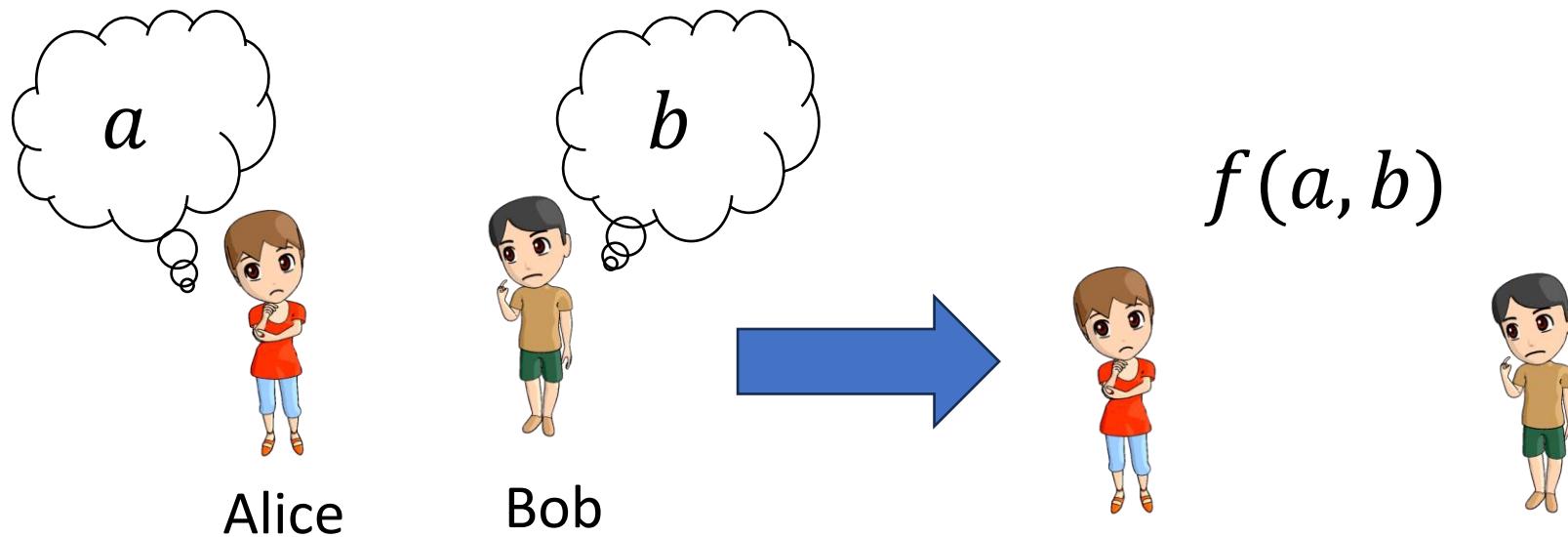


Gakmoro: An Application of Physical Secure Computation to Card Game

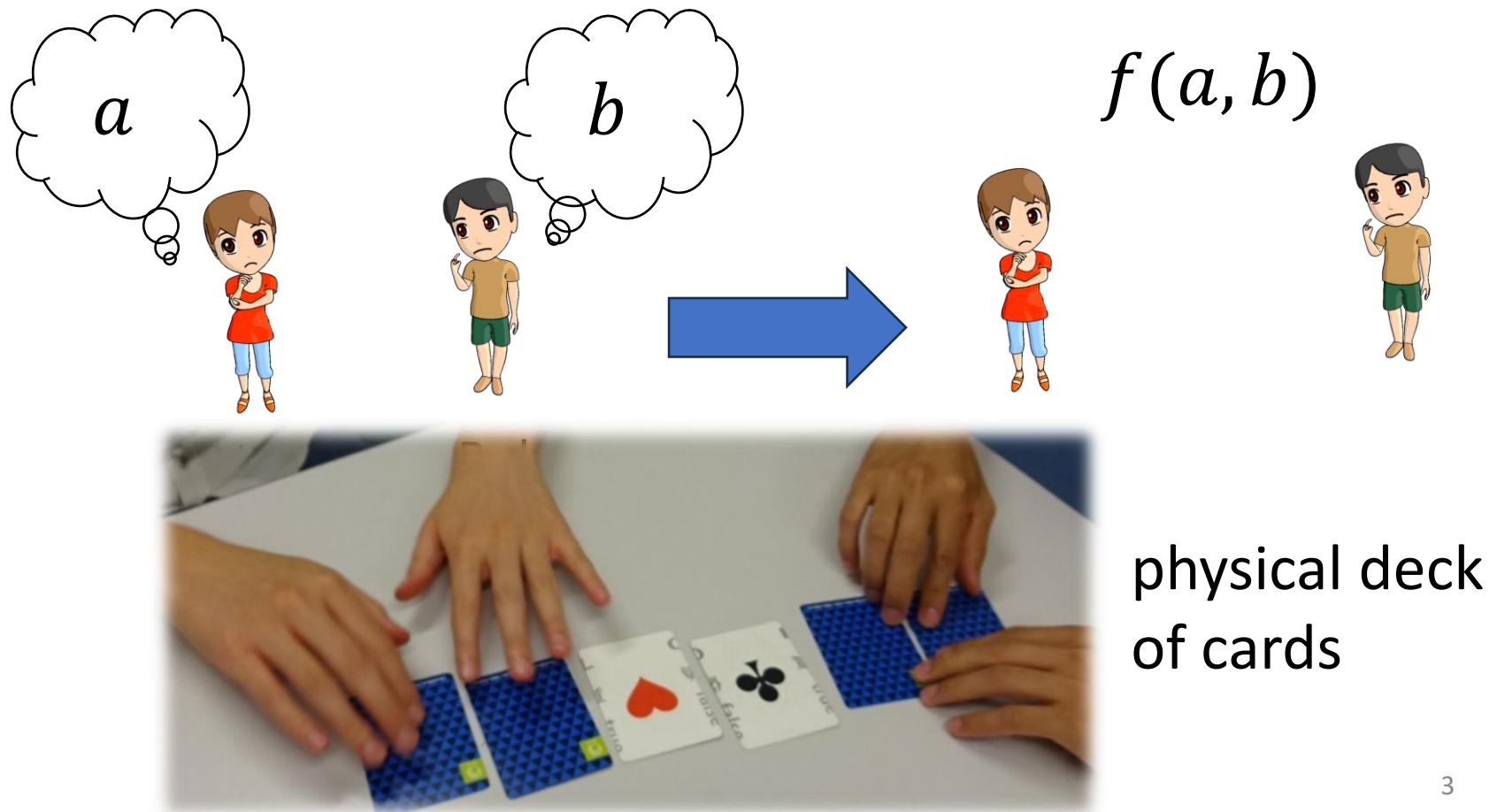
Takaaki Mizuki, Tomoki Kuzuma, Tomoya Hirano,
Ririn Oshima, and Momofuku Yasuda

Tohoku University

Gakmoro: An Application of Physical *Secure Computation* to Card Game



Gakmoro: An Application of *Physical* Secure Computation to Card Game



Gakmoro: An *Application* of *Physical* Secure Computation to *Card Game*

We create a new card game, named **Gakmoro**, by making use of card-based cryptography.

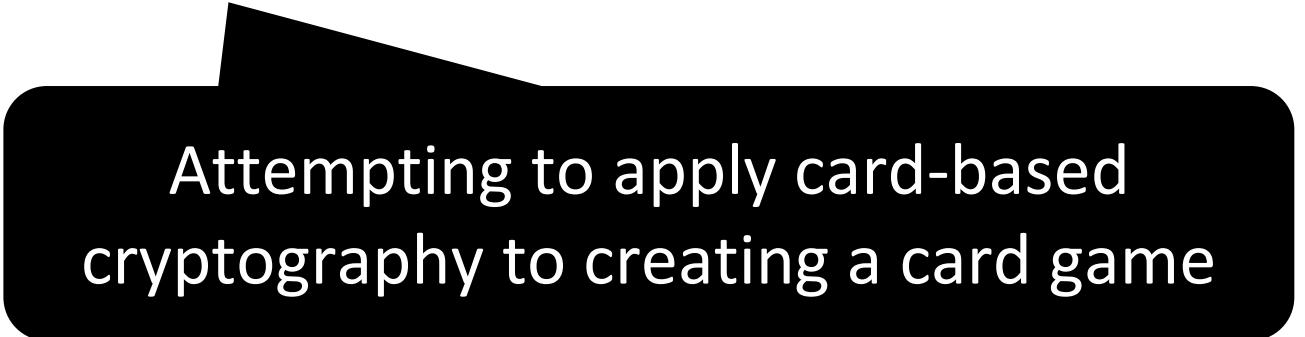
How was **Gakmoro** created?

First-year undergraduate class at Tohoku University,
“Introduction to Academic Learning” (2023 Fall Semester)

Teacher: Takaaki Mizuki

Teaching Assistant: Tomoki Kuzuma

Students: Tomoya Hirano, Ririn Oshima, Momofuku Yasuda



Attempting to apply card-based
cryptography to creating a card game

Gakmoro, is derived from the Japanese name of
the class, “**Gakumonron** Enshu.”

Table of Contents

- 1. Introduction**
- 2. Preliminaries**
- 3. Comparison Protocol**
- 4. Gakmoro with Secure Computation**
- 5. Conclusion**

