

Theory and Practice of Natural Computing 2013
December 5, Cáceres, Spain

Securely Computing the Three-Input Majority Function with Eight Cards

Takuya Nishida, Takaaki Mizuki, Hideaki Sone
Tohoku University

Contents

1. Introduction

2. Known Protocols

3. Straightforward

Secure Majority Computations

4. An Improved Secure Majority Protocol

5. Conclusion

Contents

1. Introduction

- Card-Based Cryptographic Protocols
- Our Results

2. Known Results

3. Stronger Lower Bounds

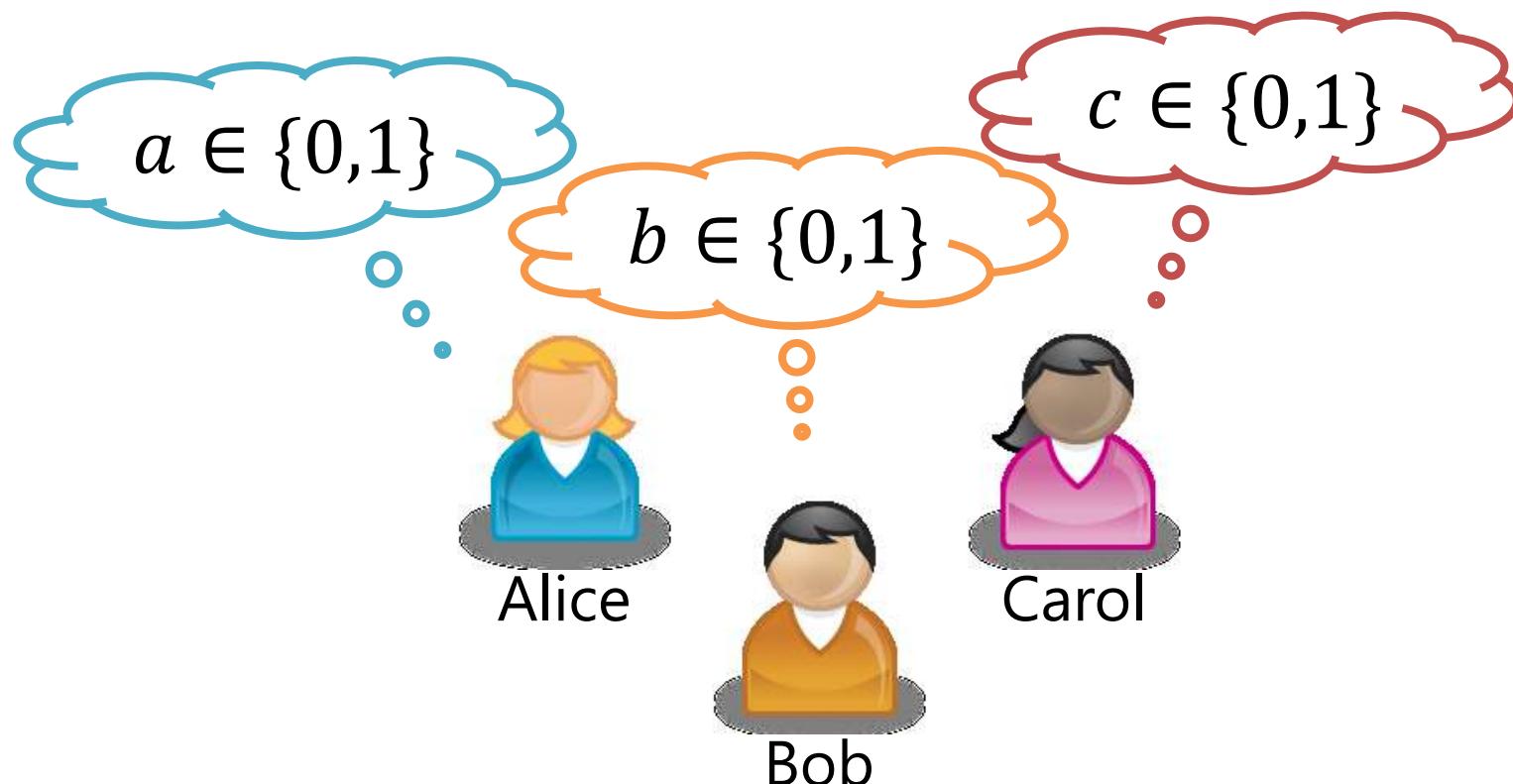
Secure Majority Computations

4. An Improved Secure Majority Protocol

5. Conclusion

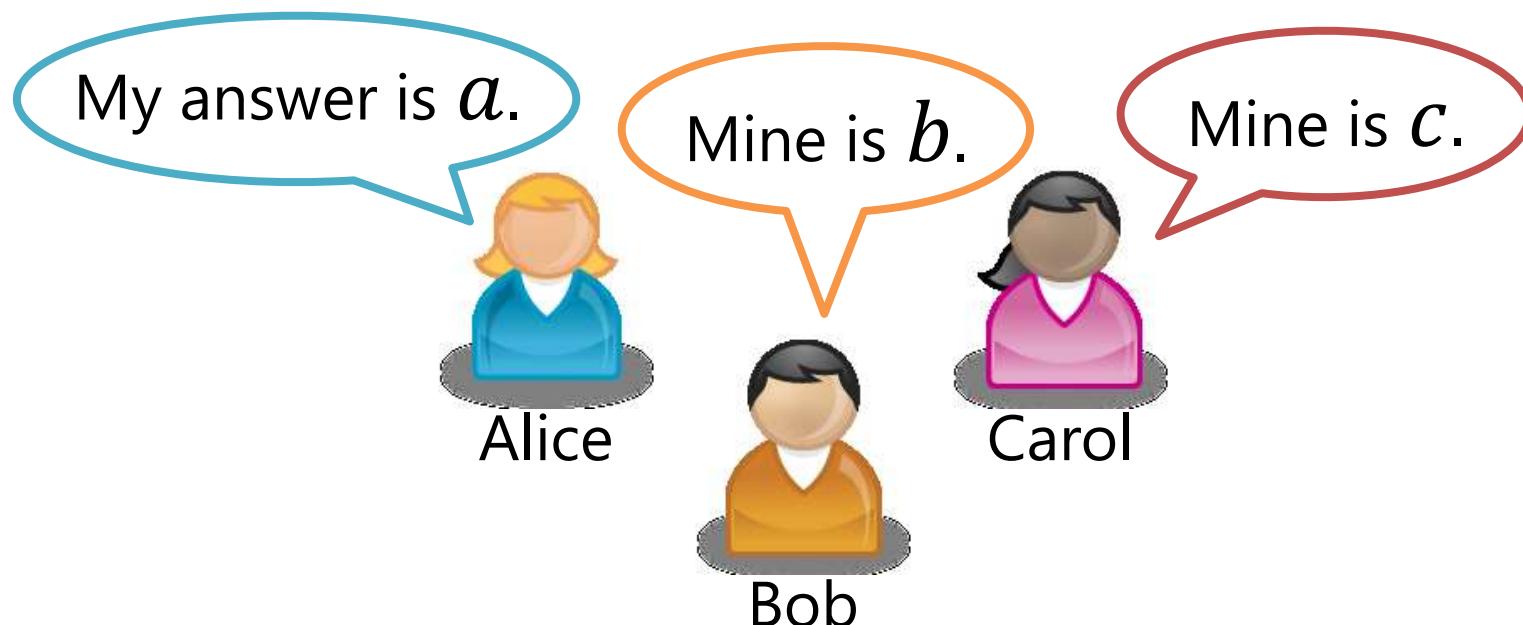
Introduction

- Assume that there are 3 players, Alice, Bob and Carol, who **privately** hold 1-bit inputs, respectively.



Introduction

- Majority voting is often conducted to find the majority of their answers **by revealing all of the inputs**.



Introduction

- Each of them does not want to let the other 2 players know his/her answer.

NG: —————

My answer is a .

Mine is b .

Mine is c .

Alice

Carol

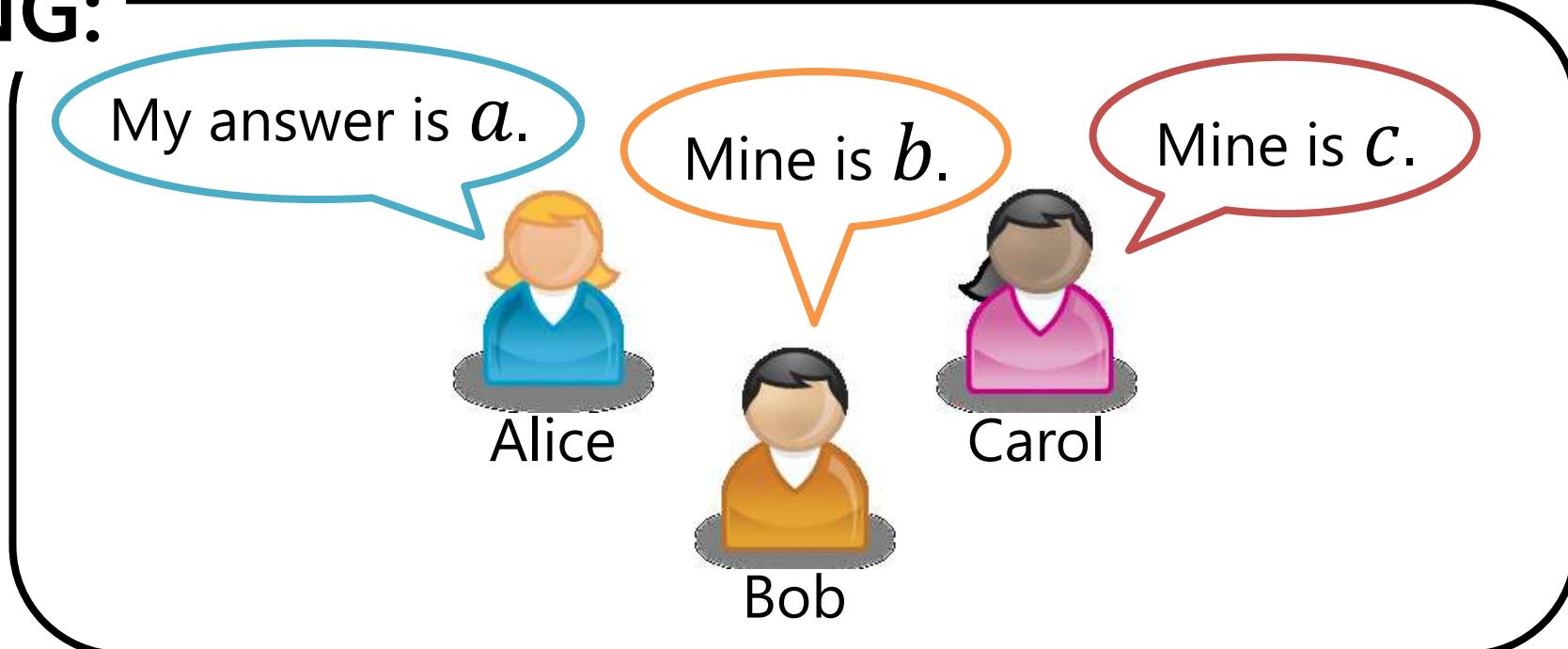
Bob

Introduction

- They all want to learn the value of the **majority function**
 $\text{maj}(a, b, c)$

