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Abstract. Secure computations enable us to obtain the output value
of a predetermined function while keeping its input values secret. Card-
based cryptography realizes secure computations using a deck of physical
cards. Because each input bit is typically encoded with two cards, an ob-
vious lower bound on the number of required cards is 2n when securely
computing an n-input Boolean function. Although card-based protocols
often require helping cards (aside from 2n cards needed for input), there
exist several protocols that require no helping card, namely, helping-
card-free protocols. For example, there are helping-card-free protocols for
several fundamental functions, such as the AND, XOR, and three-input
majority functions. However, in general, it remains an open problem
whether all Boolean functions have their helping-card-free protocols. In
this study, we focus our attention on symmetric functions: Whereas the
best known result is that any n-input symmetric function can be securely
computed using two helping cards, we present a helping-card-free proto-
col for an arbitrary n-input symmetric function such that n > 7. Because
much attention has been drawn to constructing card-based protocols us-
ing the minimum number of cards, our protocol, which is card-minimal,
would be of interest to the research area of card-based cryptography.

Keywords: Card-based Cryptography - Secure computation - Real-life
hands-on cryptography - Symmetric function

1 Introduction

A secure computation, whose concept was first brought by Yao’s seminal pa-
per [38], enables us to obtain the output value of a predetermined function while
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keeping the input values secret. Various techniques for secure computations have
been proposed so far (cf. [5]). While “computer-based (digital)” secure compu-
tations have been mainly studied and developed, “physical-tool-based” secure
computations, such as using seals [27], balls [18], PEZ dispensers [1, 3, 28], flash
lights [13], coins [12], and a deck of cards [20,21], have also been studied. Physical
methods have a couple of advantages over computer-based methods; lay-people
do not need to trust black boxes contained in computers and/or software, and
the correctness and security of physical-tool based protocols tend to be easily
understood without specialized knowledge. In this study, we focus on card-based
cryptography, which uses a deck of physical cards to perform secure computa-
tions; refer to [9,10,25,34] for surveys.

1.1 What is Card-based Cryptography?

Since Den Boer [4] invented the five-card trick in 1989, many card-based cryp-
tographic protocols have been proposed. In these protocols, a one-bit value is
usually encoded by a pair of cards [&]| and [0], as follows:

W[O]=0, [Of#]=1. 1

According to Eq. (1), when two face-down cards (whose face side is either
(][] or [Q]#]) encode a bit z € {0,1}, we call them a commitment to x, which

is expressed as:
27
-~
xT

A card-based cryptographic protocol, or simply a protocol, takes commit-
ments as input to perform a secure computation. For example, the aforemen-
tioned five-card trick [4], which is a five-card protocol as the name suggests,
takes commitments to a,b € {0,1} and one helping card [J] as input:

d Fdlid R
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b

a

By applying some actions on the sequence of these five cards, such as rearranging,
shuffling, and turning over cards, this protocol reveals only the value a A b of the
AND function.

Another example is the secure NOT computation, which must be the simplest
among all the existing protocols: Given a commitment to = € {0, 1}, switching
the left and right cards of the commitment brings a commitment to its negation
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where we attach the numbers above to the cards for the sake of convenience, so
as to display how the cards are rearranged.
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1.2 Helping-card-free Protocols

One of the most attractive topics in card-based cryptography is to design card-
minimal protocols that use the minimum number of cards. As most of the exist-
ing protocols follow the encoding rule (1) above (which is a “two-card-per-bit”
encoding), this paper also focuses only on protocols whose inputs are given ac-
cording to Eq. (1). Therefore, since a one-bit value is encoded by two cards, any
protocol for an n-input Boolean function f : {0,1}"™ — {0,1} uses at least 2n

cards. That is, such a protocol takes n commitments to x1,xs,...,x, € {0,1},
rdid|vd AR d W 2)
e N~~~
Xy o Tn

as input. If an n-input protocol does not use any (helping) card aside from the 2n
cards for the input commitments as in Eq. (2), we call it a helping-card-free pro-
tocol. For example, the five-card trick [4] mentioned in Sect. 1.1 is not a helping-
card-free protocol because it requires one helping card [9]to securely compute the
AND function. Thus, a helping-card-free protocol for an n-input Boolean func-
tion f takes only 2n commitments (as in Eq. (2)) as input, and outputs only the
value of f(x1,xo,...,x,) after applying a series of actions such as shuffling and
turning over cards. Note that any helping-card-free protocol is automatically a
card-minimal protocol. This paper mainly deals with helping-card-free protocols
(within the standard* computation model of card-based cryptography [24,25]).

