uniform shuffles. Each case can
store a deck of cards and has two sliding covers: an upper cover
and a lower cover. We assume that the weight of a deck of cards is
negligible compared to the case.

Figure 1: Card cases having two sliding covers

Now, consider the non-uniform shuffle (3) appearing in Koch’s
four-card AND protocol (Section 2.1); remember that, given a se-
quence of four face-down cards

1

?
2

?
3

?
4

? ,

we must obtain

1

?
2

?
3

?
4

? 7→ 1/3 ,
3

?
4

?
1

?
2

? 7→ 2/3.

To implement this, we use three cases, referred to as C1,C2, and
C3 for the sake of convenience.

1. Divide the sequence into two piles:
1

?
2

? and
3

?
4

? .

2. Store the first pile in C1, store the second pile in C3, and leave
C2 empty, as illustrated in Figure 2.

3. Apply a “random cut” to the case sequence (C1,C2,C3); in
other words, randomly shift these three cases. We call such
an operation a pile-shifting scramble.

4. Stack the three cases as illustrated in Figure 3.

5. Remove all sliding covers except for the top-most and bottom-
most covers simultaneously, as illustrated in Figure 4.

Then, we have a sequence of four face-down cards. Table 2 shows
all three possibilities of case sequences together with card sequences
and probabilities.

Figure 2: The first and second piles are stored in the first and
third cases, respectively.

Figure 3: Stacking the three cases

Figure 4: Removing the covers

Table 2: All possibilities to confirm shuffle (3)
Case sequence Card sequence Probability

(C1,C2,C3)
1

?
2

?
3

?
4

? 1/3

(C3,C1,C2)
3

?
4

?
1

?
2

? 1/3

(C2,C3,C1)
3

?
4

?
1

?
2

? 1/3

From Table 2, one can easily confirm that the non-uniform shuf-
fle

1

?
2

?
3

?
4

? 7→ 1/3 ,
3

?
4

?
1

?
2

? 7→ 2/3

has been implemented.

3.2 Necessary Properties for Cases
To be used in the pile-shifting scramble, cases must have certain

properties. Thus, we assume physical cases that satisfy the follow-
ing properties.

1. It is possible to store a pile of cards in a case without chang-
ing its order.

2. It is possible to eject a pile of cards from a case without
changing its order.

3. It is possible to eject multiple piles without changing their
orders by opening multiple cases at the same time. No infor-
mation leaks will be caused by this action.

4. A number of cases that possibly contain piles of cards are in-
distinguishable from one another, and we cannot obtain any
information about the cards inside. (For instance, the weight
of any pile of cards is negligible compared to the weight of
the case. Hence, the weights of these cases leak no informa-
tion about the internal states. Furthermore, any case contain-
ing a pile is assumed to make no sound.)

We believe we can use boxes or envelopes as such cases.

4. NON-UNIFORM SHUFFLE VIA PILE-
SHIFTING SCRAMBLE

This section proposes a general method to implement a non-
uniform shuffle using the pile-shifting scramble.

4.1 Idea
As seen in Section 3.1, a non-uniform shuffle

(shuffle, id 7→ 1/3, (1 3)(2 4) 7→ 2/3)

can be implemented by using three cases:

C1 C2 C3

1

?
2

?
3

?
4

?
.

As can be easily noticed, the number of cases and the initial po-
sitions of the piles determine the probabilities. For example, if we
have five cases and store the piles as

C1 C2 C3 C4 C5

1

?
2

?
3

?
4

?
,

then another type of non-uniform shuffle

(shuffle, id 7→ 2/5, (1 3)(2 4) 7→ 3/5)

can be implemented.
Furthermore, the pile sizes should not necessarily be the same;

for instance, consider a one-card pile and a four-card pile along
with three cases:

C1 C2 C3

1

?
2

?
3

?
4

?
5

?
.

Then, after a pile-shifting scramble (randomly shifting the three
cases), we have

Case sequence Card sequence Probability

(C1,C2,C3)
1

?
2

?
3

?
4

?
5

? 1/3

(C3,C1,C2)
2

?
3

?
4

?
5

?
1

? 1/3

(C2,C3,C1)
1

?
2

?
3

?
4

?
5

? 1/3

.

Therefore, the non-uniform shuffle
1

?
2

?
3

?
4

?
5

? 7→ 2/3 ,
2

?
3

?
4

?
5

?
1

? 7→ 1/3,

namely

(shuffle, id 7→ 2/3, (5 4 3 2 1) 7→ 1/3)

can be implemented. Actually, this is an exact representation of
shuffle (4), which appears in Section 2.2.