without revealing more of their own secret inputs than is necessary.

NG: —



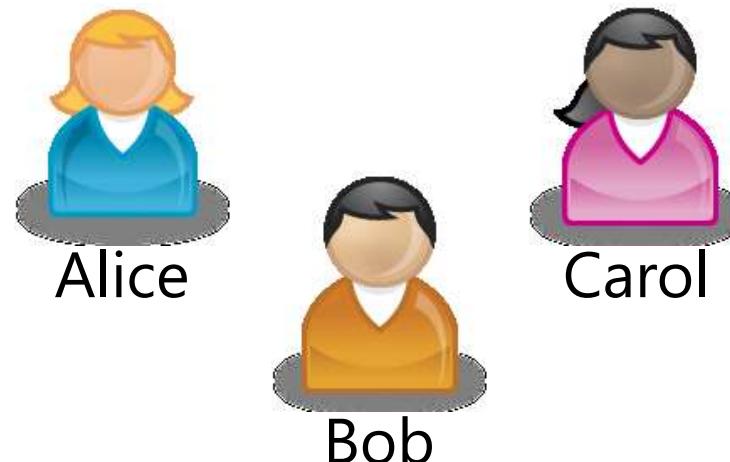
Introduction

- That is, they wish to know **only** the value of

$$\text{maj}(a, b, c) \stackrel{\text{def}}{=} \begin{cases} 1 & \text{if } a + b + c \geq 2 \\ 0 & \text{if } a + b + c \leq 1 \end{cases}$$

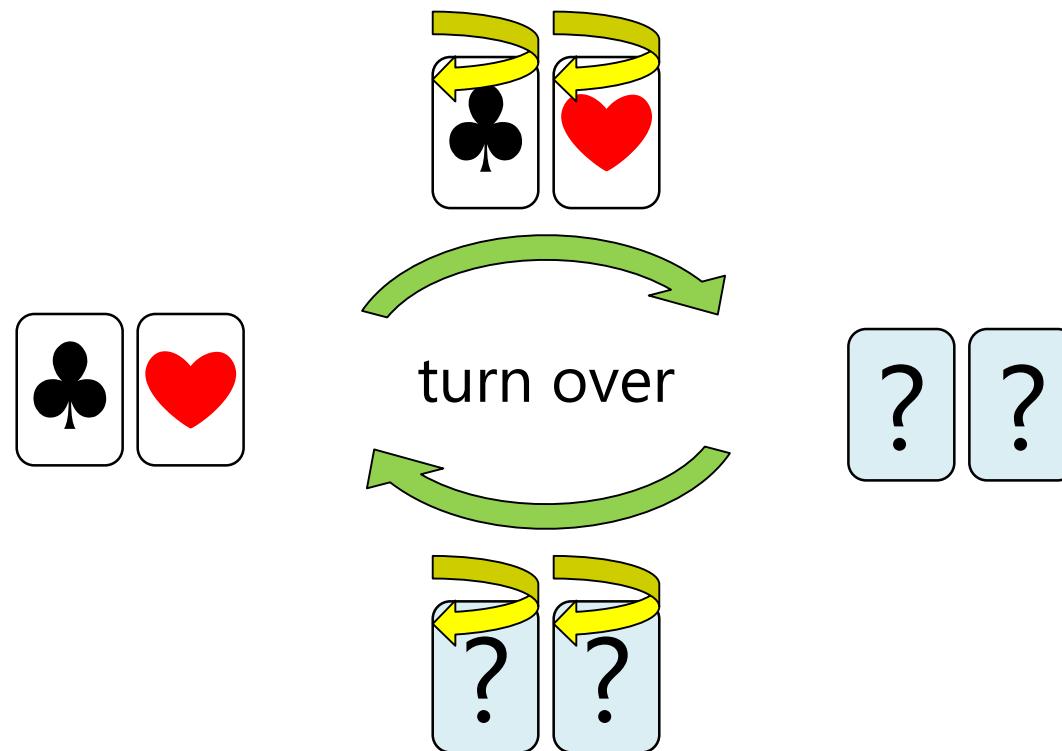
- Note that

$$\text{maj}(a, b, c) = (a \wedge b) \vee (b \wedge c) \vee (c \wedge a)$$



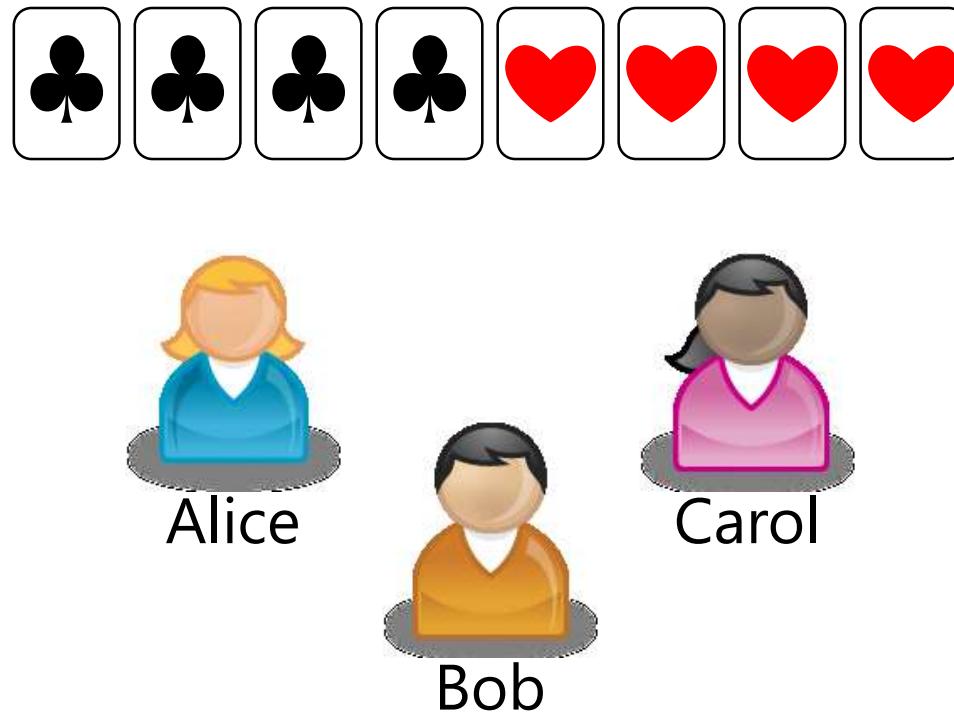
Introduction

- Such a **secure majority computation** can be conducted using a deck of **real** cards.



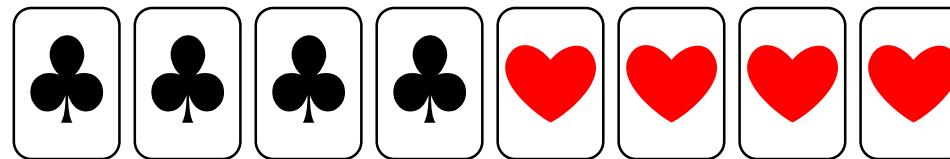
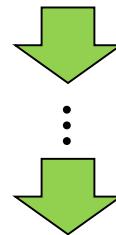
Introduction

- We show that the 3 players can learn only $\text{maj}(a, b, c)$ using 8 physical cards.