To the best of our knowledge, the first helping-card-free protocol in history
(other than the obvious NOT computation seen above) is the XOR protocol [26],
invented in 2009, which securely computes the XOR function using only two
commitments to a,b € {0,1}:

= - = 207
b

a adb

Since the output of this protocol is a commitment to a @ b, the protocol can
be repeated n — 1 times to obtain a commitment to x1 ® x2 & --- ® x,, from
n commitments to x1,xa,...,x, (where we set (a,b) = (z1,z2), (a,b) = (1 B
x9,x3), and so on). Therefore, we immediately have a helping-card-free n-input
XOR protocol.

Next came the AND protocol [23] proposed in 2012. This protocol does not
produce a commitment to a A b, but later in 2015, Koch et al. [11] constructed
a helping-card-free AND protocol that outputs a commitment:

= - = 207
b

a aNb

Since the output is a commitment, a helping-card-free n-input AND protocol can
be constructed in a similar manner. Independently of this protocol, a helping-
card-free n-input AND protocol was developed in 2016 [19]. Recently, a simpler
helping-card-free 3-input AND protocol has also been devised [7].

4 There is another computation model where private actions are allowed, e.g. [2,14—
17,29, 32].
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As for functions other than AND and XOR, a helping-card-free protocol for
the 3-input majority function has been constructed very recently [37]. Also, there
are helping-card-free protocols for the 3-input equality Boolean function (that
outputs 1 when 21 = 29 = 23 and 0 otherwise) [6,35].

Ruangwises and Itoh [33] designed a helping-card-free protocol for any func-
tion in the class of the so-called “doubly symmetric” Boolean functions. Note
that an n-input Boolean function f : {0,1}"™ — R with some set R as its range
is said to be symmetric if for any i, 7, 1 <14, < n, the following holds:

f@a, @iy gy @) = (X1, 0, &, Ty e, X)),

and that an n-input Boolean function f : {0,1}" — R is said to be doubly
symmetric if f is symmetric and the following holds:

flz1, 20, 2n) = f(T1, T2y ..., Tn)-

For example, the equality Boolean functions are doubly symmetric.
We have reviewed the existing helping-card-free protocols.

1.3 Contribution

As seen in Sect. 1.2, in the literature, we already have helping-card-free protocols
for the limited classes of functions, such as the n-input AND and XOR functions
and the doubly symmetric Boolean functions. Because the class of symmetric
Boolean functions contains all these functions as well as many other important
Boolean functions (such as threshold functions), a natural question is: Can one
construct a helping-card-free protocol for any symmetric Boolean function?

As an upper bound on the number of required helping cards, in 2015, Nishida
et al. [30] proved that two helping cards are sufficient for any n-input symmetric
Boolean function f : {0,1}" — {0,1} to be securely computed. Ruangwises and
Itoh [33] extended the result to any range R, i.e., they constructed a two-helping-
card protocol for any n-input symmetric Boolean function f : {0,1}" — R,
where R is any set. Anyway, it is still open to determine whether one can obtain
a protocol for any n-input symmetric Boolean function using fewer than two
helping cards.

In this paper, we tackle this open problem. Namely, we aim to design a
helping-card-free protocol for symmetric Boolean functions. Specifically, we will
provide a generic construction of a helping-card-free protocol for an arbitrary
n-input symmetric Boolean function f : {0,1}" — {0,1} such that n > 8.
Therefore, we give a partial answer to the open problem.

Our generic construction relies on the two novel sub-protocols, which will
be presented in Sect. 3. The first sub-protocol transforms two commitments
(to a,b € {0,1}) into the result of their addition (namely, a + b) without any
helping card; in addition, it produces one “free” card, which is very useful because
such “free” cards can be used as helping cards in another protocol. Because the
result of addition is obtained as an integer in a different encoding, the second
sub-protocol transforms such an integer into commitments; in other words, it
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“binarizes” an integer. Making use of these two sub-protocols along with other
existing protocols, we will design a generic protocol in Sect. 4. Before Sects. 3
and 4, we give some preliminaries in Sect. 2, and we conclude this paper in
Sect. 5.