Table of Contents

1. Introduction

2. Preliminaries

3. Comparison Protocol

4. Gakmoro with Secure Computation

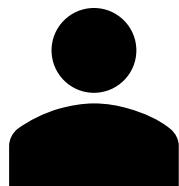
5. Conclusion

Gakmoro's Rules

Alice

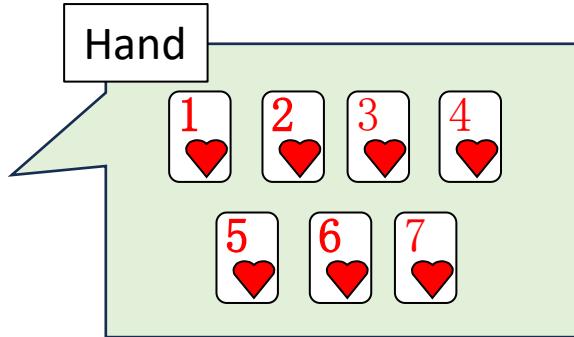
Bob

Dealer

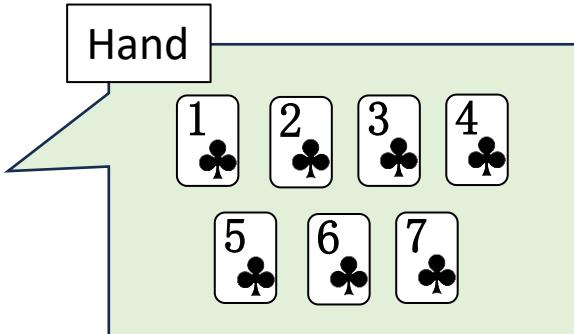


Gakmoro's Rules

Alice

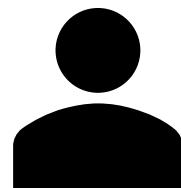


Bob



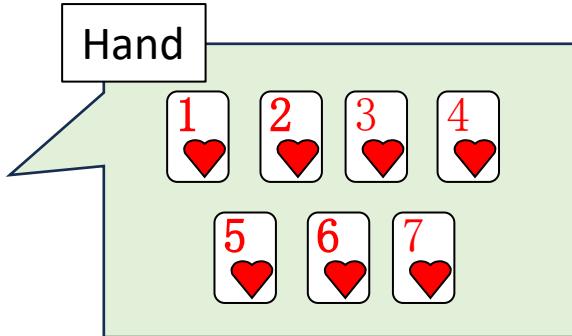
- Each has numbers 1 to 7

Dealer

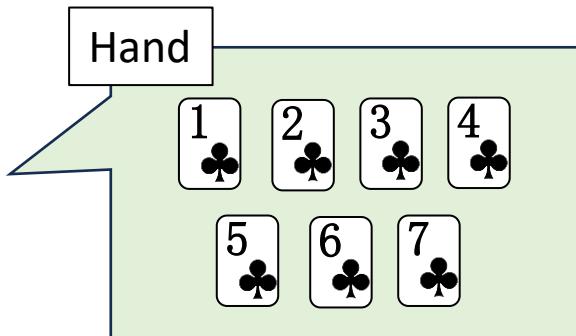


Gakmoro's Rules

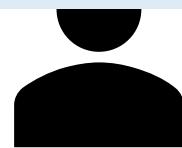
Alice



Bob

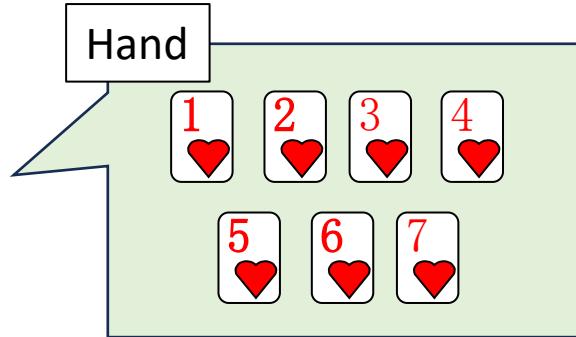


- Each has numbers 1 to 7
- A game consists of up to 3 rounds
- Each secretly chooses 1 to 3 cards to compete based on their total value

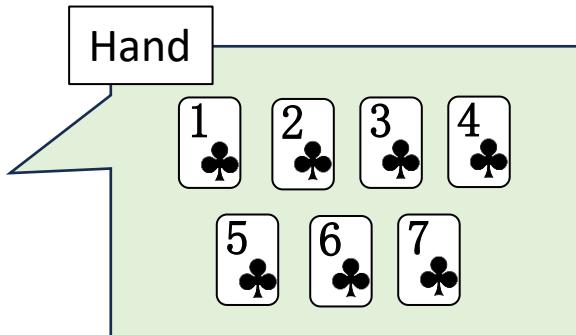


Example

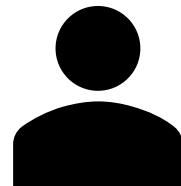
Alice



Bob

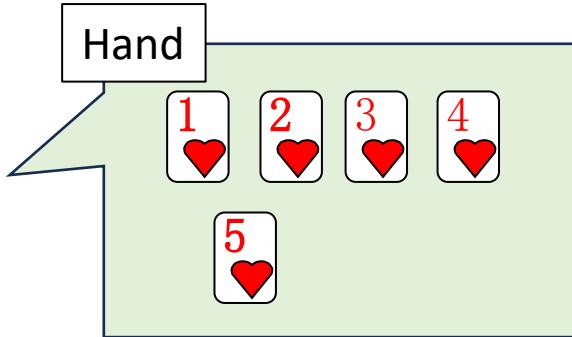


Dealer

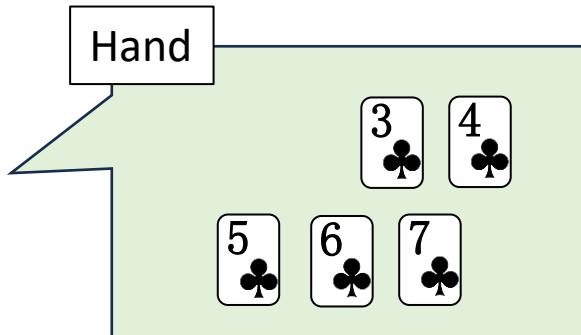


Example: Round 1

Alice

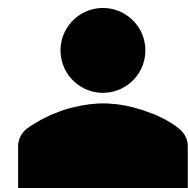
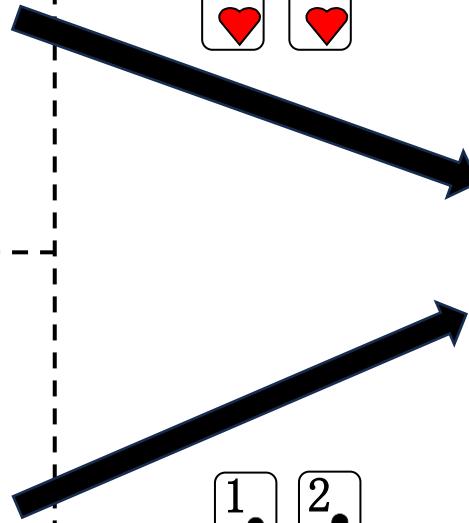


Bob



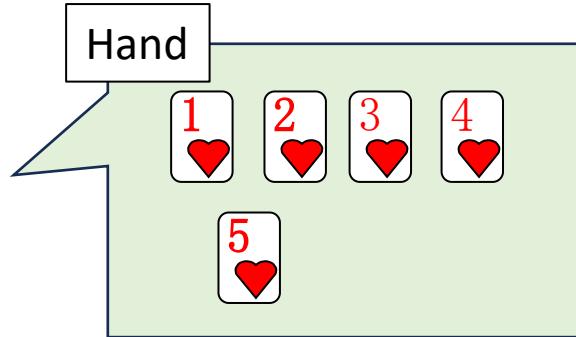
Each submits 1 to 3 cards secretly without the opponent seeing them

Dealer

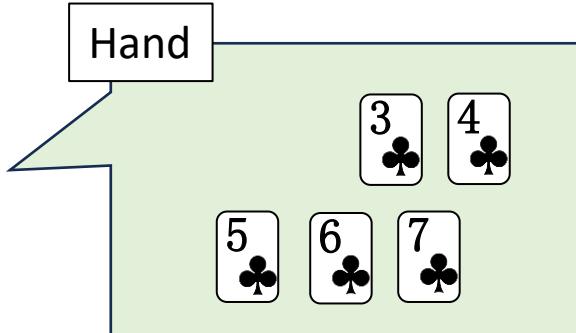


Example: Round 1

Alice



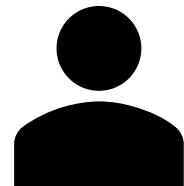
Bob



The dealer calculates the sum, and announces only the winner's name (whose total is higher)

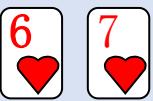
$$= 13$$

Dealer



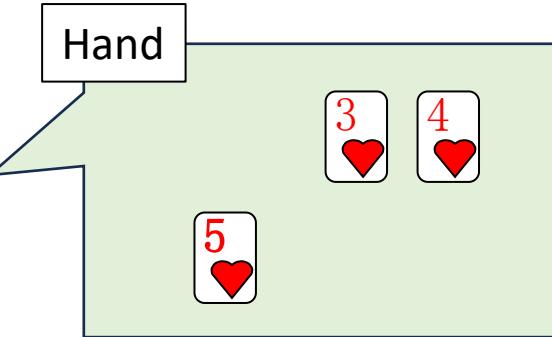
Alice wins!

$$= 3$$

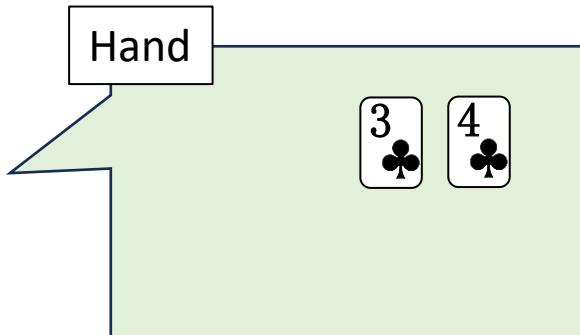
	Alice	Bob
Round 1	 	
Round 2		
Round 3		

Example: Round 2

Alice

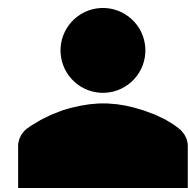
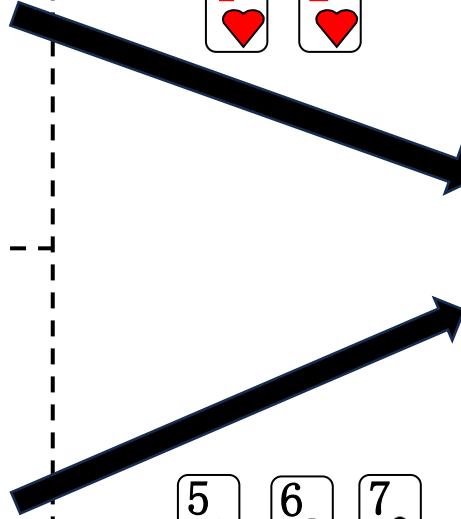


Bob



Each submits 1 to 3 cards secretly without the opponent seeing them

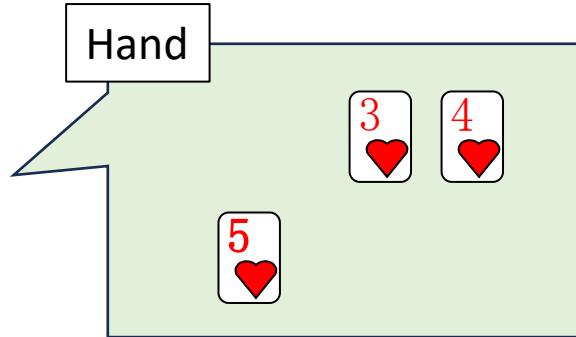
Dealer



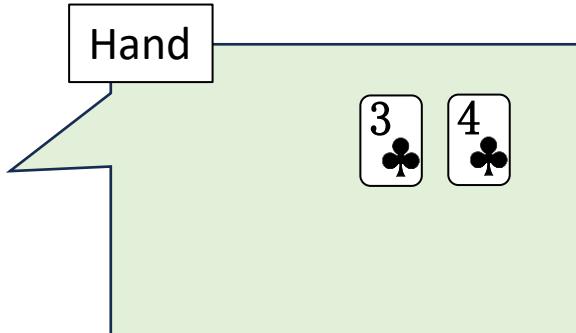
Example: Round 2

The dealer calculates the sum, and announces only the winner's name (whose total is higher)