Introduction

- Our secure majority computation is a kind of **card-based cryptographic protocol**.


$$\text{maj}(a, b, c)$$

Card-Based Cryptographic Protocols

- To deal with Boolean values, we use the following encoding:

$$\begin{array}{c} \text{Club} \\ \text{Heart} \end{array} = 0$$

$$\begin{array}{c} \text{Heart} \\ \text{Club} \end{array} = 1$$

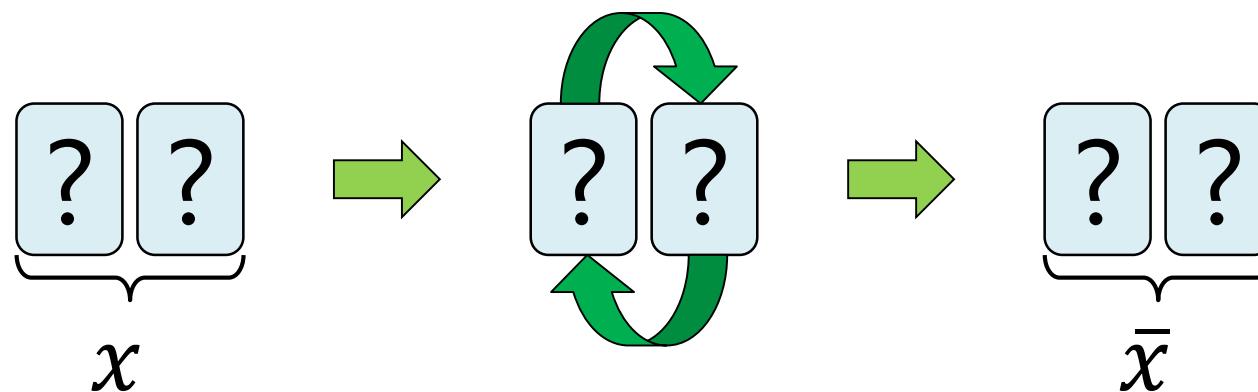
- Given a bit $x \in \{0,1\}$, a pair of face-down cards whose value is equal to x is called a **commitment** to x and is expressed as

$$\begin{array}{c} ? \\ ? \\ \hbox{\scriptsize \{ } \hbox{\scriptsize \}} \\ x \end{array}$$

Card-Based Cryptographic Protocols

- Swapping the 2 cards constituting a commitment to a bit x results in a commitment to negation \bar{x} :

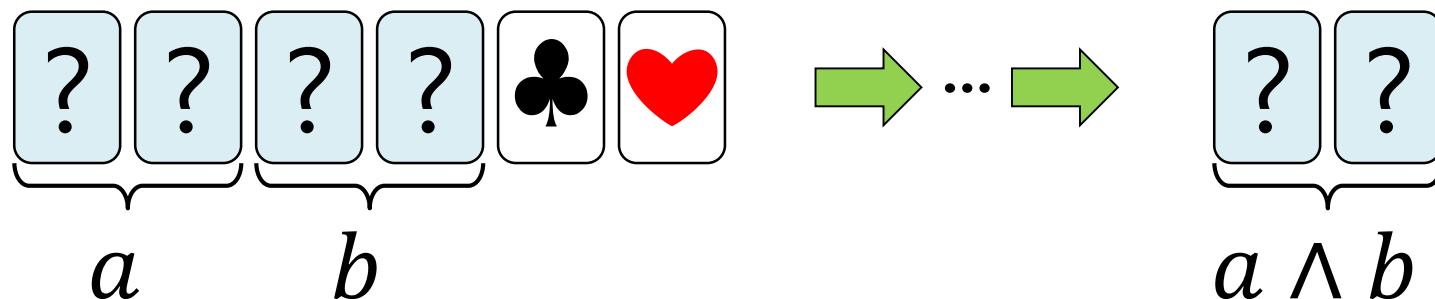
$$\begin{array}{c} \text{Club} \quad \text{Heart} \\ \text{Heart} \quad \text{Club} \end{array} = 0 \quad \begin{array}{c} \text{Heart} \quad \text{Club} \\ \text{Club} \quad \text{Heart} \end{array} = 1$$



- Thus, a secure NOT operation is trivial.

Card-Based Cryptographic Protocols

- There are some secure AND protocols.

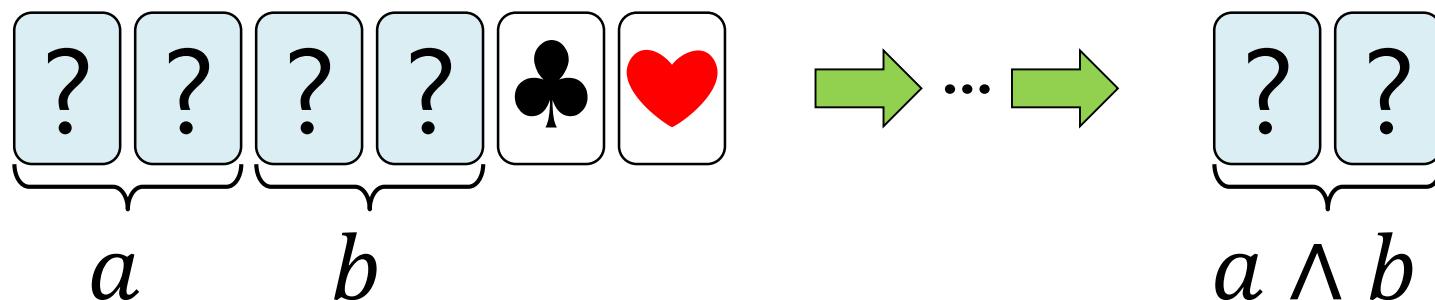


- History of Secure AND protocols

	# of colors	# of cards	Avg. # of trials
Crépeau-Kilian [CRYPTO '93]	4	10	6
Niemi-Renvall [TCS 1998]	2	12	2.5
Stiglic [TCS 2001]	2	8	2
Mizuki-Sone [FAW 2009]	2	6	1

Card-Based Cryptographic Protocols

- There are some secure AND protocols.



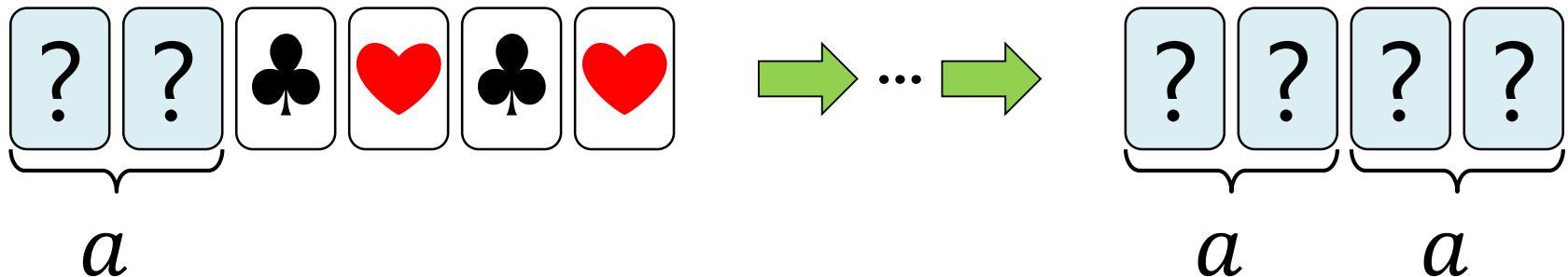
- History of Secure AND protocols

	# of colors	# of cards	Avg. # of trials
Crépeau-Kilian [CRYPTO '93]	4	10	6
Wolpert-Kilian [TCS 1998]	2	12	2.5
Stiglic [TCS 2001]	2	8	2
Mizuki-Sone [FAW 2009]	2	6	1

Will be introduced

Card-Based Cryptographic Protocols

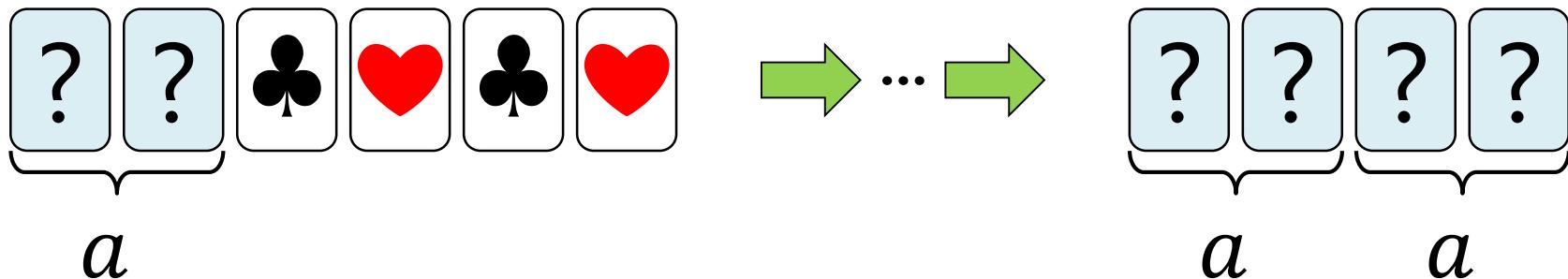
- There are also copy protocols.



Card-Based Cryptographic Protocols

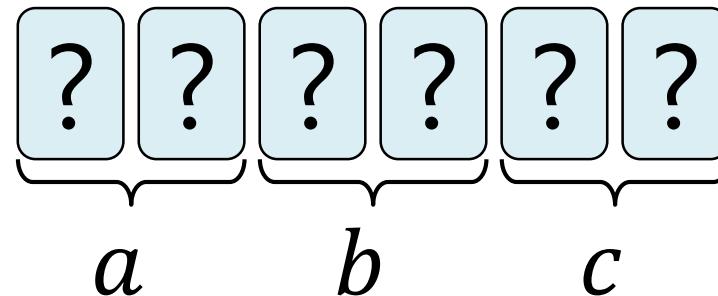
- There are also copy protocols.

One of which is introduced

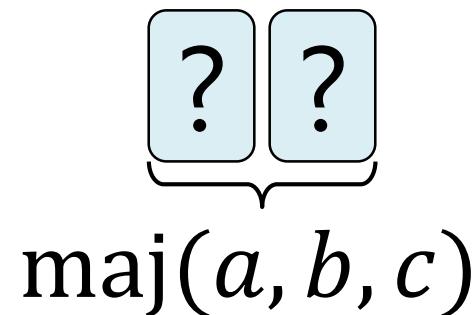


Our Results

- Recall our goal: given 3 commitments,



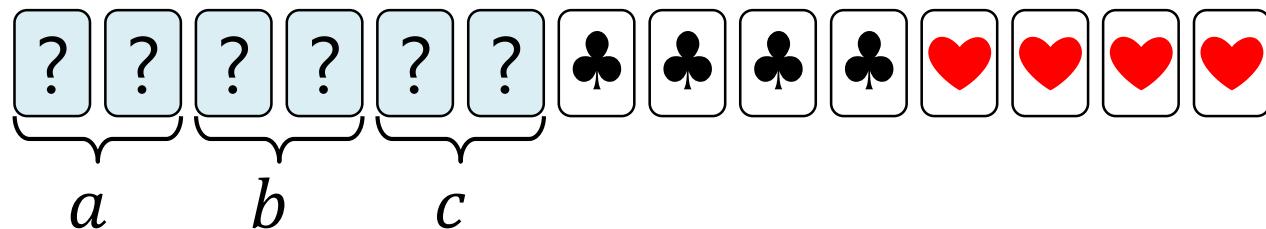
we desire to obtain a commitment to



Our Results

Section 2

- Using the existing protocols, we can construct a **trivial** protocol for $\text{maj}(a, b, c)$ by using 14 cards.