2 Preliminaries

In this section, we introduce a property of the symmetric functions and some of
the existing protocols. Hereinafter, a symmetric Boolean function f : {0,1}" —
{0,1} is simply called a symmetric function.

2.1 Property of Symmetric Functions

Let f:{0,1}™ — {0,1} be a symmetric function, and let z; € {0,1} for every
i, 1 < i < n. It is well-known that the value of f(z1,...,2,) depends only
on the summation of the inputs, i.e., Y ., ;. That is, there exists a function
g:{0,1,...,n} — {0,1} such that

f(xl,...,a?n)zg(in). (3)

This implies that computing the summation ) ;" | x; is one way for computing
the symmetric function f.

2.2 Half Adder Protocol and Full Adder Protocol

A half-adder protocol is useful when computing the summation described in
Sect. 2.1. The first card-based half-adder protocol was presented in 2013 [22].
After that, Nishida et al. [30] improved it by proposing a half-adder protocol
with two helping cards:

TS -~ [ZE .
| S < ——
b

a aAb  adb

A full-adder protocol using four helping cards was presented in 2013 [22]:

22227 SO = - — 27) [2]2] ([ &[]
M~~~ ~~— ~—~
a b c (anb)V(bAc)V(cha) aBbDc

2.3 Protocol for Symmetric Functions with Two Helping Cards

In 2015, Nishida et al. [30] invented a protocol for any symmetric function using
two helping cards (as mentioned in Sect. 1.3). Given n commitments and two
helping cards,

(2027) (202 - - -[207] (@),
—— =~

1 Z2 Tn
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their protocol produces a sequence of commitments that represents the binary
representation of the summation,

22 2] -

?

7)

)

(i ®i)2

using the half-adder protocol introduced in Sect. 2.2; then, their protocol com-
putes g(>_1 ; ;) as in Eq. (3) using that sequence. Here, for a nonnegative
integer i € {0,1,...,¢}, we denote the binary representation of i by (¢)2, which
is represented as [log,(¢ + 1)] commitments written as

21zl - (202

()2

The range of the protocol above is {0, 1}, whereas Ruangwises and Itoh [33]
constructed a protocol for a symmetric function f : {0,1}" — R with an arbi-
trary range R using two helping cards (as also mentioned in Sect. 1.3). Their
protocol used the following &-position and Q-position encodings (the &-pos. en-
coding and the ©O-pos. encoding for short, respectively). In the &-pos. encoding,
for k > 2, one @ and k—1 @S are used to represent an integer i (0 <i < k—1)
by placing [#] at the (i 4+ 1)-st position as follows:

2 i+1 k

o). & . O

In the following, we denote such a sequence of face-down cards by E,‘z‘(z), and

write it as follows:
—_—

E}G)

The Q-pos. encoding and E;’ (i) are defined in the same way with the colors (i.e.,
suits) reversed.

2.4 Addition of Position Encodings

Ruangwises and Itoh [33] proposed the following method for adding two integers
represented in the pos. encodings.®

1. Assume that we have E®(a) and E} (b) for two integers a, b. For convenience,
we name each card as follows:

E}a) (721 7). EZ(0):[27)2]-- (7.
ZTo T1 Tk—1 Yo Y1 Yr—1

5 This method is originated from the previous protocol [36] proposed by Shinagawa et
al.
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2. Rearrange the sequences as follows:

Ikl

3. Apply a random 2-section cut (also known as a pile-shifting shuffle [31]) to
this sequence. Here, a random 2-section cut means to make each pair of cards
into a single bundle and shuffle all the bundles cyclically. Thus, for a random
number 7, the sequence changes as follows:

Yr—1 —
ld
o ]

Yo Ye—1—1r
]a[

Th—1 To4r

Ye—2—r
T14o

Yo—r
]-

Th—14r

4. Rearrange them back to the first place as follows:

E"'a—r 71 7] - ,Evb—l—r 7] [?7] - 71 .

TOo+r T14r Tk—1+47r Yo—r Y1—r Ye—1—1r

where a is subtracted by the random number r and b is added by r.

5. Turn over El? (b+r) and shift El‘:(a—r) cyclically to the right by the revealed
number, i.e., add b + r to a — r; when revealing E,?(b + r), the value of b
does not leak because a random value r was added to b:

E"'afr 21 7 [7 %E"'aer 7] 7] -

To+r L14r Th—1+r To—b T1-b Tk—1—b

This enables a secure computation of (a —7)+ (b+7) = a+ b without leaking
the values of @ and b. That is, E,‘!’(a—i— b) is obtained. Here, we did an addition of
the &-pos. encoding and the O-pos. encoding, but other combinations are also
feasible.