Alice



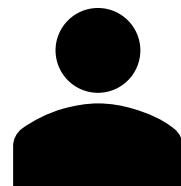
Bob



Bob wins!

$$1 \heartsuit \quad 2 \heartsuit = 3$$

Dealer



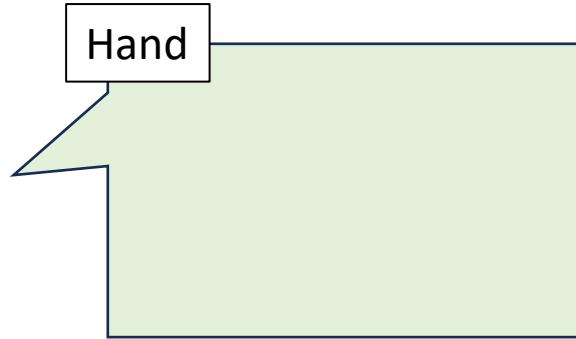
$$5 \clubsuit \quad 6 \clubsuit \quad 7 \clubsuit = 18$$

Alice		Bob
Round 1		
Round 2		
Round 3		

Example: Round 3

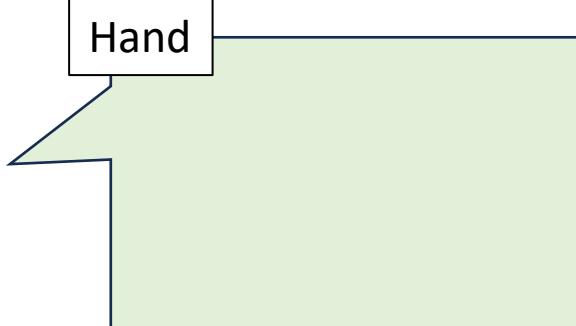
Alice

Hand

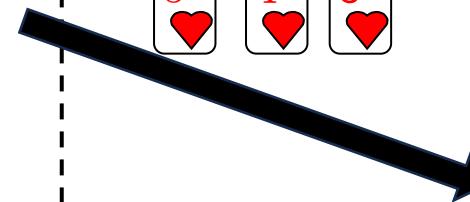


Bob

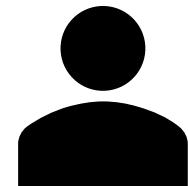
Hand



Each submits 1 to 3 cards secretly without the opponent seeing them



Dealer

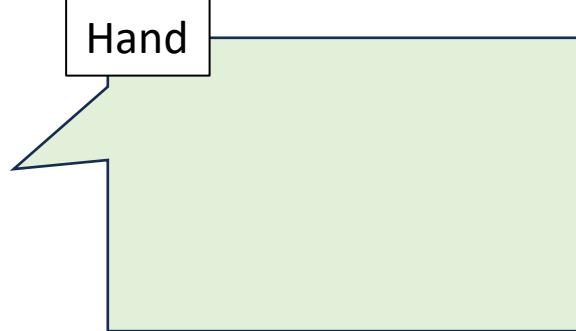


Example: Round 3

The dealer calculates the sum, and announces only the winner's name (whose total is higher)

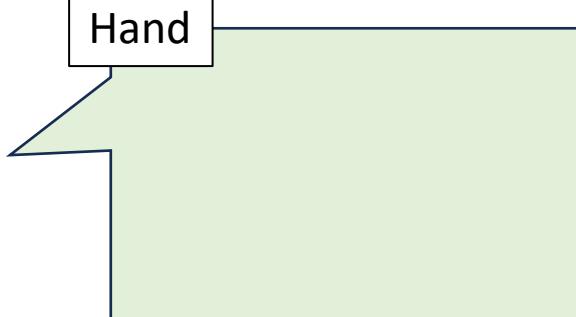
Alice

Hand



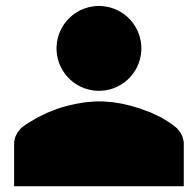
Bob

Hand



Alice wins!

Dealer



= 12

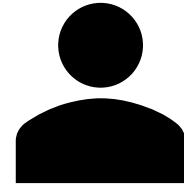
= 7

Round 1	 6 7 	 1 2
Round 2	 1 2 	 5 6 7
Round 3	 3 4 5 	 3 4

	Alice	Bob
Round 1	 6 7	 1 2
Round 2	 1 2	 5 6 7
Round 3	 3 4 5	 3 4

With two wins, Alice is the winner of the game.

Playing Without a Dealer?

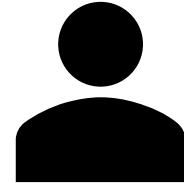


The dealer's role in Gakmoro is crucial for maintaining secrecy and ensuring fair play.

The main functions are:

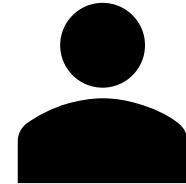
- **Ensuring that each player submits between one and three cards.**
- **Correctly adding the values of the submitted cards.**
- **Announcing only the winner, not the sums or the number of cards played.**

Playing Without a Dealer?



Without a dealer, the game loses its core element of hidden information, which is central to strategic play.

Playing Without a Dealer?



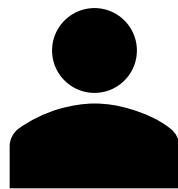
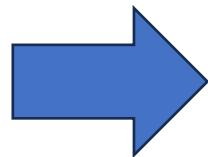
Without a dealer, the game loses its core element of hidden information, which is central to strategic play.

What if there are only two players, making it difficult to find a dealer?

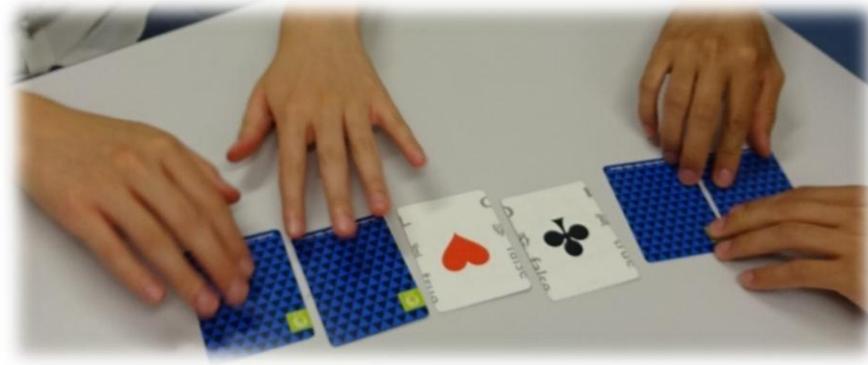
Are there any solutions for playing Gakmoro with just two people?

Our contribution

We eliminate the need for a human dealer in Gakmoro by combining existing techniques from **card-based cryptography** and designing a new protocol.



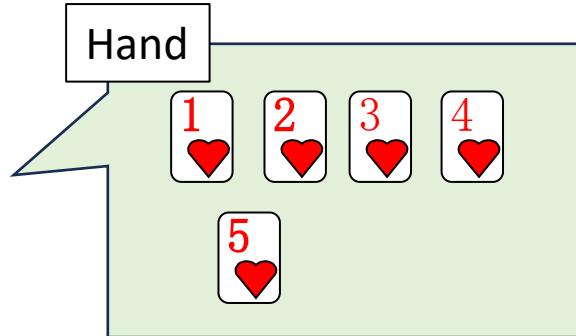
Human dealer



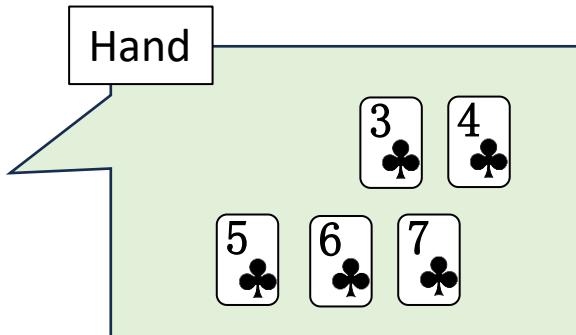
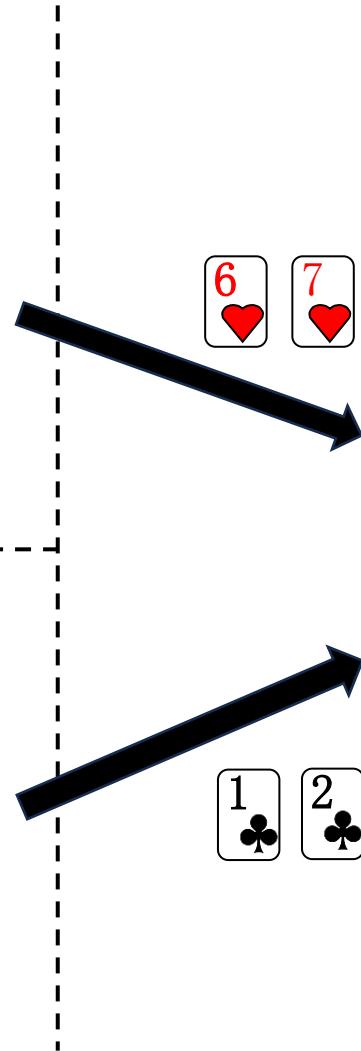
Card-based cryptography

To this end, ...

Alice



Bob



- **Addition**
- **Comparison**

securely done

We use

- **Card-based secure *addition* protocol**
 - ✓ existing one by Ruangwises and Itoh [RI21]
 - ✓ introduce in Section 2
- **Card-based secure *comparison* protocol**
 - ✓ construct in Section 3

Combining them, we have

- **Gakmoro with secure computation (Section 4)**

[RI21] Suthee Ruangwises and Toshiya Itoh. Securely computing the n-variable equality function with $2n$ cards. Theor. Comput. Sci., 887:99–110, 2021.