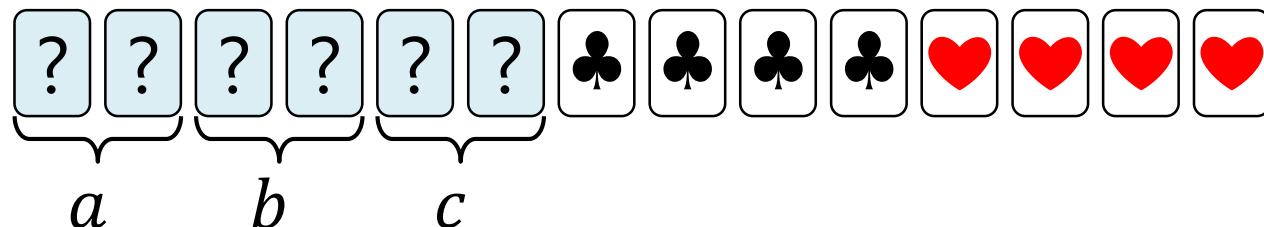


Our Results

Section 2

- Using the existing protocols, we can construct a **trivial** protocol for $\text{maj}(a, b, c)$ by using 14 cards.

Section 3

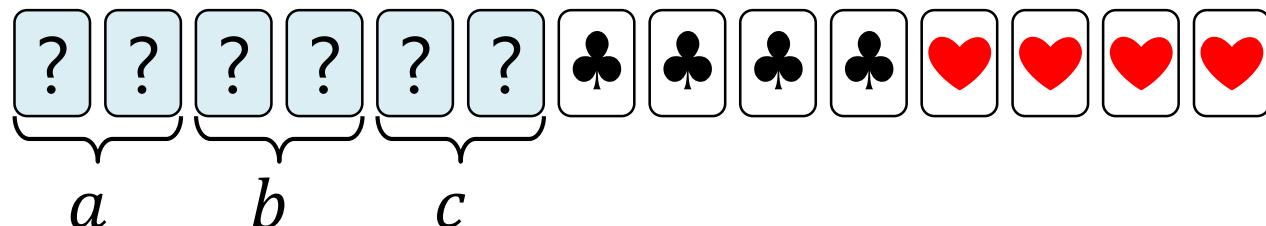


Our Results

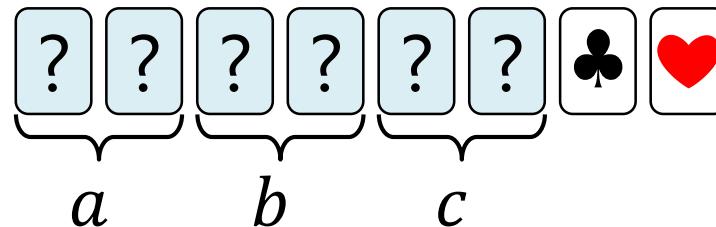
Section 2

- Using the existing protocols, we can construct a **trivial** protocol for $\text{maj}(a, b, c)$ by using 14 cards.

Section 3



- We give a **non-trivial** protocol using **only 8 cards**.

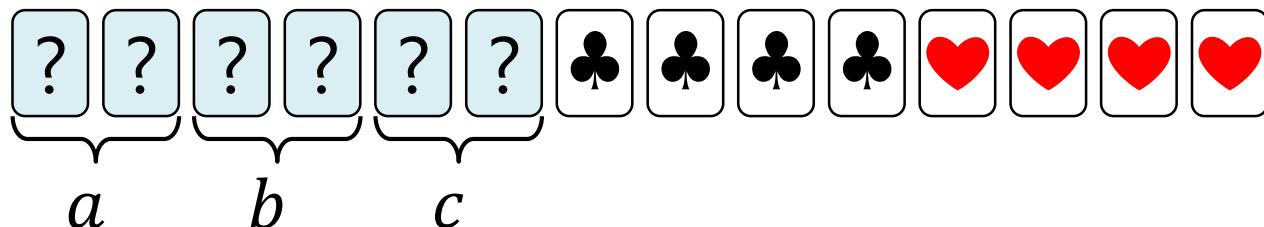


Our Results

Section 2

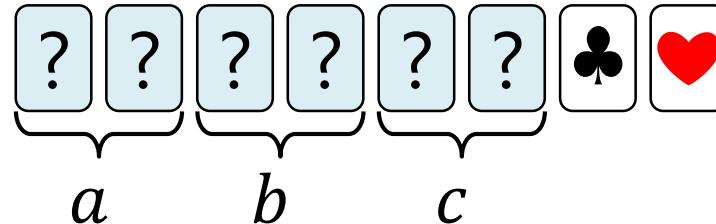
- Using the existing protocols, we can construct a **trivial** protocol for $\text{maj}(a, b, c)$ by using 14 cards.

Section 3



- We give a **non-trivial** protocol using **only 8 cards**.

Section 4



Contents

1. Introduction

2. Known Protocols

3. Straightforward

Secure Majority Computations

4. An Improved Secure Majority Protocol

5. Conclusion

Contents

1. Introduction

2. Known Protocols

3. Strategies

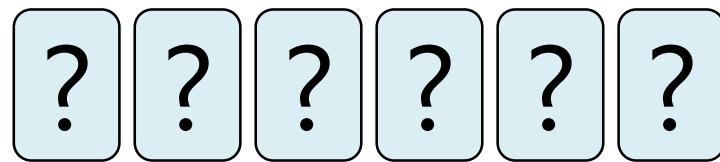
- Random Bisection Cuts
- The Six-Card AND Protocol
- The Copy Protocol

4. A Protocol with a Random Bisection Cut

5. Conclusion

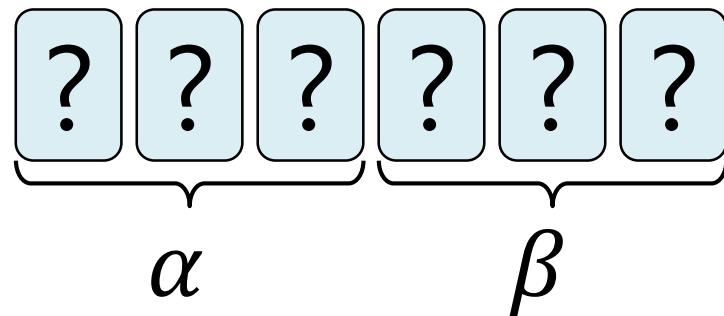
Random Bisection Cuts

- Assume that there are 6 cards as follows:



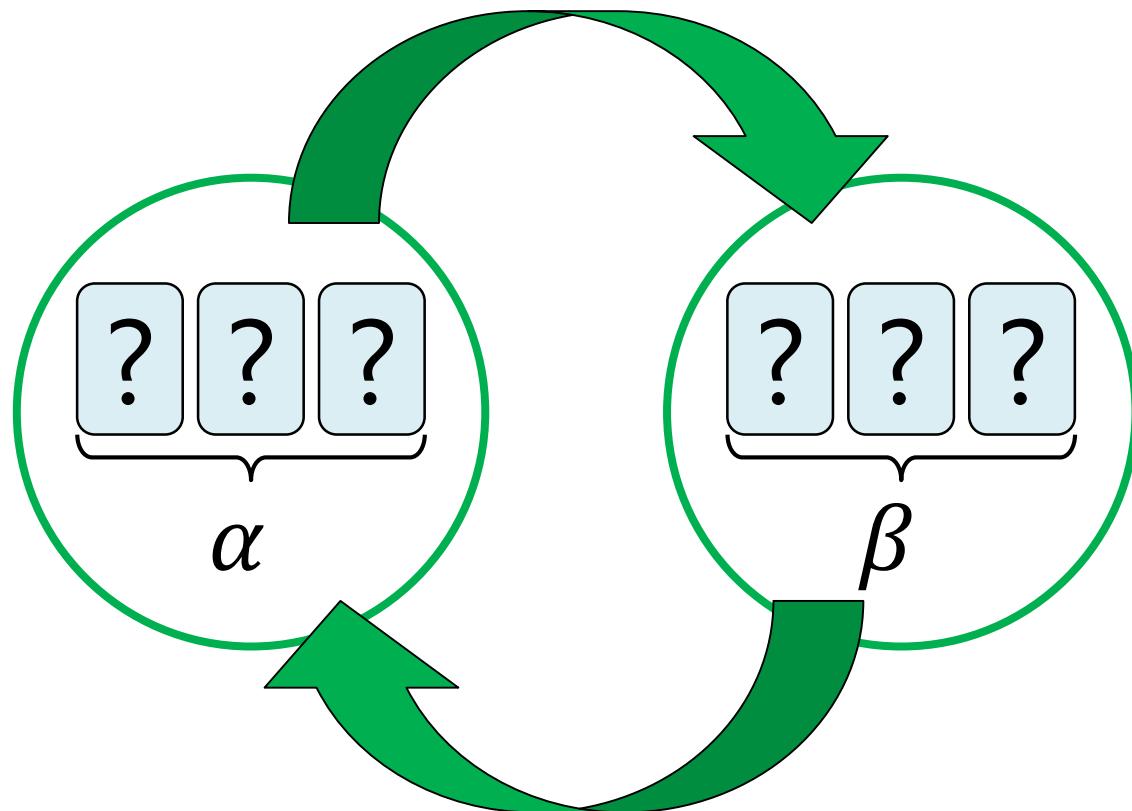
Random Bisection Cuts

- Bisect the deck of cards, and let the 2 sections be α and β :