3 Building Blocks

Before describing our proposed protocol in the next section, we present two novel
sub-protocols, which will be used in the proposed protocol as building blocks.

3.1 Addition of Two Commitments

To construct our proposed protocol, we first compute the summation of inputs
as implied in Sect. 2.1. For this, we propose the following addition protocol to
compute a+b from commitments to a,b € {0,1} without the need of any helping
card®. That is, somewhat surprisingly, this novel sub-protocol is helping-card-
free.

5 This protocol is inspired by the Mizuki-Kumamoto-Sone AND protocol [23]; the
procedure is the same up to the middle.
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1. Apply a random bisection cut [26] (denoted by [---|---]) to the sequence of
the commitments to a and b as follows:
rd Wdd Kl R gl N ird Wl vl A | R rd d rd Wd B

—~—
a b

Here, a random bisection cut is to halve a sequence and shuffle the two halves
randomly.
2. Shuffle the two cards in the middle as follows:

(2] [2NI[2]] 2] = [2]202)2)-

3. Reveal the second card from the left; then, either & or O appears with a

probability of 1/2:
ngﬂn
Reveal

(a) If & appears, rearrange the sequence to obtain a + b in the &-pos. en-
coding, i.e., E®(a +b), as follows:

@w

2712 — [2177)
\\,_./
E®(a+b)

(b) If O appears, rearrange the sequence to obtain a + b in the O-pos. en-
coding, i.e., E5 (a +b), as follows:

2012 - 2171710,
\\/_./
EY (a+b)

We call this protocol the helping-card-free two-commitment addition. The
correctness and security of this addition protocol can be proved by drawing the
so-called KWH-tree [8,11]. We depict its KWH-tree in Fig. 1.

As seen above, we obtain either E(a + b) or ES (a + b) (with a probability
of 1/2) as well as one free card from the commitments to a and b.

3.2 Binarization of Position Encoding

Our second novel sub-protocol is to “binarize” an integer in the position en-
coding. Let 0 < ¢ < 3; given Efl"(z) and four helping cards, this sub-protocol
produces commitments to (7)2. (A protocol for Ef (i) can be constructed in a
similar way.)

1. Turn the four helping cards face down (resulting in two commitments to 0
because of the encoding rule (1)):
2I2127) SO — [Z12]2027] [2]7] (217]-
| S——

—_——
E* ) E} (2utv) 0 0

Here, we introduce u,v € {0,1} such that i = 2u 4 v, i.e., u and v are the
most and least significant bits of (i), respectively.
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QO X,
IVZ X JVARD ép
L AVAVZ D (%
L IVZ AVIRD ¢

l(shuf, {id,(1 3)(2 4)})

V2 AVZ '
Qs 172X,
SO0 1/2X;
L IVZ AVERD '

l (shuf, {id,(2 3)})

QO 1/2X,
QQUdd 1/2X,
QO 1/2X,
SO0 1/2X;
*OR0 172X,
*eQO0  1/2X,

(turn, {2})

207 2ee??

(perm, (241 3)) (perm, (2 4 3))
S0 X, Q0% X,
L IVZ ) V2 IVED'a
Q& X, L IVIVED'S

Fig. 1. KWH-tree of the helping-card-free two-commitment addition. Here, Xo = Xoo,
X1 = Xo1 + X0, and X2 = X11.

2. Shuffle EZ’(Qu + v) and the middle commitment to 0 “synchronously” as
follows.
(a) Rearrange the sequence as follows:

) () Ol - B [ 2.
—_—— =P =~ S
E*(2utv) 0 0 0

(b) Apply a random bisection cut to the first six cards:

§¥d id rd i vd d rd DR vd d Rl rd d d d rd VA R d A B

(c) Rearrange the sequence as follows:

PR 27— P @g@g

Er 2(udry)+v) "1 0

Here, a random bit r; € {0, 1} is added to u and the middle commitment
to 0 because of the random bisection cut in Step 2b.
3. Shuffle E®*((2u @ r1) + v) and the right commitment to 0 “synchronously”
as follows.
(a) Rearrange the sequence as follows:

A2 77 — [P I 2
_—— = =~ =~
EFQuer)+v) ™0 m

27177
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Table 1. How to swap commitments in Step 5 of the binarization protocol