Table of Contents

1. Introduction

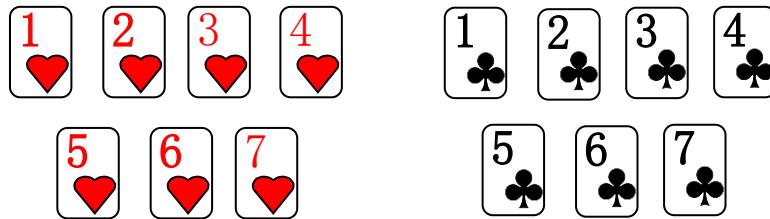
2. Preliminaries

3. Comparison Protocol

4. Gakmoro with Secure Computation

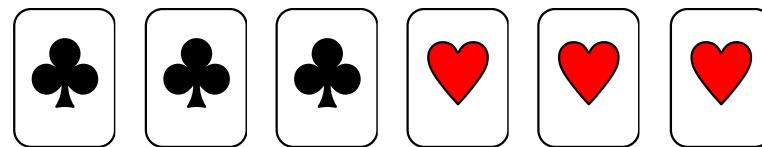
5. Conclusion

Standard deck of playing cards:



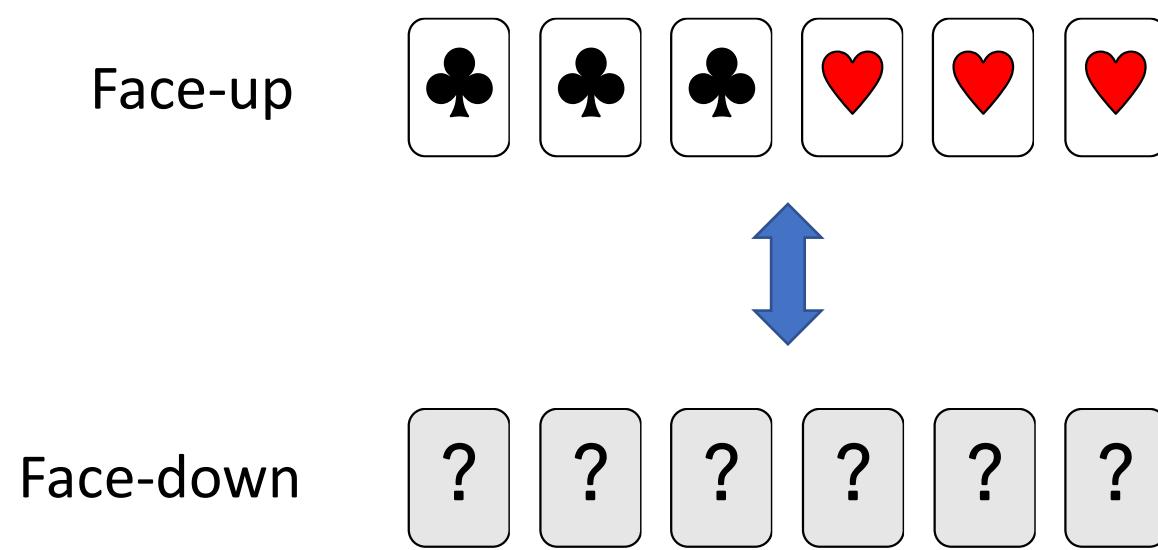
→ not so easy to construct a simple protocol

Two-color deck of cards:



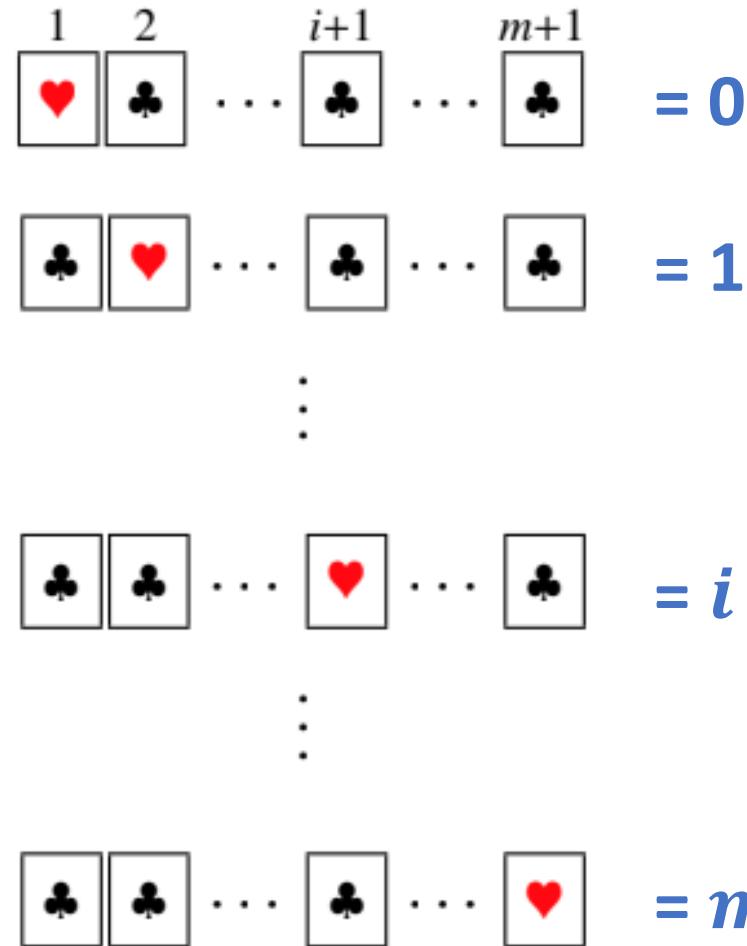
→ We use this type of cards

Two-color deck of cards



We need to deal with integers from 1 to 7 as well as their sums

Encoding of integers (between 0 and m)



Encoding of integers (between 0 and m)

$$\begin{array}{ccccccc} 1 & 2 & & i+1 & & m+1 & \\ \boxed{\heartsuit} & \boxed{\clubsuit} & \cdots & \boxed{\clubsuit} & \cdots & \boxed{\clubsuit} & = 0 \end{array}$$

A sequence of cards showing a club, a heart, three clubs, and three clubs, followed by an equals sign and the number 1.

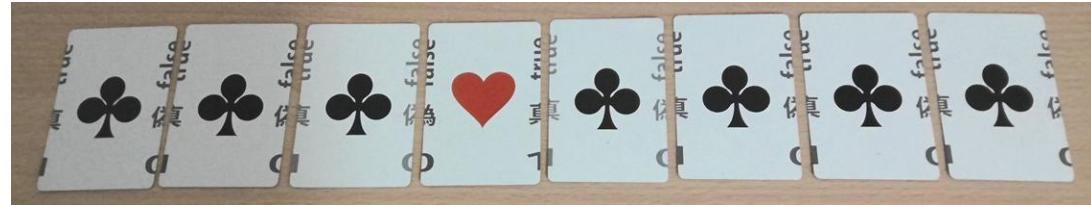
•
•
•

$$E_{m+1}^{\heartsuit}(i) \rightarrow \boxed{\clubsuit} \boxed{\clubsuit} \dots \boxed{\heartsuit} \dots \boxed{\clubsuit} = i$$

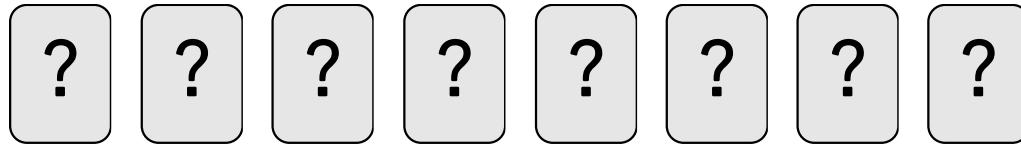
•
•
•

$$\begin{array}{ccccc} \fbox{\clubsuit} & \fbox{\clubsuit} & \dots & \fbox{\clubsuit} & \dots & \fbox{\heartsuit} \end{array} = m$$

Example



$E_8^{\text{red}}(3)$:



Addition protocol [RI21]

Input

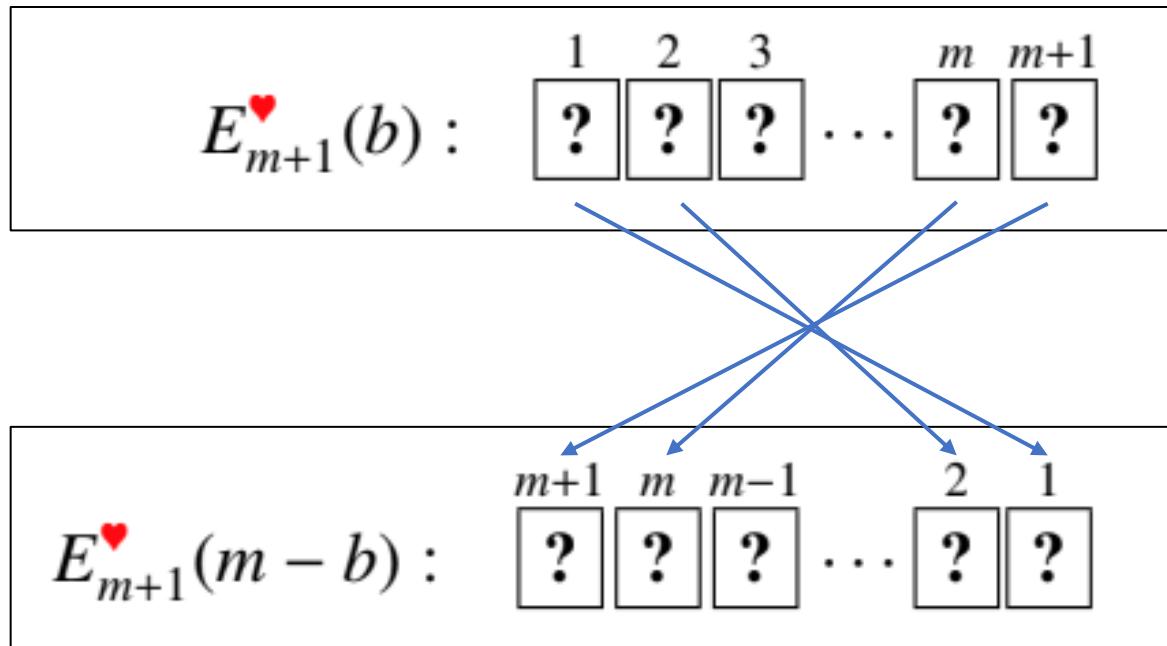
$$\begin{array}{ll} E_{m+1}^{\heartsuit}(a) & \begin{array}{ccccc} 1 & 2 & 3 & \cdots & m & m+1 \\ \boxed{?} & \boxed{?} & \boxed{?} & \cdots & \boxed{?} & \boxed{?} \end{array} \\ E_{m+1}^{\heartsuit}(b) & \begin{array}{ccccc} \vdash & \vdash & \vdash & \cdots & \vdash & \vdash \\ \boxed{?} & \boxed{?} & \boxed{?} & \cdots & \boxed{?} & \boxed{?} \end{array} \end{array}$$

Output

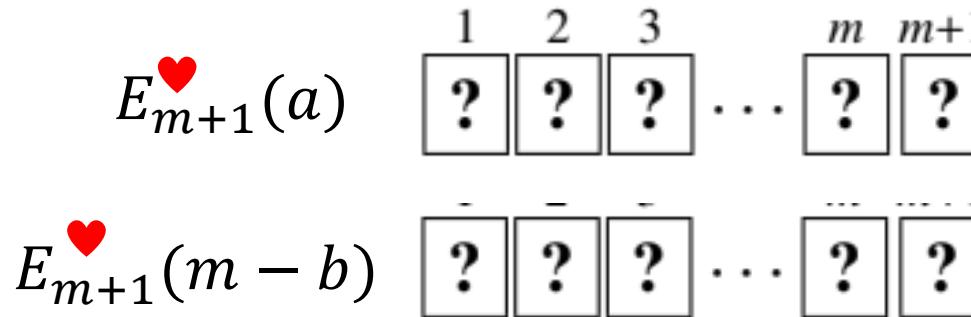
$$E_{m+1}^{\heartsuit}(a + b \bmod m + 1) \quad \begin{array}{ccccc} \vdash & \vdash & \vdash & \cdots & \vdash & \vdash \\ \boxed{?} & \boxed{?} & \boxed{?} & \cdots & \boxed{?} & \boxed{?} \end{array}$$

[RI21] Suthee Ruangwises and Toshiya Itoh. Securely computing the n -variable equality function with $2n$ cards. *Theor. Comput. Sci.*, 887:99–110, 2021.