Although the card sequence is split into two piles in each of these
examples, we can, of course, split it into three or more piles; for
instance,

C1 C2 C3 C4

1

?
2

?
3

?
,

achieves

(shuffle, id 7→ 1/4, (1 2 3) 7→ 1/4, (2 3 1) 7→ 1/2),

which is a “non-uniform” random cut.
In the next subsection, we generalize this idea.

4.2 The Power of a Pile-Shifting Scramble
Here, we discuss the shuffle types that can be implemented by

the pile-shifting scramble.
Basically, the pile-shifting scramble achieves a “pile-based” ran-

dom cut; i.e., if we split a sequence of d cards into k piles where
the size of the i-th pile is si, then the permutation set of the shuffle
consists of k permutations:

(
1 · · · s1 s1 + 1 · · · s1 + s2 · · · d − sk + 1 · · · d

1 · · · s1 s1 + 1 · · · s1 + s2 · · · d − sk + 1 · · · d

)−1

,

(
1 · · · sk sk + 1 · · · sk + s1 · · · d − sk−1 + 1 · · · d

d − sk + 1 · · · d 1 · · · s1 · · · d − sk − sk−1 + 1 · · · d − sk

)−1

,

...(
1 · · · s2 s2 + 1 · · · s2 + s3 + 1 · · · d − s1 + 1 · · · d

s1 + 1 · · · s1 + s2 s1 + s2 + 1 · · · s1 + s2 + s3 · · · 1 · · · s1

)−1

.

We denote the permutation set defined above by Π(s1 ,s2 ,··· ,sk).
If we use exactly k cases to store k piles, we obtain a uniform

shuffle (shuffle,Π(s1 ,s2 ,··· ,sk)) i. As seen in the previous subsection,
by preparing empty cases, we are able to obtain a non-uniform
shuffle. We now discuss a general treatment.

Assume that we want to implement a non-uniform shuffle

(shuffle,Π(s1 ,s2 ,··· ,sk),F)

such that the probabilities of distribution F are
p1

q
,

p2

q
, · · · , pk

q
,

where each probability is a non-zero rational number and the great-
est common divisor of pi for 1 ≤ i ≤ k is relatively prime to q. Note
that

k∑
i=1

pi = q.

Then, we require q cases that satisfy the properties mentioned in
Section 3.2. The cases are named C1,C2, · · · ,Cq. The case se-
quence C = (C1,C2, · · · ,Cq) consists of C1,C2, · · · ,Cq. The j-th
pile is stored in case Cℓ j , where 1 ≤ j ≤ k, according to the follow-
ing condition:

ℓ j =

j∑
i=1

pi.

iSuch a shuffling operation is called a cyclic shuffle in [11].

This means that the first pile is stored in the p1-th case, the second
pile is stored in the (p1 + p2)-th case, and so on. The last pile,
namely the k-th pile, is stored in the q-th case (namely, the last
case). The other cases are left empty.

After applying a pile-shifting scramble to case sequence C, there
are q possibilities for the case sequence; each case sequence is gen-
erated with a probability of exactly 1/q. Then, all sliding covers
(except for the top-most and bottom-most covers) are removed to
obtain the resulting sequence of cards.

Among the q possibilities mentioned above, there are p1 possi-
bilities that the sequence starts with the first pile (and ends with
the k-th pile). More generally, there are p j possibilities that the se-
quence starts with the j-th pile for every j, 1 ≤ j ≤ k. Therefore,
the probability that the j-th pile leads the sequence is exactly p j/q,
as desired.

Thus, our implementation can be applied if the probability of
each possible outcome is a non-zero rational number.

Theorem 1. Let s1, s2, · · · , sk be integers. Any shuffle

(shuffle,Π(s1 ,s2 ,··· ,sk),F)

can be implemented by the pile-shifting scramble if every probabil-
ity in F is a non-zero rational number.

5. REAL EXECUTION OF KOCH’S PRO-
TOCOLS

In this section, we demonstrate how to practically implement
Koch’s AND protocols, which were introduced in Sections 2.1 and
2.2.

Note that, aside from non-uniform shuffles (2), (3), and (4), the
known protocols could be executed by humans. Therefore, our non-
uniform shuffle implementation will complete the implementation
of their AND protocols.

Because we have already shown the realization of shuffles (3)
and (4) in Section 4.1, it suffices to focus on shuffle (2), which
results in:

1

?
2

?
3

?
4

? 7→ 1/3 ,
2

?
1

?
4

?
3

? 7→ 2/3.

It appears that shuffle (2) is not a“pile-based” random cut, but it
is implemented by performing additional permutations before and
after the pile-shifting scramble. First, apply (perm, (2 3)) to the
sequence

1

?
2

?
3

?
4

? .

Then, we have
1

?
3

?
2

?
4

? .

Next, apply shuffle (3) to the sequence. Finally, apply (perm, (2 3))
to the sequence.

Table 3 confirms that shuffle (2) is surely implemented.