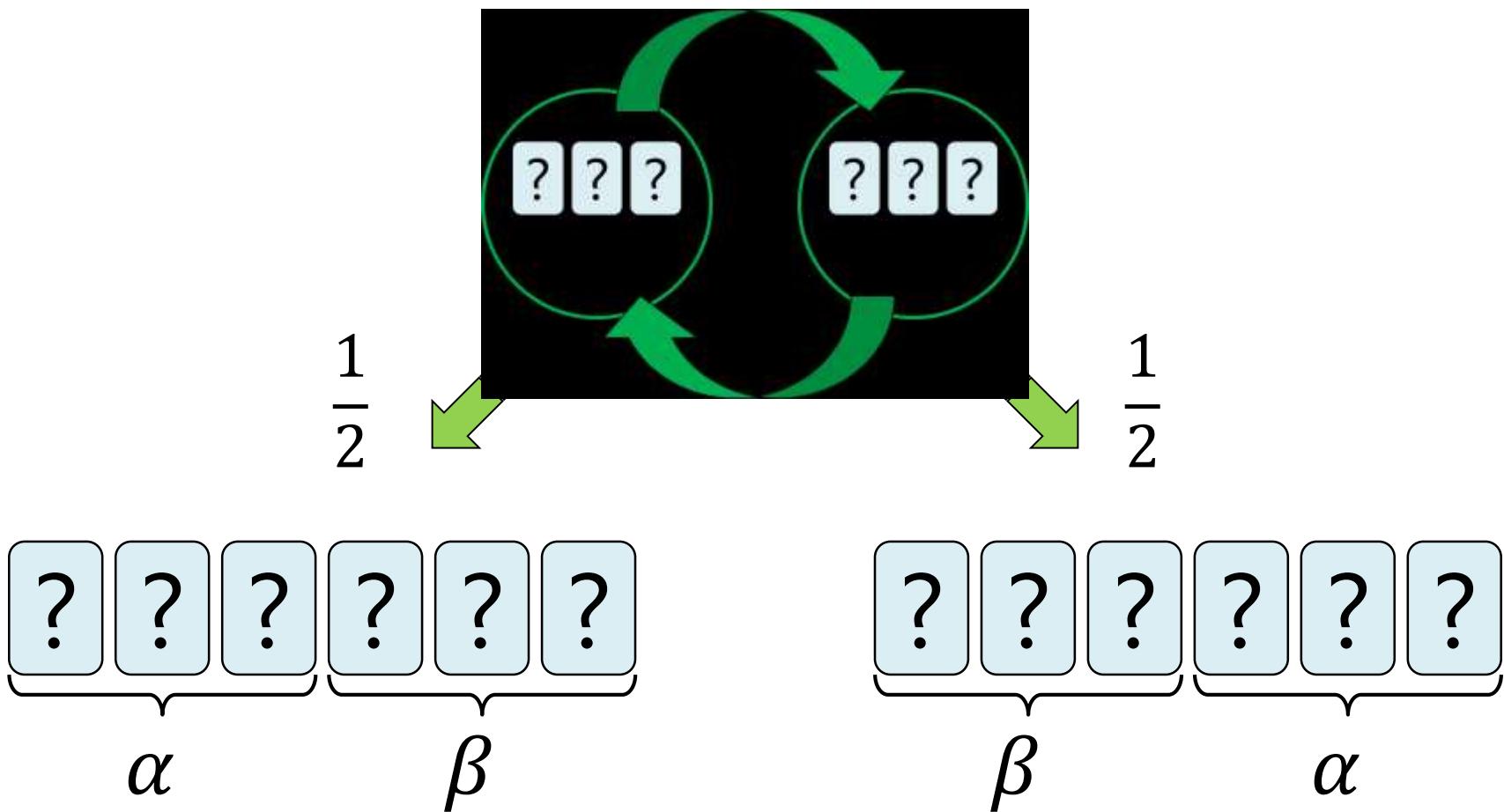


Random Bisection Cuts

- Shift α and β randomly:

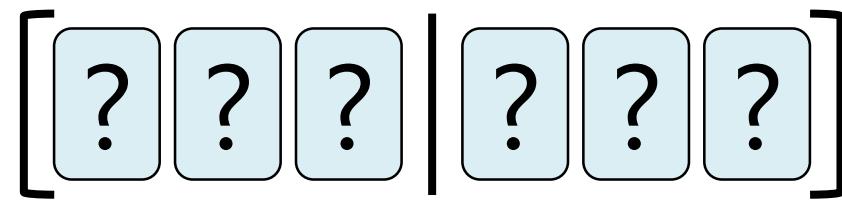


Random Bisection Cuts

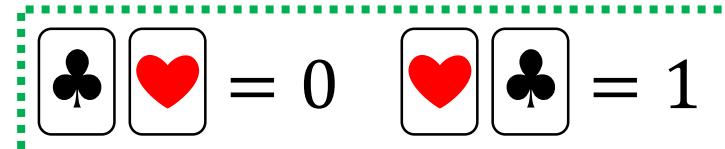


Random Bisection Cuts

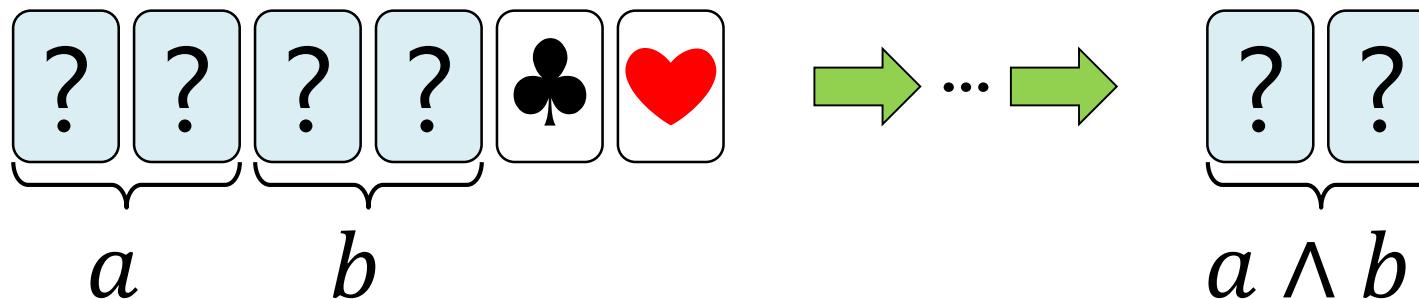
- The expression of a random bisection cut for 6 cards:



The Six-Card AND Protocol



- Using the random bisection cut, we can construct a 6-card AND protocol [8].



[8] Mizuki, T., Sone, H.: Six-card secure AND and four-card secure XOR.
In: FAW 2009, LNCS 5598, pp. 358–369. (2009)

The Six-Card AND Protocol

- Before going into the details, we define 2 operations, **get** and **shift**. Given a pair of bits (x, y) ,

$$\text{get}^0(x, y) = x$$

$$\text{get}^1(x, y) = y$$

$$\text{shift}^0(x, y) = (x, y)$$

$$\text{shift}^1(x, y) = (y, x)$$

The Six-Card AND Protocol

$$\text{get}^0(x, y) = x$$

returns the first bit

$$\text{get}^1(x, y) = y$$

returns the second bit

The Six-Card AND Protocol

returns the 2 bits identically

$$\text{shift}^0(x, y) = (\underline{x}, \underline{y})$$

$$\text{shift}^1(x, y) = (\underline{y}, \underline{x})$$

swaps the 2 bits

The Six-Card AND Protocol

- Using the `get` and `shift`, the AND function can be written as

$$a \wedge b = \text{get}^a(0, b)$$

$$\because a \wedge b = \begin{cases} 0 & \text{if } a = 0 \\ b & \text{if } a = 1 \end{cases}$$

The Six-Card AND Protocol

- Furthermore

$$\begin{aligned} a \wedge b &= \text{get}^a(0, b) = \text{get}^{\downarrow a}(\text{shift}^0(0, b)) \\ &= \text{get}^{a \oplus 1}(\text{shift}^1(0, b)) \end{aligned}$$

The Six-Card AND Protocol

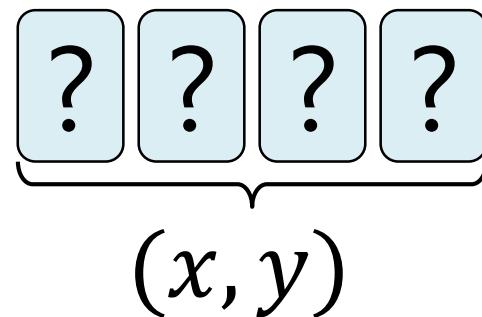
- Furthermore

$$\begin{aligned} a \wedge b &= \text{get}^a(0, b) = \text{get}^{\downarrow a}(\text{shift}^0(0, b)) \\ &= \text{get}^{a \oplus 1}(\text{shift}^1(0, b)) \\ \therefore a \wedge b &= \text{get}^{a \oplus r}(\text{shift}^r(0, b)) \end{aligned}$$

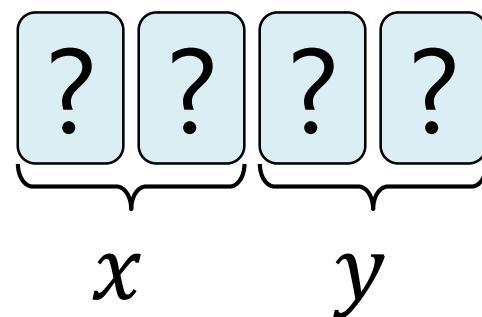
for a random bit $r \in \{0,1\}$.