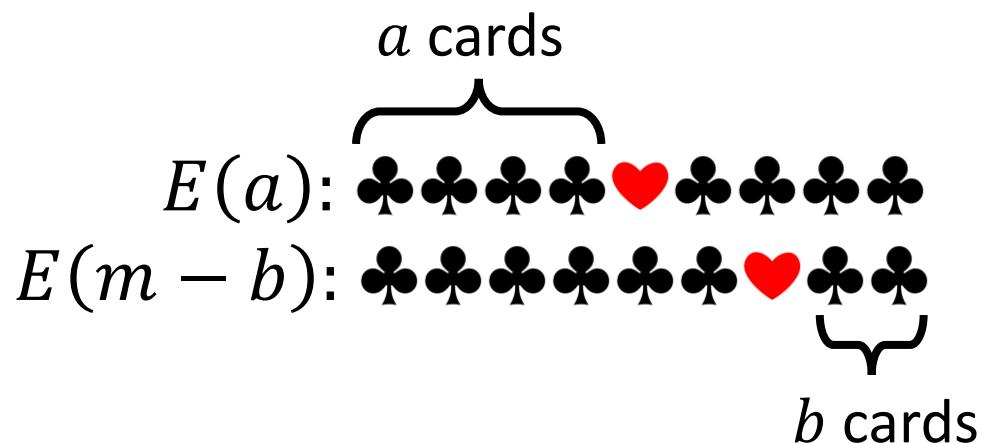
(1) For $E_{m+1}^{\heartsuit}(b)$, the left and right sides are reversed:



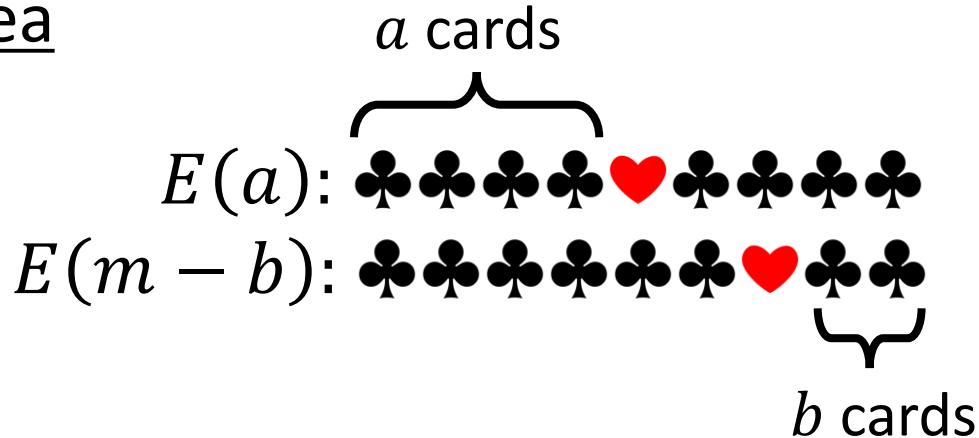
Now we have:



Idea of adding b to a



Idea



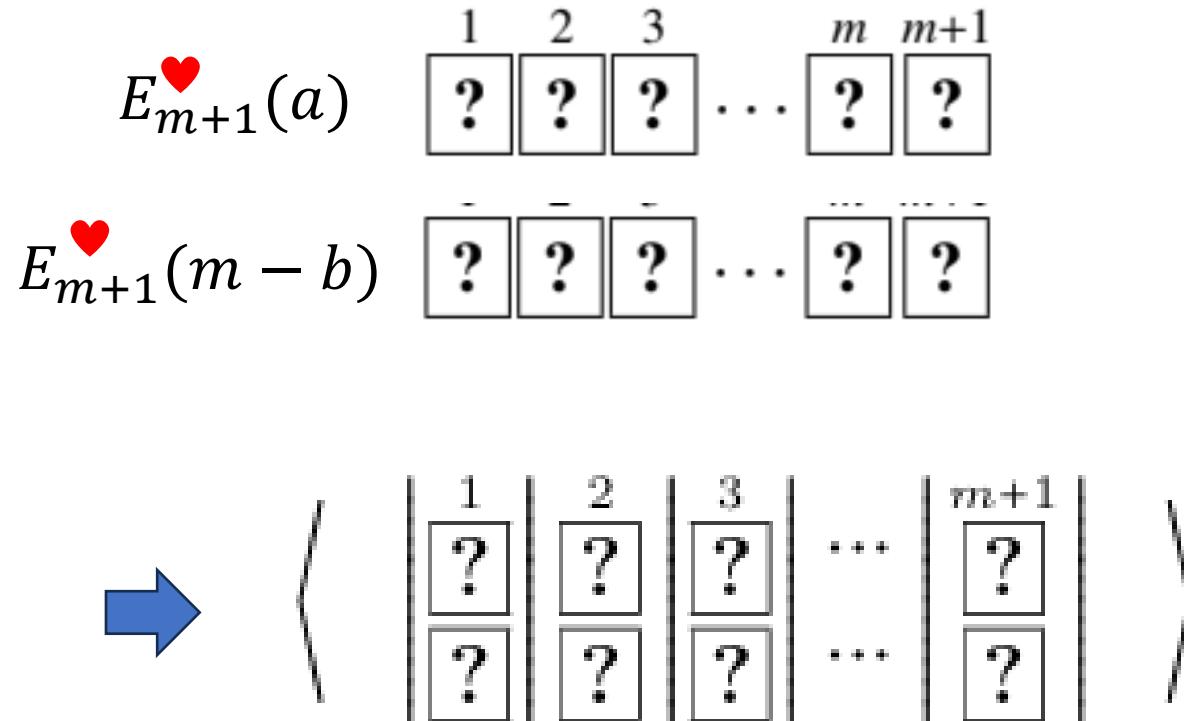
Shift the positions of the two sequences by b to the right:

$E(a + b): \clubsuit \clubsuit \clubsuit \clubsuit \clubsuit \clubsuit \heartsuit \clubsuit$

$E(m): \clubsuit \clubsuit \clubsuit \clubsuit \clubsuit \clubsuit \clubsuit \heartsuit$

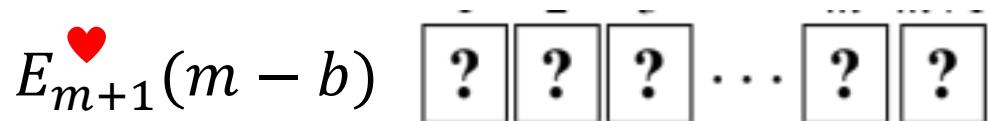
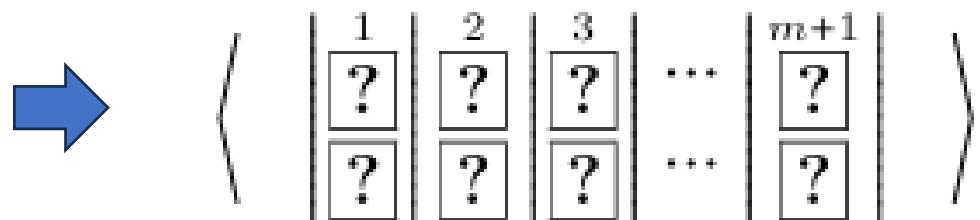
→ It suffices to make \heartsuit of the second sequence be at the right edge

(2) Apply a pile-shifting shuffle:

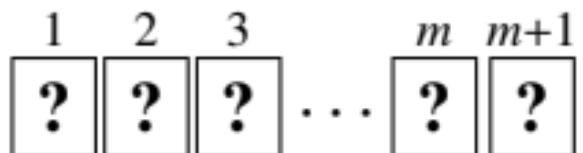


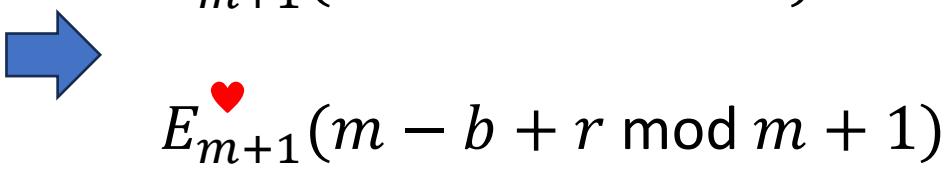
2-card piles are randomly shifted

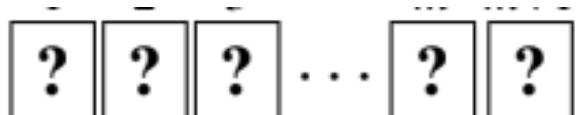
(2) Apply a pile-shifting shuffle:



$$E_{m+1}^{\heartsuit}(a + r \bmod m + 1)$$

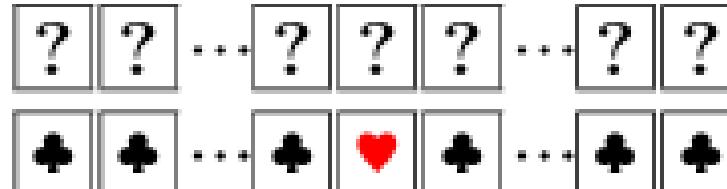



$$E_{m+1}^{\heartsuit}(m - b + r \bmod m + 1)$$



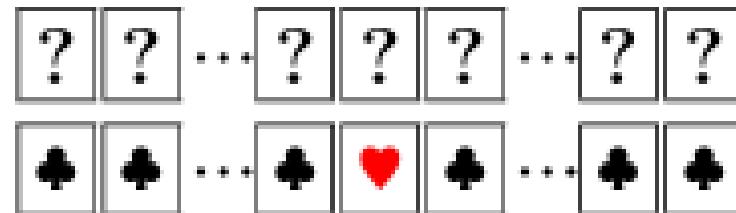
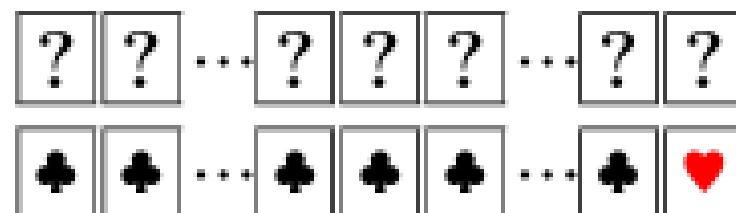
r is random