6. CONCLUSION
In this paper, we proposed a method to securely implement a

non-uniform shuffle. That is, we showed that a non-uniform distri-
bution on possible shuffling outcomes can be generated by consid-
ering physical cases that could hold a pile of cards. As such physi-
cal cases, we can use everyday objects such as boxes and envelopes.
Therefore, we believe that humans can practically perform a non-
uniform shuffle. Our non-uniform shuffle implementation can be,
of course, applied to the two AND protocols designed by Koch et

Table 3: All possibilities to confirm shuffle (2)
Case sequence Card sequence after (perm,(2 3)) Prob.

(C1,C2,C3)
1

?
3

?
2

?
4

?
1

?
2

?
3

?
4

? 1/3

(C3,C1,C2)
2

?
4

?
1

?
3

?
2

?
1

?
4

?
3

? 1/3

(C2,C3,C1)
2

?
4

?
1

?
3

?
2

?
1

?
4

?
3

? 1/3

al. [3] (which are the first two protocols that rely on non-uniform
shuffles); this means that their excellent protocols can be practically
executed by humans using an actual deck of physical cards.

We hope that our implementation will motivate further research
on developing new card-based protocols using non-uniform shuf-
fles.

7. REFERENCES
[1] C. Crépeau and J. Kilian. Discreet solitary games. In D. R.

Stinson, editor, Advances in Cryptology — CRYPTO ’93,
volume 773 of Lecture Notes in Computer Science, pages
319–330. Springer Berlin Heidelberg, 1994.

[2] B. den Boer. More efficient match-making and satisfiability:
the five card trick. In J.-J. Quisquater and J. Vandewalle,
editors, Advances in Cryptology — EUROCRYPT ’89,
volume 434 of Lecture Notes in Computer Science, pages
208–217. Springer Berlin Heidelberg, 1990.

[3] A. Koch, S. Walzer, and K. Härtel. Card-based cryptographic
protocols using a minimal number of cards. In T. Iwata and
J. Cheon, editors, Advances in Cryptology – ASIACRYPT
2015, volume 9452 of Lecture Notes in Computer Science,
pages 783–807. Springer Berlin Heidelberg, 2015.

[4] T. Mizuki, M. Kumamoto, and H. Sone. The five-card trick
can be done with four cards. In X. Wang and K. Sako,
editors, Advances in Cryptology — ASIACRYPT 2012,
volume 7658 of Lecture Notes in Computer Science, pages
598–606. Springer Berlin Heidelberg, 2012.

[5] T. Mizuki and H. Shizuya. A formalization of card-based
cryptographic protocols via abstract machine. International
Journal of Information Security, 13(1):15–23, 2014.

[6] T. Mizuki and H. Sone. Six-card secure AND and four-card
secure XOR. In X. Deng, J. E. Hopcroft, and J. Xue, editors,
Frontiers in Algorithmics, volume 5598 of Lecture Notes in
Computer Science, pages 358–369. Springer Berlin
Heidelberg, 2009.

[7] T. Mizuki, F. Uchiike, and H. Sone. Securely computing
XOR with 10 cards. The Australasian Journal of
Combinatorics, 36:279–293, 2006.

[8] V. Niemi and A. Renvall. Secure multiparty computations
without computers. Theoretical Computer Science,
191(1–2):173–183, 1998.

[9] T. Nishida, Y. Hayashi, T. Mizuki, and H. Sone. Card-based
protocols for any boolean function. In R. Jain, S. Jain, and
F. Stephan, editors, Theory and Applications of Models of
Computation, volume 9076 of Lecture Notes in Computer
Science, pages 110–121. Springer International Publishing,
2015.

[10] A. Nishimura, T. Nishida, Y. Hayashi, T. Mizuki, and
H. Sone. Five-card secure computations using unequal
division shuffle. In A.-H. Dediu, L. Magdalena, and

C. Martín-Vide, editors, Theory and Practice of Natural
Computing, volume 9477 of Lecture Notes in Computer
Science, pages 109–120. Springer International Publishing,
2015.

[11] K. Shinagawa, T. Mizuki, J. Schuldt, K. Nuida,
N. Kanayama, T. Nishide, G. Hanaoka, and E. Okamoto.
Multi-party computation with small shuffle complexity using
regular polygon cards. In M.-H. Au and A. Miyaji, editors,
Provable Security, volume 9451 of Lecture Notes in
Computer Science, pages 127–146. Springer International
Publishing, 2015.

[12] A. Stiglic. Computations with a deck of cards. Theoretical
Computer Science, 259(1–2):671–678, 2001.

Acknowledgments
We thank the anonymous referees, whose comments helped us to
improve the presentation of the paper. This work was supported by
JSPS KAKENHI Grant Number 26330001.