Revealed Seq. Binary Swapping

*[O[9[9] (0,0)

54 Q)
Q&[0T (0,1)
—_— Swap
B}
CO[*[©]  (1,0)
D Swap
B2
OO[O]&]  (1,1)
T Swap Swap
E}3

(b) Apply a random bisection cut to the first six cards:

§d i rd i vd v rd VR vd d Rl vd Vd A R d A R d AR

(c) Rearrange the sequence as follows:

I [ - RIEEE [P
=~ S == =~
1 E}Quor)+(wer)) ™ T2

Here, a random bit ro € {0,1} is added to v and the right commitment
to 0 because of applying the random bisection cut in Step 3b.
. Reveal E*2ua ) + (v @ 1y)):

rd ird ird rd N4 1 d Fdp
| S——
Reveal

. From the revealed integer value in the previous step, obtain commitments
to (i)2 by swapping (or not swapping) the commitments to 71 and 7o as
shown in Table 1: Consider commitments to the binary representation of the
revealed integer value (i.e., the second column of the table); if we have 1
among the two-bit sequence, we swap the corresponding commitment; if we
have 0, we do not swap the commitment. By rearranging the sequence in
this way, we obtain

27) [2)2), g, (217 [2]17]-

u v (2)2

For example, if EZ‘(Q) appears by revealing the sequence in Step 4 as
OISO [2]7] [2]7],
—_— =~ =~

E} ) T
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VOO SOSD X,
VOSD SOSD X,
ORO0 SO0 X,
FRVIVIVIN XSVE AV

l (shuf{id,(1 3)(2 4)(5 6)})

QOO0 SOV 1/2X,
QOO Odde® 1/2X;
VORO SO 1/2X,
S®O00 Vs 1/2X,
VROV SOV 1/2X,
Q00 Vs 1/2X,
OO0 SOV 1/2X,
QORO Vs 1/2X,

l (shuf,{id,(1 2)(3 4)(7 8)})

QOO SOV 1/4X;
QORO SOV 1/4X;
QROV O 1/4X,
L IVAVAVIRVE JV2 V2O
QORO SORD 1/4X,
QOO0 SO0V 1/4X,
SO00 Vs 1/4X,
QVRO0 OO 1/4X,
VROV S0PV 1/4X,
L IVAVIVAR JVIVE SVZ5 ¢
QOO0 Vs 1/4X,
QORV OO 1/4X,
SO0V SOSD 174X,
QROV SOV 1/4X,
QOO OB 1/4X,
QOV% VB0 1/4X,

(turn,{1,2,3,4})

(perm,(7 8)) (perm,(5 6))

2000 $O*D X,
2000 SOV X,
FXVIVIVVE Y X5
EAVIVIVIEVEXVE $'S

OROV $OSD X,
VROV SOV X,
DROD VD X,
VI XVIVIRVEXVE $'S

DO SO X,
DORO SOV X,
DORD VD X,
VIVEAVIRVEXVE $'S

VOO $OSV X,
DVOd SOV X,
VIVIVENRVE ¥ Yopa
VIVIVENRVEXVX oA

Fig. 2. KWH-tree of our binarization protocol. Note that the probability of the input
sequence being E® (i) is X;.

we swap the middle commitment to r1, but do not swap the right commitment
as follows:

QR 21711717 — QIO [?717] [717] -
E}(2) Swap (0)2

The correctness and security of this protocol can be confirmed by drawing its
KWH-tree depicted in Fig. 2. We believe that this sub-protocol is of independent
interest.

4 Owur Proposed Protocol

We are ready to describe our proposed protocol for securely computing any
symmetric function f : {0,1}"™ — {0,1} such that n > 8. Let us assume that
n = 8 for simplicity (the protocol can be easily extended to the case of n > 9).
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Thus, the input to the protocol is a sequence of 16 cards:

d | vl ird ird | W4 ¥ rd rd v W1l Wl rd [ B
— == =~ =~ =~

Z1 T2 z3 T4 Zs5 Ze6 z7 xs
An overview of our protocol is as follows.

1. Add the inputs to obtain sequences of 1 + x5 + 27, 3+ 4, and x5+ xg + T3
using our helping-card-free two-commitment addition proposed in Sect. 3.1
and the existing addition protocol introduced in Sect. 2.4 (Sect. 4.1).