(3) Turn over all the cards in the bottom row:



$m - b + r$ is revealed
but b is kept secret

Shift the top and bottom cards until \heartsuit is at the right edge:



$E_{m+1}^{\heartsuit}(a + b \bmod m + 1)$

Addition protocol [RI21]

Input

$$E_{m+1}^{\heartsuit}(a) \quad \begin{array}{ccccc} 1 & 2 & 3 & \cdots & m & m+1 \\ \boxed{?} & \boxed{?} & \boxed{?} & \cdots & \boxed{?} & \boxed{?} \end{array}$$

$$E_{m+1}^{\heartsuit}(b) \quad \begin{array}{ccccc} \vdash & \vdash & \vdash & \cdots & \vdash & \vdash \\ \boxed{?} & \boxed{?} & \boxed{?} & \cdots & \boxed{?} & \boxed{?} \end{array}$$

Output

$$E_{m+1}^{\heartsuit}(a + b \bmod m + 1) \quad \begin{array}{ccccc} \vdash & \vdash & \vdash & \cdots & \vdash & \vdash \\ \boxed{?} & \boxed{?} & \boxed{?} & \cdots & \boxed{?} & \boxed{?} \end{array}$$

Addition can be done in this way

Gakmoro needs one more, **Comparison**

Table of Contents

1. Introduction

2. Preliminaries

3. Comparison Protocol

4. Gakmoro with Secure Computation

5. Conclusion

Comparison in Gakmoro:

Given a and b , we want to determine whether

$$a > b$$

$$a < b$$

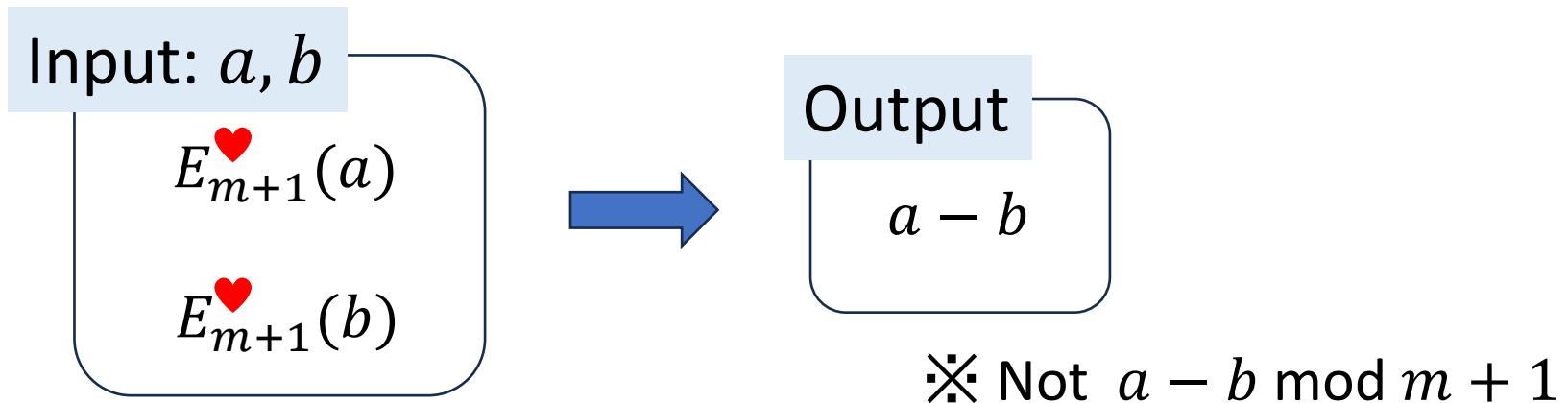
$$a = b$$

To this end, we will design a **subtraction protocol** producing

$$a - b$$

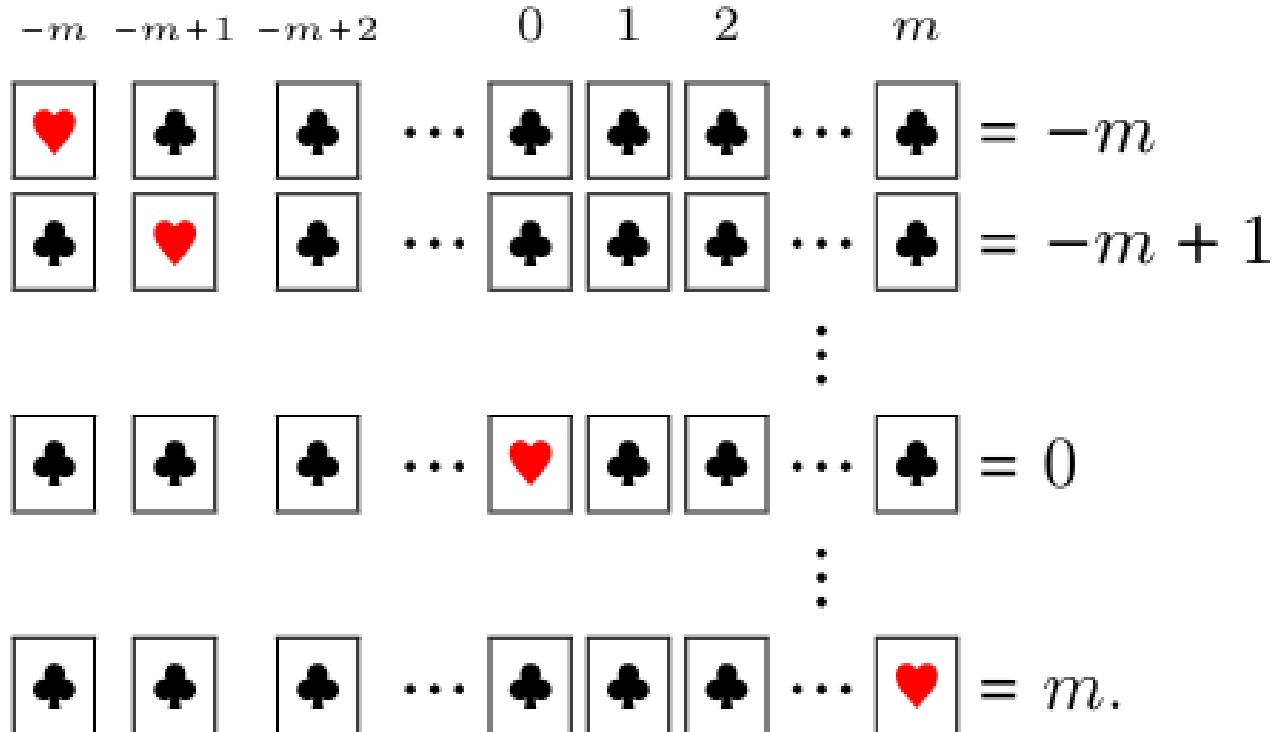
The sign (positive, negative, or zero) of this determines whether $a > b$, $a < b$, or $a = b$

Subtraction protocol



Since we need to deal with negative integers,
we extend the encoding a little

Encoding of integers between $-m$ and m



We write $E_{[-m,m]}^{\heartsuit}(i)$

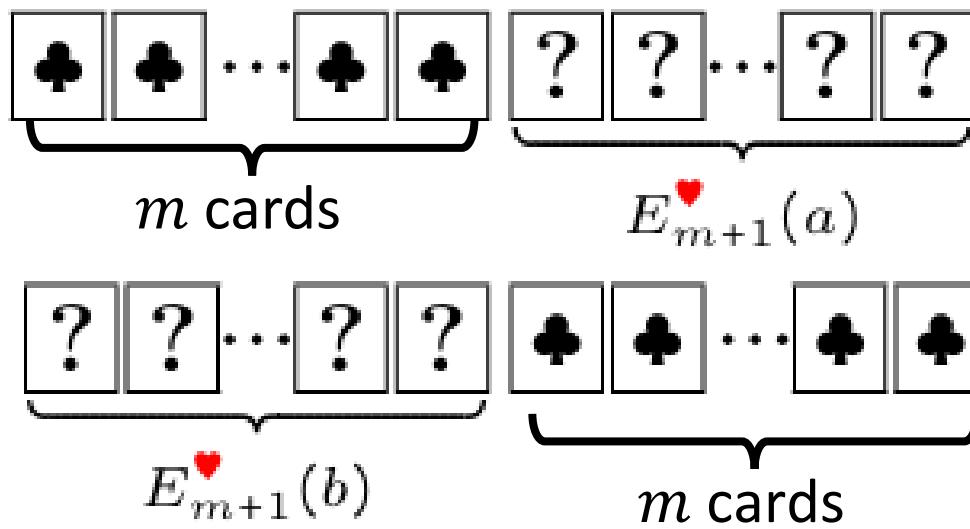
Subtraction protocol

Input: a, b

$E_{m+1}^{\heartsuit}(a)$

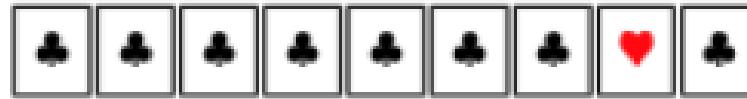
$E_{m+1}^{\heartsuit}(b)$

(1) Place \clubsuit -cards as follows:

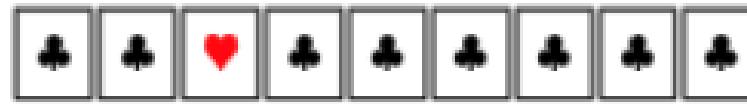


Idea

$E_{[-m,m]}^{\heartsuit}(a)$:



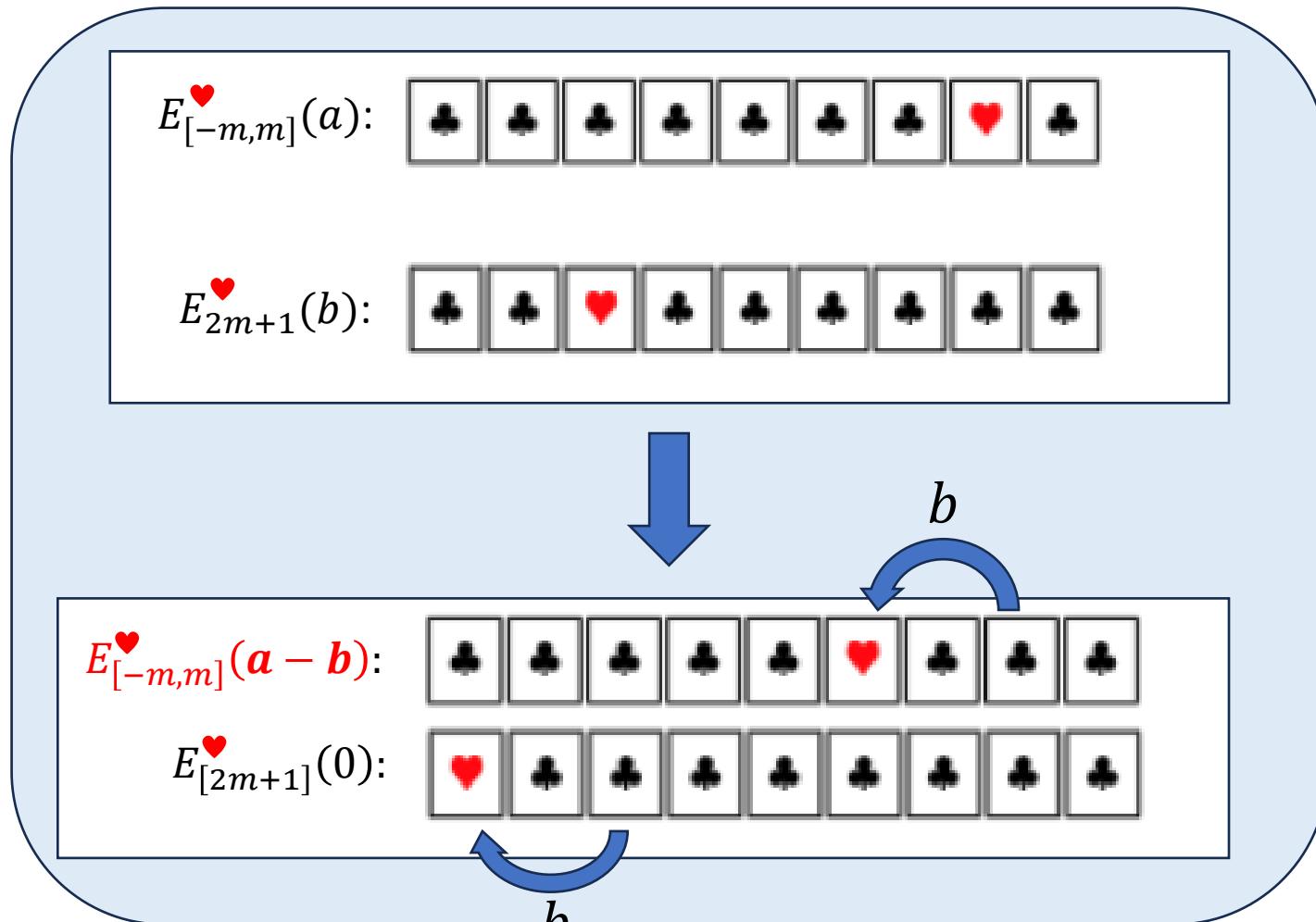
$E_{2m+1}^{\heartsuit}(b)$:



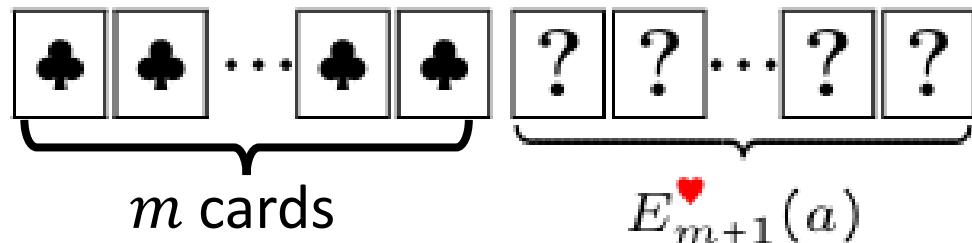
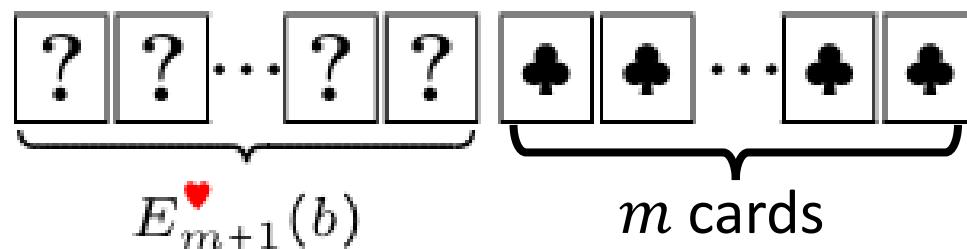
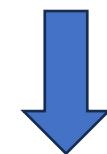
b cards

Idea

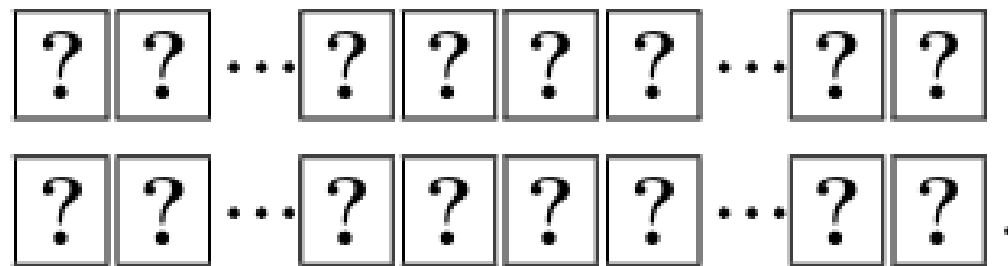
Making \heartsuit of the second sequence be at the left edge yields $a - b$:



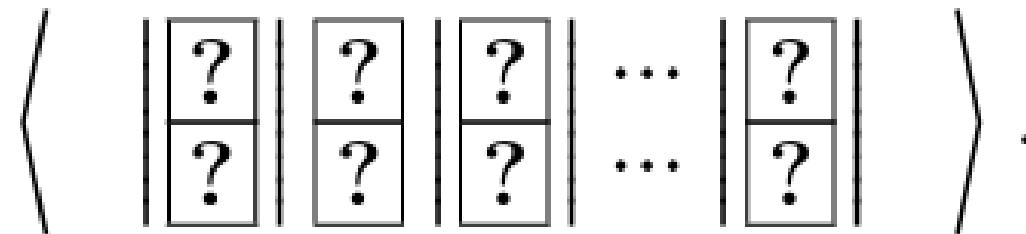
(1) Place \clubsuit -cards as follows:



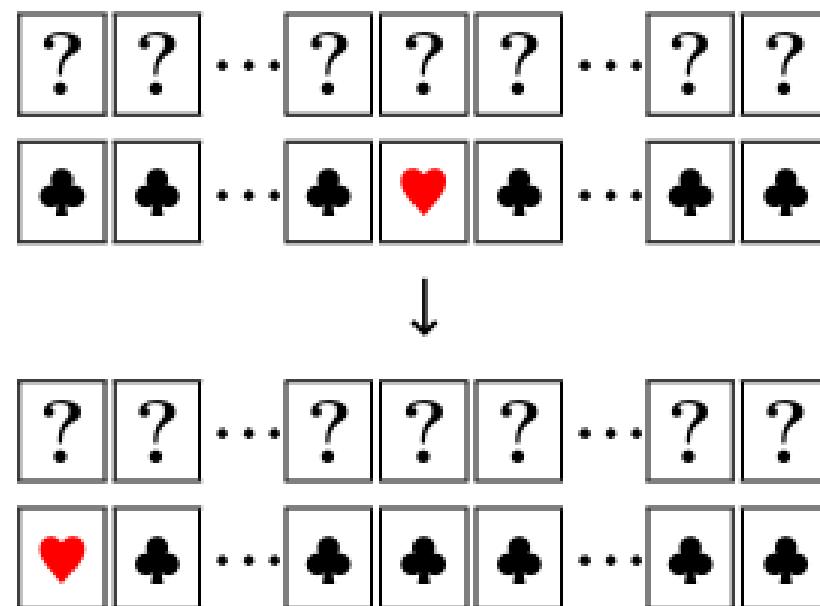
turn over



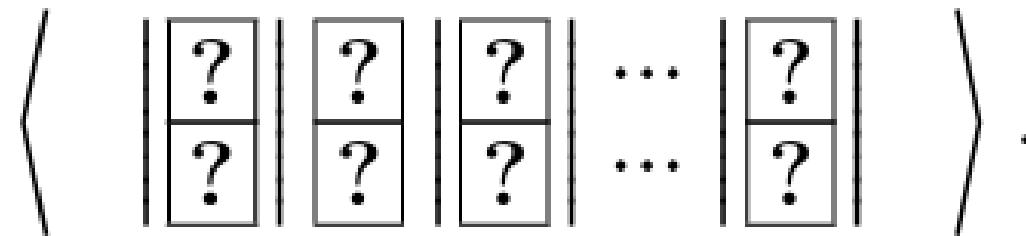
(2) Apply a pile-shifting shuffle:



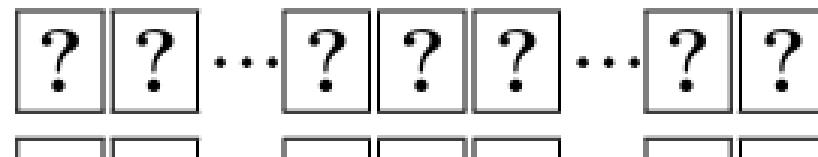
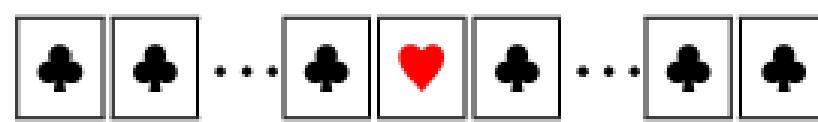
(3) Open the second sequence and shift the two sequences until is at the left edge:



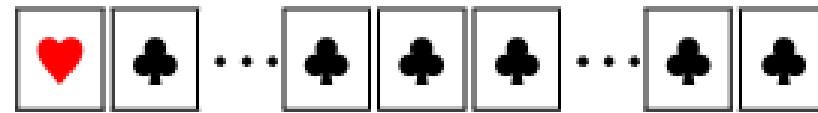
(2) Apply a pile-shifting shuffle:



(3) Open the second sequence and shift the two sequences until \heartsuit is at the left edge:



$$E_{[-m,m]}^{\heartsuit}(a - b)$$



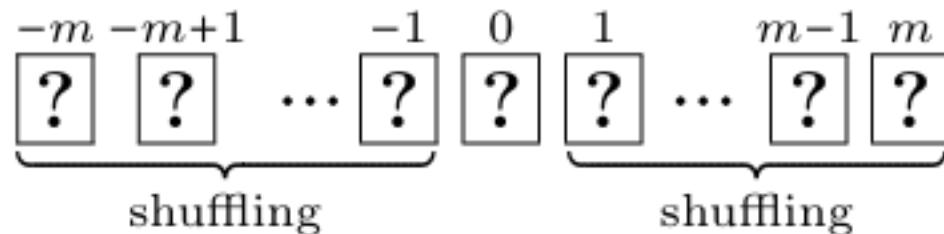
Comparison protocol

Input: $E_{m+1}^{\heartsuit}(a)$ and $E_{m+1}^{\heartsuit}(b)$

(1) By the subtraction protocol, we obtain

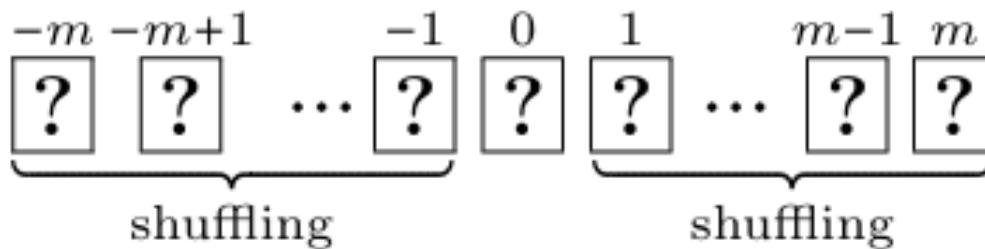
$E_{[-m,m]}^{\heartsuit}(a - b) : \boxed{?} \boxed{?} \dots \boxed{?} \boxed{?} \boxed{?} \dots \boxed{?} \boxed{?}$

(2) Two shuffles are applied:



Comparison protocol

(2) Two shuffles are applied:



(3) Turn over all cards:

- If appears in the center, then $a = b$;
- If appears on the left, then $a < b$; and
- If appears to the right, then $a > b$.