The Six-Card AND Protocol

- Hereafter, for 2 bits x and y , the notation

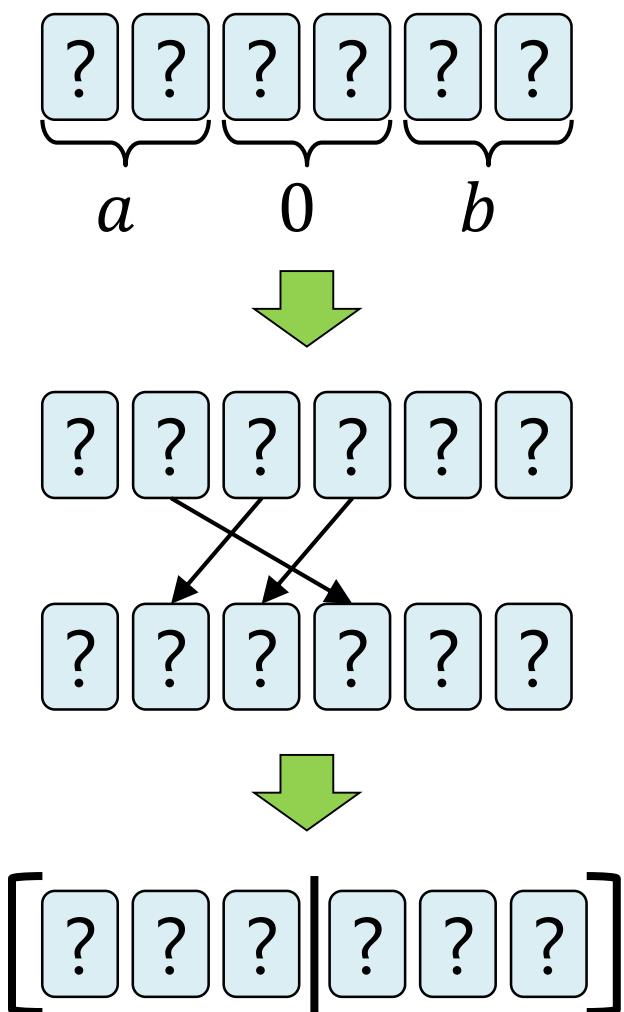
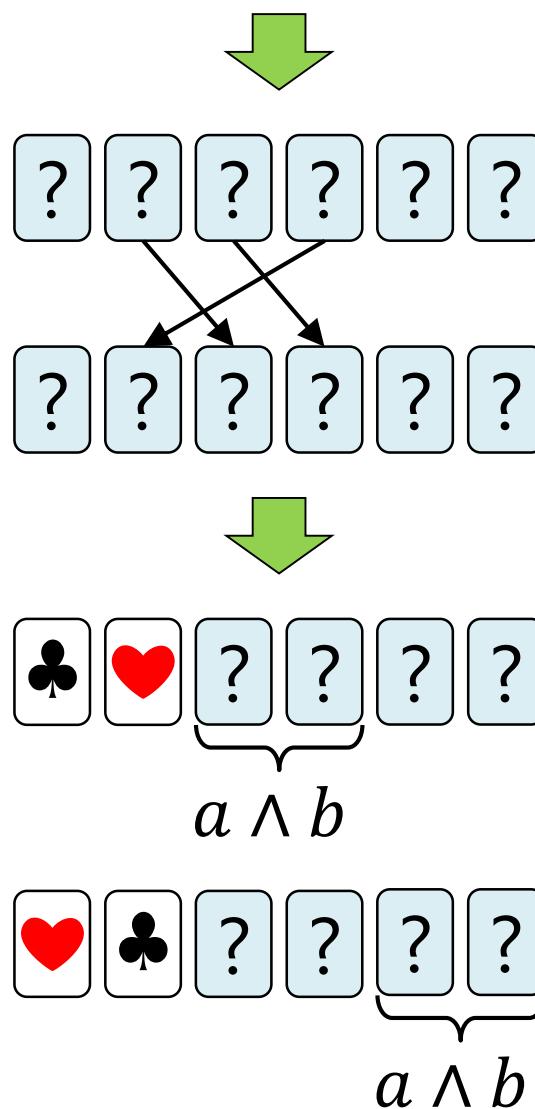


means



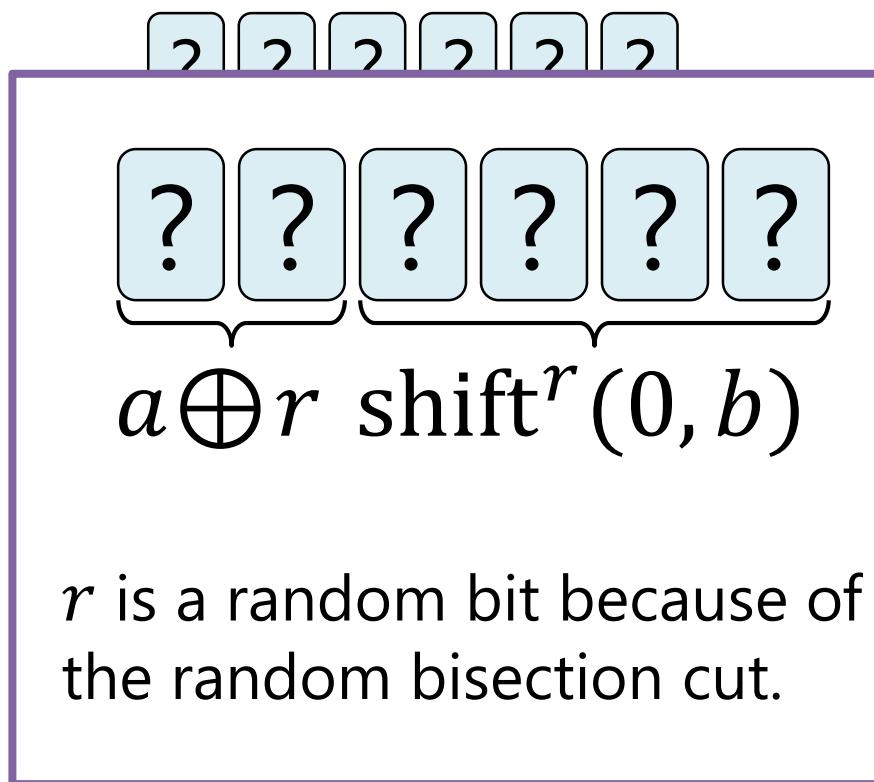
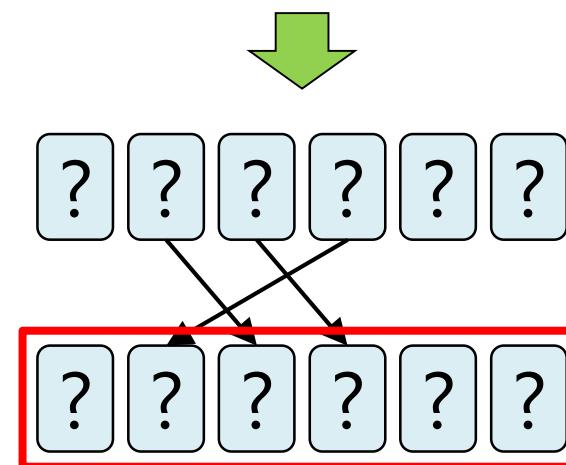
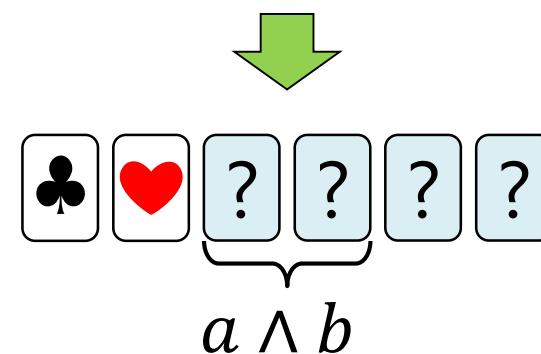
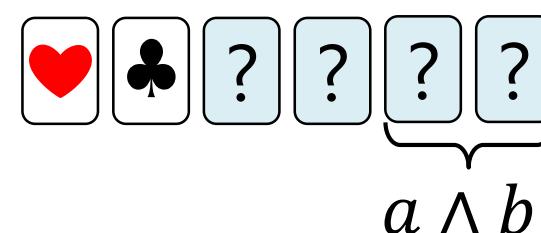
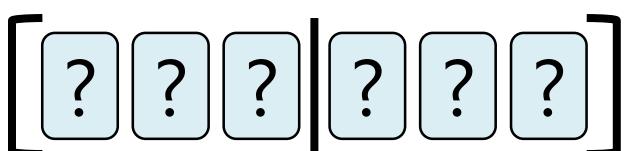
The Six-Card AND Protocol

$$\begin{array}{c} \text{Club} \quad \text{Heart} \\ \text{Heart} \quad \text{Club} \end{array} = 0 \quad \begin{array}{c} \text{Heart} \quad \text{Club} \\ \text{Heart} \quad \text{Club} \end{array} = 1$$



