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It iIs known that

secure multi-party computation

can be performed using red and black cards.




Using two cards of different colors, we can deal with
Boolean values, based on the following encoding:
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Based on this encoding, a player can commit his/her
private input bit to a pair of face-down cards.
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There are many protocols for secure AND computation.



6-card AND protocol [11] @E] = 0 @@= 1
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[11] T. Mizuki and H. Sone, Six-Card Secure AND and Four-Card Secure XOR,
FAW 2009, LNCS 5598, pp. 358-369, 2009.




6-card AND protocol [11] @E] = 0 @@= 1
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XOR computation

4-card XOR protocol [11]
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[11] T. Mizuki and H. Sone, Six-Card Secure AND and Four-Card Secure XOR,
FAW 2009, LNCS 5598, pp. 358-369, 2009.




These protocols
cannot be executed
with a standard deck
of playing cards.
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Almost all existing protocols were designed for
custom two-colored cards.

There is one exception: Niemi-Renvall protocols
[13] can be executed with standard playing cards.

[13] V. Niemi and A. Renvall,
“Solitaire zero-knowledge,”

Fundamenta Informaticae, T
vol. 38, pp. 181-188, 1999 ¥
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Use of a standard deck of playing cards

We assume the following deck of 52 cards
(each card has a unique natural number):

s [1]2][8[4[5[] -
. CEEEER




Niemi and Renvall [13] considered an encoding rule:
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Niemi and Renvall [13] considered an encoding rule:
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We can naturally consider a commitment as well:
2 ij<[i =0
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We call such a set {1,2} a base of the commitment.

19



Under this encoding rule on standard playing cards:

v ANOT computation is trivial. @
. <
— Just to reverse the order

v" Niemi and Renvall [13] constructed:
 AND protocol
 XOR protocol
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Niemi-Renvall AND protocol [13]

ez e

12 B
[a]”” [b]




Niemi-Renvall AND protocol [13]
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A random cut (= cyclic shuffle) is applied an
average of 9.5 times.

Rotate Iin a circular motion
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# of | # of shuffles
AND computation cards | avg. | fixed
Niemi-Renvall [13] (Sect. 2) 5 9.5 0
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# of | # of shuffles
AND computation cards | avg. | fixed
Niemi-Renvall [13] (Sect. 2) 5 9.5 0
XOR computation
Niemi-Renvall [13] (Sect. 2) 4 7 0
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Our results

We will propose more efficient protocols:

v' Utilizing random bisection cuts

v Simulating the existing protocols [11] + O

based on custom-
made cards

[11] T. Mizuki and H. Sone, Six-Card Secure AND and Four-Card Secure XOR,
FAW 2009, LNCS 5598, pp. 358-369, 2009. o5



Our results

We will propose more efficient protocols:

v Utilizing random bisection cuts

v Simulating the existing . als [11] + A

Switch two halves randomly
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# of | # of shuffles
AND computation cards | avg. | fixed
Niemi-Renvall [13] (Sect. 2) 5 9.5 0
XOR computation
Niemi-Renvall [13] (Sect. 2) 4 7 0
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# of | # of shuffles
AND computation cards | avg. | fixed
Niemi-Renvall [13] (Sect. 2) 5 9.5 0
Ours (Sect. 3) 8 0 4
XOR computation
Niemi-Renvall [13] (Sect. 2) 4 7 0
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# of | # of shuffles
AND computation cards | avg. | fixed
Niemi-Renvall [13] (Sect. 2) 5 9.5 0
Ours (Sect. 3) 8 0 4
XOR computation
Niemi-Renvall [13] (Sect. 2) 4 7 0
Ours (Sect. 4) 4 0 1
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# of | # of shuffles
AND computation cards | avg. | fixed
Niemi-Renvall [13] (Sect. 2) 5 9.5 0
Ours (Sect. 3) 8 0 4
XOR computation
Niemi-Renvall [13] (Sect. 2) 4 7 0
Ours (Sect. 4) 4 0 1

Fewer shuffles and

finite-runtime
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# of | # of shuffles
AND computation cards | avg. | fixed
Niemi-Renvall [13] (Sect. 2) 5 9.5 0
Ours (Sect. 3) 8 0 4
XOR computation
Niemi-Renvall [13] (Sect 4 7 0
Ours (Sect. 4) 4 0 1

Minor issue:
we have 52 cards!
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# of | # of shuffles
AND computation cards | avg. | fixed
Niemi-Renvall [13] (Sect. 2) 5 9.5 0
Ours (Sect. 3) 8 0 4
XOR computation
Niemi-Renvall [13] (Sect. 2) 4 7 0
Ours (Sect. 4) 4 0 1
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Niemi-Renvall AND protocol [13]
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Niemi-Renvall AND protocol [13]
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Niemi-Renvall AND protocol [13]

sRRRR
+ If we somehow
[5] H [o] M H deleted |2| and |3 :

(a,b) _sequence

(0,00 51324
01) 51423
(1,00 52 3 1 4
(11) 52 4 1 3

(a,b) _sequence

00) 51324
01) 51423
10) 52314
11) 524 13
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Niemi-Renvall AND protocol [13]

If we somehow

deletedand {1“4} =0
_
00) 5132 4 41 =1
(01) 51423

(1,00 5231 4 [5”"”"}
(1,1) 52413 [a/\b]"‘”}

...we would get a
desired commitment!
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Niemi-Renvall AND protocol [13]
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Thus, we want to delete |2] and 3] so that the two
cards following |5/ will be a desired commitment.