Table of Contents

1. Introduction

2. Preliminaries

3. Comparison Protocol

4. Gakmoro with Secure Computation

5. Conclusion

Remember that in Gakmoro, each player holds 7 cards and submits 1 to 3 cards at every round.

Let us add two cards of value 0 to each player's hand:

0, 0, 1, 2, 3, 4, 5, 6, and 7

Then, we can assume that each player, holding 9 cards, submits exactly 3 cards at every round.

Gakmoro with secure computation

(1) Prepare nine bundles for each of Alice and Bob:

Alice

$E_8^{\heartsuit}(0), E_8^{\heartsuit}(0), E_8^{\heartsuit}(1), E_8^{\heartsuit}(2), E_8^{\heartsuit}(3), E_8^{\heartsuit}(4), E_8^{\heartsuit}(5), E_8^{\heartsuit}(6), E_8^{\heartsuit}(7)$

Bob

$E_8^{\heartsuit}(0), E_8^{\heartsuit}(0), E_8^{\heartsuit}(1), E_8^{\heartsuit}(2), E_8^{\heartsuit}(3), E_8^{\heartsuit}(4), E_8^{\heartsuit}(5), E_8^{\heartsuit}(6), E_8^{\heartsuit}(7)$

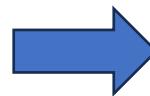
Gakmoro with secure computation

(1) Prepare nine bundles for each of Alice and Bob:

$E_8^{\heartsuit}(0), E_8^{\heartsuit}(0), E_8^{\heartsuit}(1), E_8^{\heartsuit}(2), E_8^{\heartsuit}(3), E_8^{\heartsuit}(4), E_8^{\heartsuit}(5), E_8^{\heartsuit}(6), E_8^{\heartsuit}(7)$

Alice

place in a sleeve



B

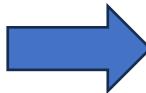
Gakmoro with secure computation

(1) Prepare nine bundles for each of Alice and Bob:

Alice

Bob

$E_8^{\heartsuit}(0), E_8^{\heartsuit}(0), E_8^{\heartsuit}(1), E_8^{\heartsuit}(2), E_8^{\heartsuit}(3), E_8^{\heartsuit}(4), E_8^{\heartsuit}(5), E_8^{\heartsuit}(6), E_8^{\heartsuit}(7)$



sticky note

“3” is written

✓ make up the hand in units of sleeves

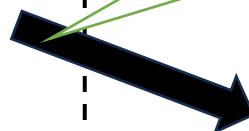
Alice

Bob

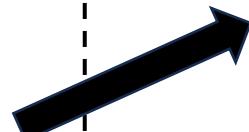
(2) Each player chooses 3 bundles from their hand and places them face down on the table:

Alice

Peel off the
sticky notes



Bob



(3) Apply the addition protocol

$$E_8^{\heartsuit}(a_1) \quad E_8^{\heartsuit}(a_2) \quad E_8^{\heartsuit}(a_3)$$

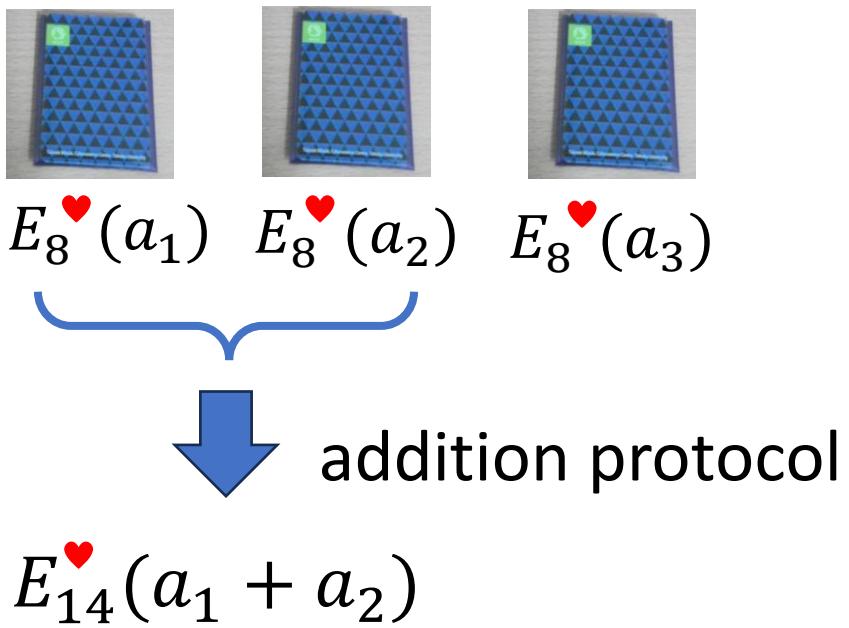
$$a_1 + a_2 \leq 13$$

$$E_8^{\heartsuit}(a_1) \quad \boxed{?} \quad \boxed{?} \quad \cdots \quad \boxed{?} \quad \boxed{?}$$

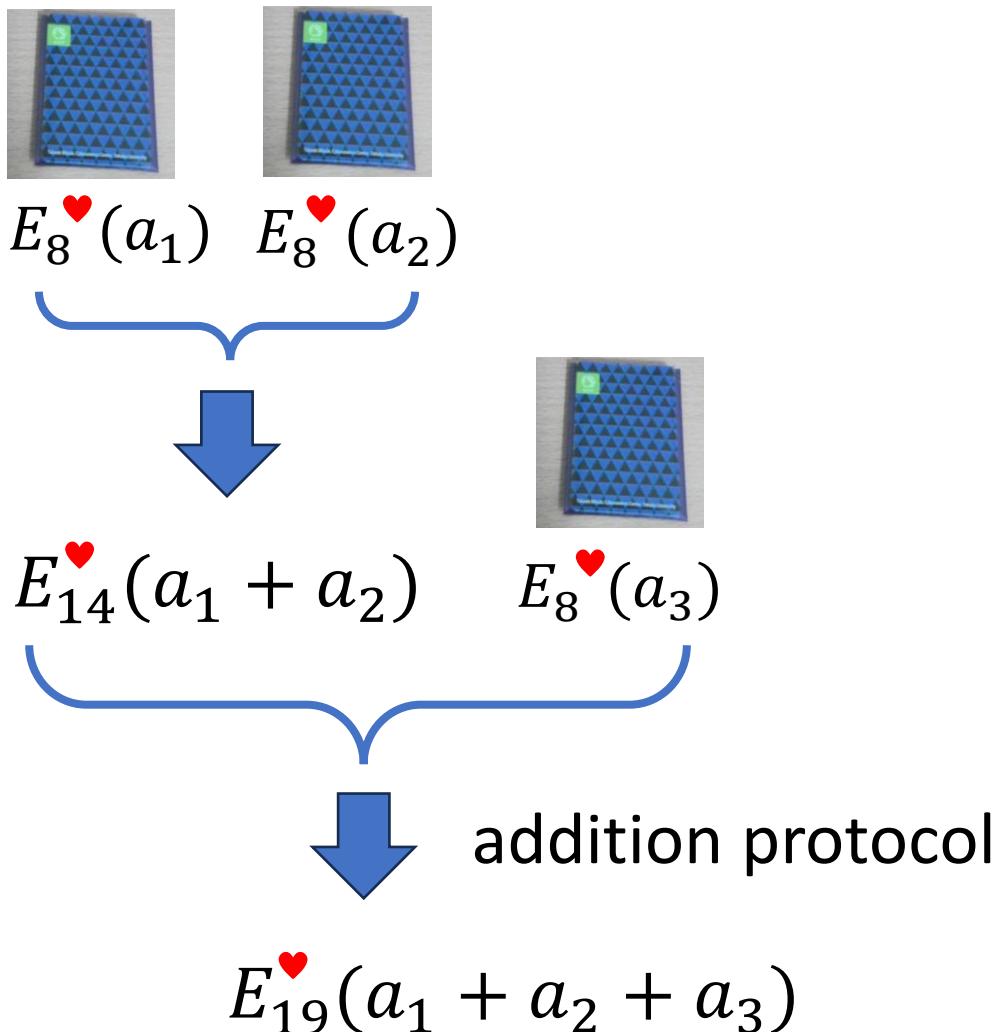
Add 7 black cards

$$E_{14}^{\heartsuit}(a_1) \quad \boxed{?} \quad \boxed{?} \quad \cdots \quad \boxed{?} \quad \boxed{?} \quad \boxed{\clubsuit} \quad \boxed{\clubsuit} \quad \cdots \quad \boxed{\clubsuit} \quad \boxed{\clubsuit}$$

(3) Apply the addition protocol



(3) Apply the addition protocol



(4) Apply the comparison protocol to:

$$E_{19}^{\heartsuit}(a_1 + a_2 + a_3) \text{ and } E_{19}^{\heartsuit}(b_1 + b_2 + b_3)$$

to determine who is the winner.

(5) Step (2) to Step (4) are repeated for up to three rounds, with the first player to win two rounds being declared the winner.

Requirements in implementation

- The first addition uses $14 \times 2 = 28$ cards
- The second addition uses $19 \times 2 = 38$ cards
- The comparison protocol uses $(19 + 18) \times 2 = 74$ cards

The number of required cards and required space are not so small.

→ Further optimization is expected.

Table of Contents

1. Introduction

2. Preliminaries

3. Comparison Protocol

4. Gakmoro with Secure Computation

5. Conclusion

We proposed a new card game called ***Gakmoro***.

We then presented a method that utilizes secure computation to allow two players to enjoy Gakmoro without a dealer.

We have demonstrated that card-based cryptography can increase the flexibility of game play.

Similar recent work: creating virtual players in card games:

- Old Maid (Theory of Computing Systems, 69(1), 2025)
- UNO (this Monday by Ruangwises and Shinagawa)

How about joining this hot research topic?