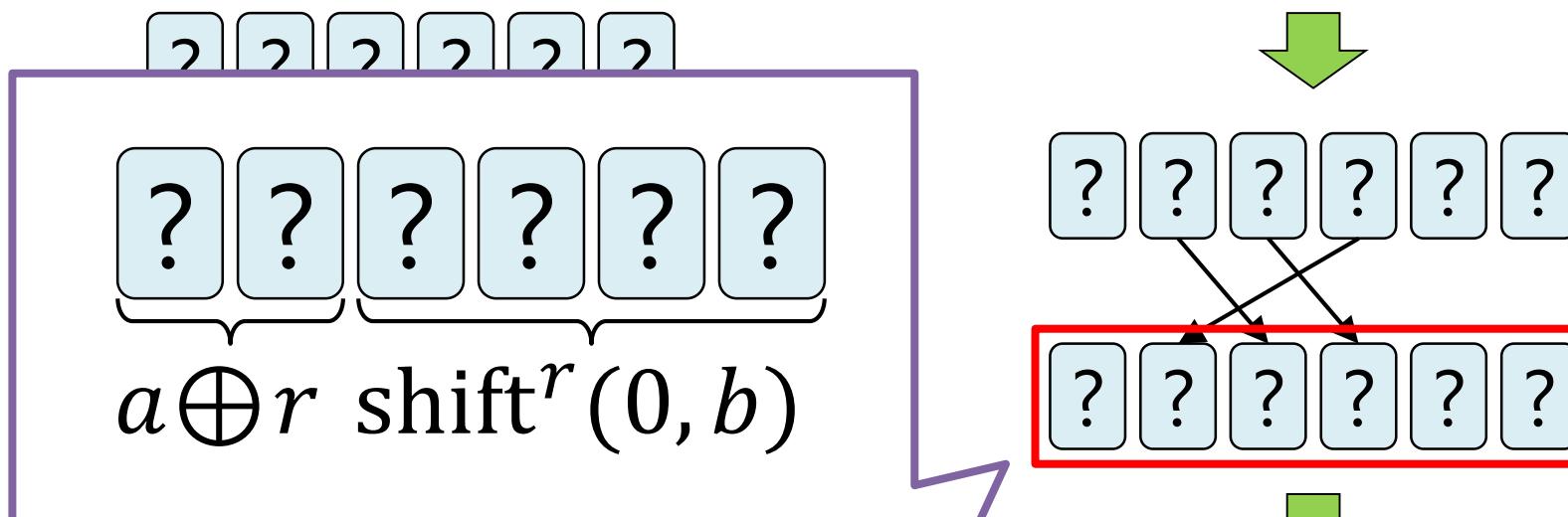
The Six-Card AND Protocol

$$\begin{array}{c} \text{Club} \quad \text{Heart} \\ \text{Heart} \quad \text{Club} \end{array} = 0 \quad \begin{array}{c} \text{Heart} \quad \text{Club} \\ \text{Heart} \quad \text{Club} \end{array} = 1$$



The Six-Card AND Protocol

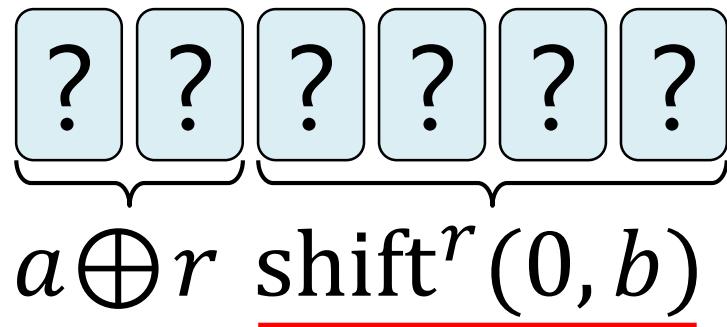
$$\begin{array}{c} \text{Club} \quad \text{Heart} \\ \text{Heart} \quad \text{Club} \end{array} = 0 \quad \begin{array}{c} \text{Heart} \quad \text{Club} \\ \text{Heart} \quad \text{Club} \end{array} = 1$$



We can check that it becomes so by spending a few minutes, but let me omit such an explanation now.

$$a \wedge b$$

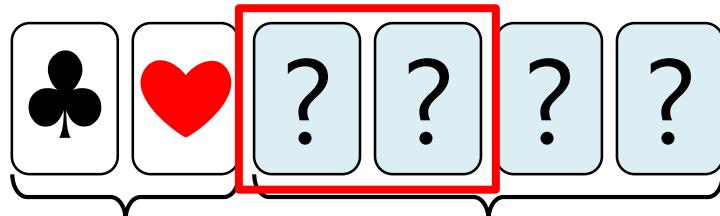
The Six-Card AND Protocol



$$a \wedge b = \text{get}^{a \oplus r}(\underline{\text{shift}^r(0, b)})$$

The Six-Card AND Protocol

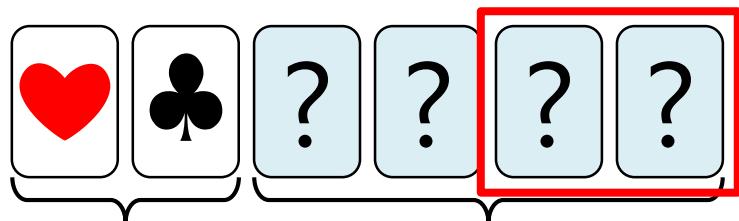
$$\begin{array}{c} \text{Club} \quad \text{Heart} \\ \text{Heart} \quad \text{Club} \end{array} = 0 \quad \begin{array}{c} \text{Club} \quad \text{Heart} \\ \text{Heart} \quad \text{Club} \end{array} = 1$$



$$a \oplus r \text{ shift}^r(0, b)$$

$$a \wedge b = \begin{cases} \text{get}^0(\text{shift}^r(0, b)) & \text{if } a \oplus r = 0 \\ \text{get}^1(\text{shift}^r(0, b)) & \text{if } a \oplus r = 1 \end{cases}$$

The Six-Card AND Protocol

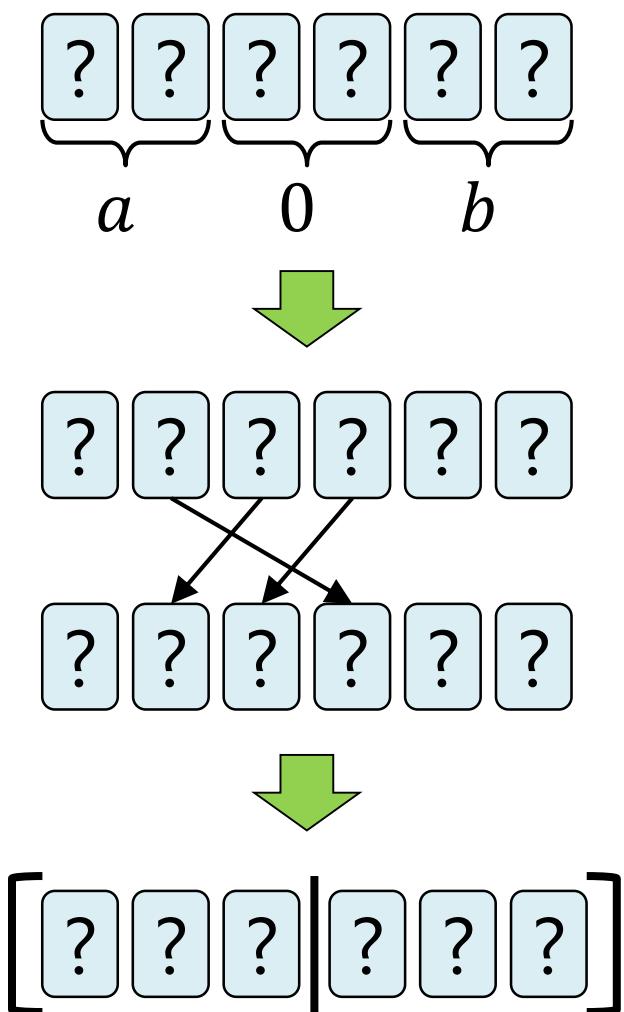
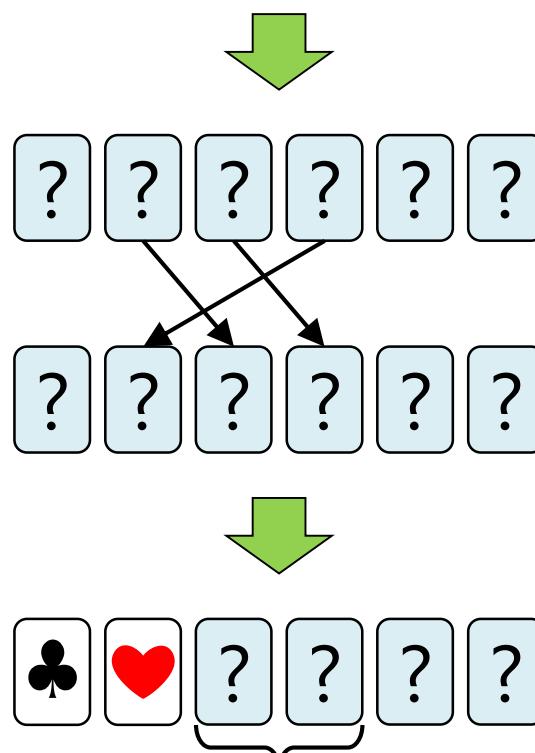
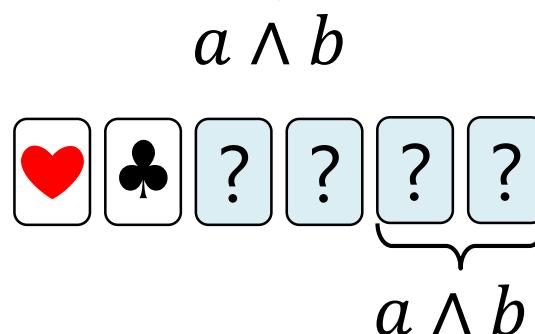


$$a \oplus r \text{ shift}^r(0, b)$$

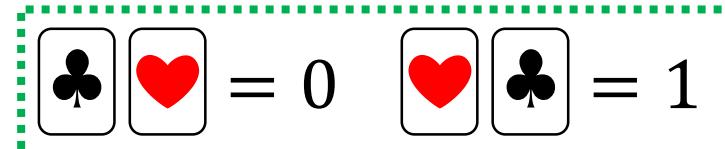
$$a \wedge b = \begin{cases} \text{get}^0(\text{shift}^r(0, b)) & \text{if } a \oplus r = 0 \\ \text{get}^1(\text{shift}^r(0, b)) & \text{if } a \oplus r = 1 \end{cases}$$

The Six-Card AND Protocol

$$\begin{array}{c} \text{Club} \quad \text{Heart} \\ \text{Heart} \quad \text{Club} \end{array} = 0 \quad \begin{array}{c} \text{Heart} \quad \text{Club} \\ \text{Heart} \quad \text{Club} \end{array} = 1$$