2. Binarize the sequences obtained above using our binarization protocol pro-
posed in Sect. 3.2 (Sect. 4.2).

3. Add the binarized sequences using the existing full-adder protocol introduced
in Sect. 2.2 (Sect. 4.3).

4.1 Adding the Inputs

Computing ©1+ 2. First, we obtain a sequence of x1 + x5 from the commitments
to 1 and xo using our helping-card-free two-commitment addition described in
Sect. 3.1. For the sake of explanation, let us assume that the addition result
is obtained in the &-pos. encoding, i.e., we obtain E?‘f(zl + x3) without loss
of generality. In this case, one free card [#] is also obtained. In summary, the
resulting sequence is as follows:

% [7[7] [707) - (2002)
—— —— =~ —~

E;’(wr‘rwz) T3 Ty s

Computing xs+x4. We apply the helping-card-free two-commitment addition to
obtain a sequence of x3+ x4. Here, we have two possible cases with a probability
of 1/2 as follows.

1. If the revealed card is ©, the resulting sequence is as follows:

2077 @ P © @ 2.
b —— = <~
E¥ (z1+22) ES (z3+x4) x5 zs

2. If it is &, the resulting sequence is as follows:

21202) & [Z0707] (& [2)7)--- (207
—— —— =~ S

E;’(Il-‘rwz) E;($3+I4) Ts x8

In the former case, we have [§[¥] as free cards. In the latter case, we have

[][ ] as free cards.
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Computing x5 + xg. For each of the two cases described in the previous para-
graph, an addition is done as follows.

Case 1: We have free cards [#[<)].

We use the helping-card-free two-commitment addition for computing x5 + x¢.
Without loss of generality, let us assume that || appears in this computation.
Thus, the resulting sequence is as follows:

ird rd Fd i vl vl I vd rd A T Y 2 N R rd R (4)
—— —— M~~~
Eg'(:t1+m2) E?(m3+z4) Eg'(xs—&-:%) 7 T8

Case 2: We have free cards [&]d|.

We want to acquire a free card [Q] (which is a different color from the current
free cards) via the computation of x5 + x¢. To achieve this, we use the existing
addition protocol introduced in Sect. 2.4 to compute x5 4+ x¢ while generating a
[9]. Remember that the current sequence is:

(o) (] - [7]7].
| Sp— (S ~~ ~~
E} (21+32) Ed(z3+24) zs T8

Recall that the commitments to x5 and xg are encoded by:

W[O]=0, [Of#]=1.

This can be viewed as representing an integer value at the position of [/, i.e.,
EX*(25) or EX*(x6). If we swap the two cards comprising each commitment,
they are commitments to s and Tg and can be viewed as Fy (x35) and Ey (z¢),
respectively, because they represent values at the position of [0]. In this case,
adding a ] to the rightmost does not change the value represented, resulting in
EY (z5) and Ey (z6). Based on this, we compute x5 4 x6 as follows”.

1. Place each of the two [&]s on the right of the commitments to Z5 and ZT¢ as
follows:
(Z12][ [2]7] ().
> =~
Is5 Te
Then, turn over the face-up cards to have Ey (z5) and Ey (¢):
'
—— Y—
EY (z5)  ES(x6)

2. Apply the existing addition protocol introduced in Sect. 2.4 to the sequence
to obtain Ey (x5 4 x¢):

21717) [71212] — [20707] (o]
Eg (z5) By (v6) EY (z5+x6)

" The idea of adding two pos. encodings of the same color was suggested by Kazumasa
Shinagawa.
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(Note that [&]d][P] appear as free cards because the three cards in the O-pos.
encoding are revealed.) In summary, the whole sequence is as follows:

2i7lz)  2Iz02)  [22)7) I (207) (2]7]- (5)
— ~— = —~— =<~
E¥*(z1+22) EX(zstzs) EY (ws+zg) x7 zg

Thus, we have two possibilities of the current sequence (4) or (5). Hereinafter,
we assume the sequence (5); the case for the sequence (4) will be easily handled
just by exchanging “x3 + x4” and “xs 4+ x4” in the sequel.

Addition of x1 + o and x7. As shown above, we have now three free cards
B[R], Next, we add EP () +2) to the commitment to x7 to obtain Ef (2, +
xo + x7) as follows.