— Utilizing a random cut (= cyclic shuffle)
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Niemi-Renvall AND protocol [13]
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Rotate Iin a circular motion
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Apply a random cut and reveal the first card. Unless
the face-up card is [2]or (3], turn over the card, apply
a random cut, and reveal the first card again.
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Niemi-Renvall AND protocol [13]
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Niemi-Renvall AND protocol [13]
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8 Delete|2]and (3] (Avg. # of 6.5 trials)

&  Search |5 (Avg. # of 3 trials )
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Niemi-Renvall AND protocol [13]
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# of | # of shuffles
AND computation cards | avg. | fixed
Niemi-Renvall [13] (Sect. 2) 5 9.5 0
Ours (Sect. 3) 8 0 4
XOR computation
Niemi-Renvall [13] (Sect. 2) 4 7 0
Ours (Sect. 4) 4 0 1
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# of | # of shuffles

AND computation cards | avg. | fixed
Niemi-Renvall [13] (Sect. 2) 5 9.5 0
Ours (Sect. 3) 8 0 4

Ours (Sect. 4)

4

0

XOR computation
Niemi-Renvall [13] (Sect. 2) 4 7 0

1
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Niemi-Renvall XOR protocol [13]
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A random cut (= cyclic shuffle) is applied an
average of 7 times.

Omit the details
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# of | # of shuffles

AND computation cards | avg. | fixed
Niemi-Renvall [13] (Sect. 2) 5 9.5 0
Ours (Sect. 3) 8 0 4

Ours (Sect. 4)

4

0

XOR computation
Niemi-Renvall [13] (Sect. 2) 4 7 0

1
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ldea
v Simulating the 4-custom-card XOR protocol [11]

[11] T. Mizuki and H. Sone, Six-Card Secure AND and Four-Card Secure XOR,
FAW 2009, LNCS 5598, pp. 358-369, 2009. 49
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Rearrange the
sequence:
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Apply a random bisection cut:
L [212]2)7]
o — =

{ prob. of 112 /' prob. of 1/2
o e




Rearrange the sequence.:
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Reveal (no information leaks)
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# of | # of shuffles
AND computation cards | avg. | fixed
Niemi-Renvall [13] (Sect. 2) 5 9.5 0
Ours (Sect. 3) 8 0 4
XOR computation
Niemi-Renvall [13] (Sect. 2) 4 7 0
Ours (Sect. 4) 4 0 1
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Outline

v Simulating the 6-custom-card AND protocol [11]
v’ Straightforward simulation does not work; we
need some modification.




6-custom-card AND protocol [11]
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Apply a random bisection cut:
25y PP

T [eEEREE]

prob. of 1/2

l2lzz]=]l>

(b)

v+?77A
alb




pasleEe

&

““““
* *
“““
\d *







slv -0 W=

ElGlE
alb










alalalalald







alalalalald







alatklale v =0 [v]#-
LT BaRR

i I
‘@@@@E@ Glalalalale
e .
GlalalElale JvRERR

¥ e

MGl

"””H”] ‘ HM] What if we apply this to a

standard deck of cards?
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R
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2 (@l @l or [1]l2] B MH

{5,6} {3, 4}

[a/\b] Q=0 [anb]™

When the base of the commitment is known,

the value of A leaks.
— needs some modification
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We call this an [()]{5’6} [O]{7»8}
opague
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pair. J’PJEM’?H’?J]
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Make the base of the commitment to D opaque.
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2 5,61,17.8
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Make the base of the commitment to D opaque.
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Make the base of the commitment to D opaque.
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Make the base of the commitment to D opaque.
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We got an opaque commitment pair to 0 and D .
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Apply the procedure of the existing AND
protocol [11] (introduced before) :
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Then,
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Reveal the two cards after shuffling them.
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The base of the commitment is found, and we have:
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How many shuffles (random bisection cuts) ?
1. Producing an opague commitment pair
2. Changing the base
3. Applying the existing AND protocol [11]
4. Finding the base

— 4 shuffles in total
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# of | # of shuffles
AND computation cards | avg. | fixed
Niemi-Renvall [13] (Sect. 2) 5 9.5 0
Ours (Sect. 3) 8 0 4
XOR computation
Niemi-Renvall [13] (Sect. 2) 4 7 0
Ours (Sect. 4) 4 0 1
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Niemi-Renvall copy protocol [13]
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A random cut (= cyclic shuffle) is applied an
average of 4.5 times + fixed 1 time.

We omit the detalls.
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# of # of shuffles
cards | agvg. | fixed | total
Secure copy
Niemi-Renvall [13] (Sect. 2) 6 4.5 1 5.5
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# of # of shuffles
cards | avg. | fixed | total
Secure copy
Niemi-Renvall [13] (Sect. 2) 6 4.5 1 5.5
Ours (Sect. 5) 6 0 1 1
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# of # of shuffles
AND computation cards | avg. | fixed | total
Niemi-Renvall [13] (Sect. 2) 5 9.5 0 9.5
Ours (Sect. 3) 8 0 4 4
XOR computation
Niemi-Renvall [13] (Sect. 2) | 4 7 0 7
Ours (Sect. 4) 4 0 1 1
Secure copy
Niemi-Renvall [13] (Sect. 2) 6 4.5 1 5.5
Ours (Sect. 5) 6 0 1 1
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Combining AND/XOR/NOT/copy protocols, one
can construct a protocol for any function.

MAJ(X;,X5, X3, X4, Xs)
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Conclusion

O MPC can be done with standard playing cards.

O We reduced the number of required shuffles.
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How to implement a random bisection cut?

Spinning throw with a separator and a rubber band:

V.
[Ueda, et al.,TPNC 2016] .,