1. Place the free card [9] on the right of E?‘,"(ml + x2) and place the two [&]s on
the right of the commitment to Z7 as follows:

ZI77] © [217) (%]
=
Eé"(xl—&-a:g) 7

Recall that the value of x1 + 22 is represented at the position of || in the
sequence, and Ty is represented at the position of [0] in the commitment.
Therefore, after turning over the face-up cards, each value is represented by
the position encoding as follows:

2l212l?] 2]
—_—
E}@itas)  EJ(xr)

2. Apply the existing addition protocol introduced in Sect. 2.4:

ird v rd A I d 1 rd I R d P 3 Y Y
—_—— Y— N——
EX}(z141x2) EY (27) E} (@1 +watar)

In summary, the whole sequence is as follows:

rd vl vd rd i vd d i il rd A 1 Y E YR
N—— N~—— N—— N~~~

E*(zi+azotar) E$($3+I4) E;,?(ﬂls-i-le) T8

Addition of x5+ x¢ and xg Now we have four free cards of three @s and one [Q].
Using them, E? (x5+x6), and the commitment to zs, we obtain E, (x5 +z¢+xs)
in a similar way as in the above paragraph:

ird vd rd v vd vd rd R vd v rd VA 3 YT Y B
| S—— | p— | S——

E¥(z1+wotarr) EF(zstas) EY (z5+wetas)

8 Generally, there are two cards of the same color and one card of the other color.
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4.2 Binarization

Up to now, we have at least four free cards of two [#]s and two [J]s. Using these,
we binarize Eff(xl + 29 +x7) and Ef(xs + 26+ x3) by our binarization protocol
proposed in Sect. 3.2.

After that, the resulting sequence is as follows:

ed rdid rd e ird vd d vd e d A Y E AT Y VMR
—_ | Sgp— —_

(x1tz2+z7)2  EX(254as) (w5+z6tos)2

4.3 Full Adder and Binarization

Full adder of (x1 + x2 + x7)2 and (x5 + x6 + x5)2. Using the existing full adder
protocol introduced in Sect. 2.2, we add (21 + x2 + z7)2 to (x5 + x6 + xg)2 With
the free cards of two [&]s and two [J]s as follows:

2I2] 217) 2120 (2)2) — (2020 [202) (2]7) (@]

(z14+z24x7)2 (T5+x6+T8)2 (z14+z24x5+r6t+T7+28)2

After that, the whole sequence is as follows:

rd irdid d ivd ird il W rd R 32NNV MVR
_— —_—
(z1+z2t@s+aetar+as)s EX(vstas)

Binarization of E®(x3 + x4) and Overall Addition. To obtain commitments to
(23 +4)2, we first place a[Q]on the right of B (x5 4 24) to obtain E® (x5 4 24)
as follows:

@ - 2121217

E?(13+$4) E?(E3+I4)

To summarize the situation, we have

rd kd ) rd d vl rd vl d rd R Y 2 A Y E Y R
—_— [ op—
(z1+z2t@stastartas):  EX(wz+xq)

Then, we binarize E;"(xg + x4) using our binarization protocol proposed in
Sect. 3.2. Finally, we add (x5 + 24)2 to (21 + @2 + 5 + 26 + 7 + g)2 with
the free cards using the existing full-adder protocol introduced in Sect. 2.2 as
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follows:

212 (2070 [22)  [220202] (Se]iohe]eh O]
_— | p—
(z1taetostastortas): E*(zz+zs)

1
2171 2170 [212) (2070 (202] (]l

(z1+x2+T5+T6+T7+T8)2 (z3+x4)2
1
2120 (202 [202) [202] (o] ] ] 6| O[]

(Z§:1 Ti)2

Now we have commitments to the summation of the inputs Zle x;. From these
commitments, we compute 9(2?:1 x;) as in Eq. (3).

When n > 9, it suffices to add the remaining commitments to xg, 1g, - - -, Tn
to the summation Zle x; using the existing half-adder protocol because we
have enough free cards.

5 Conclusion and Future Work

In this study, we proved that any n-input symmetric function such that n > 8
can be securely computed without the need of any helping cards. That is, we
provided a helping-card-free protocol for any n-input symmetric function such
that n > 8. Therefore, our protocol uses the minimum number of cards, i.e., it
is card-minimal.

For the case of n = 2, the existing protocols [11,23,26] immediately imply
that any 2-input symmetric function can be securely computed without any
helping card. Therefore, the remaining open problem is to determine whether
there exists a helping-card-free protocol for any n-input symmetric function such
that 3<n <7.
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