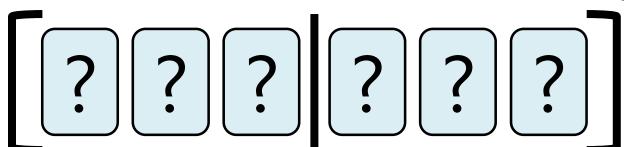
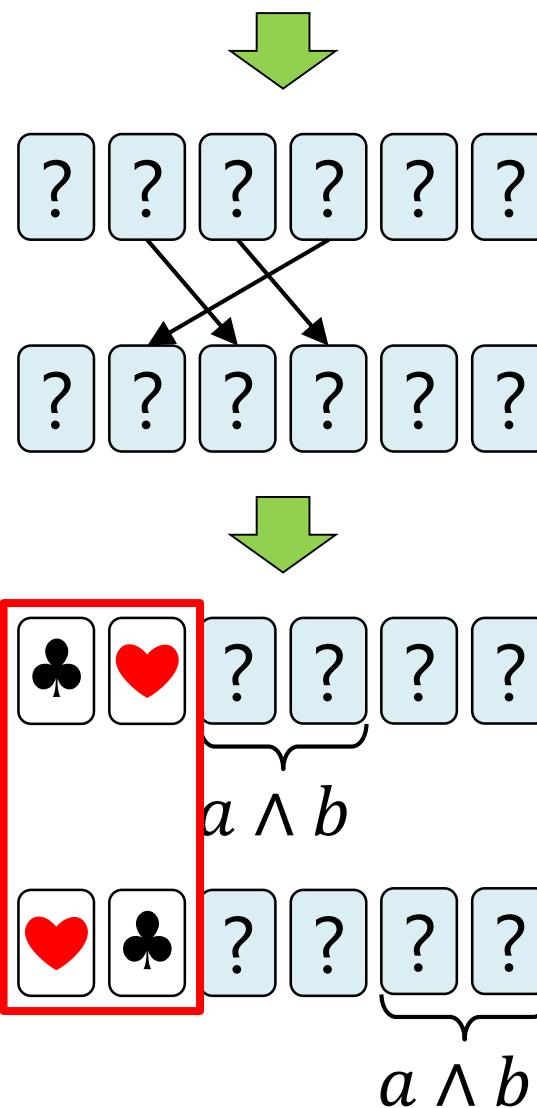


The Six-Card AND Protocol



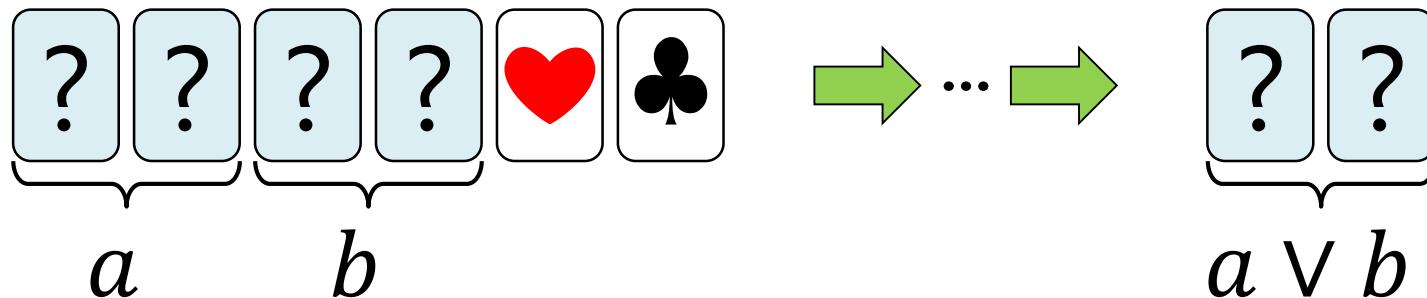
Revealing $a \oplus r$ does not leak any information about a because r is random.

The 2 face-up cards are available for another computation.



The Six-Card AND Protocol

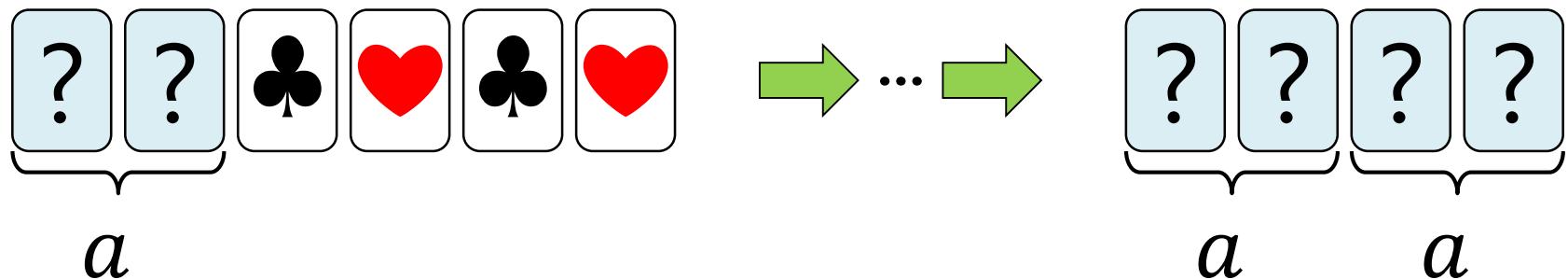
- A 6-card **OR** protocol can be easily constructed in a similar manner [6].



[6] Mizuki, T., Asiedu, I. K., Sone, H.: Voting with a logarithmic number of cards.
In: UCNC 2013, LNCS 7956, pp. 162–173. (2013)

The Copy Protocol with a Random Bisection Cut

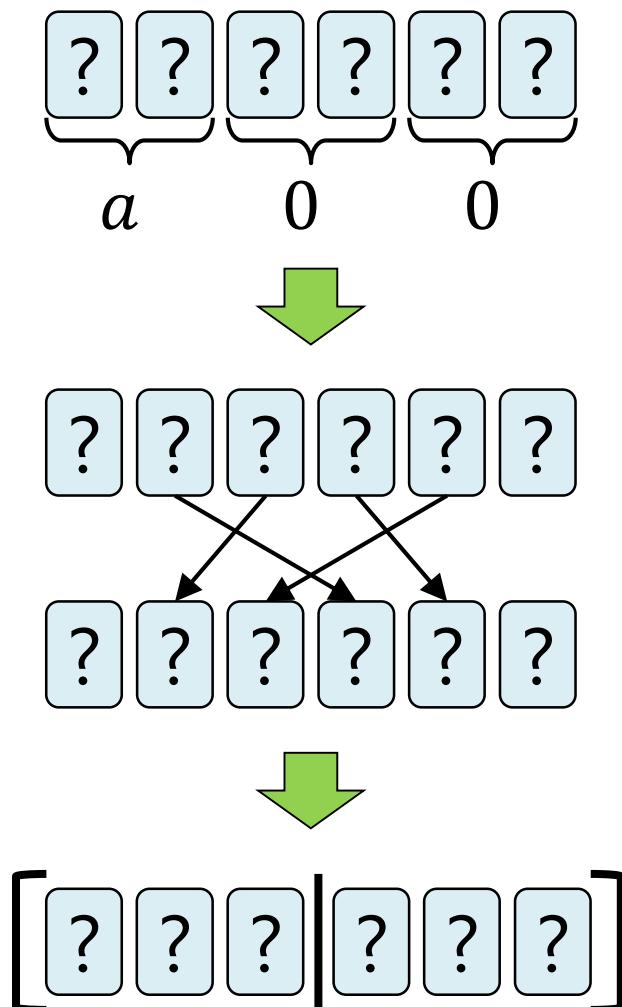
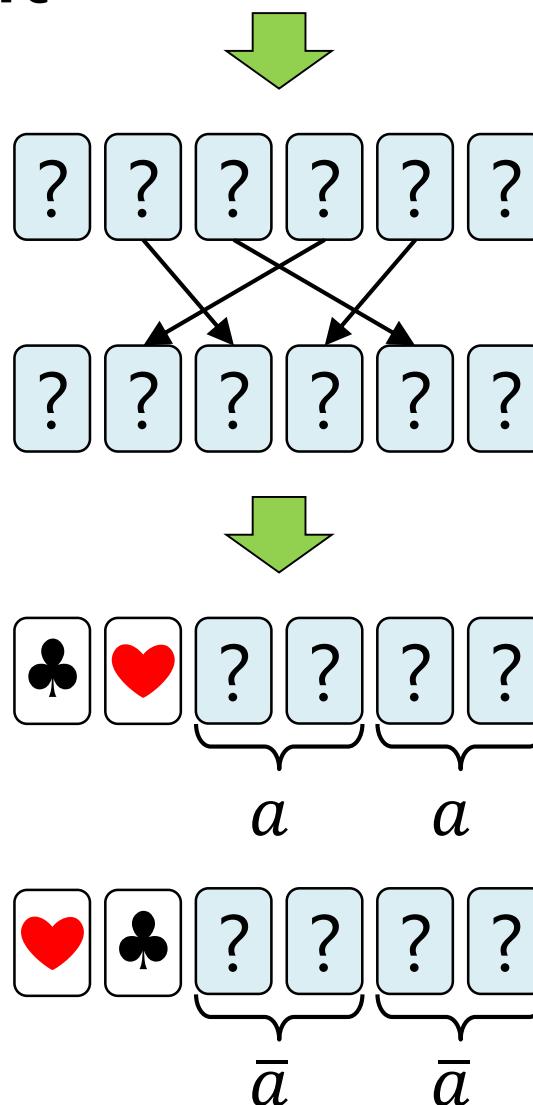
- Given a commitment to a bit a , 4 additional cards are sufficient to make 2 copies of the commitment [8].



[8] Mizuki, T., Sone, H.: Six-card secure AND and four-card secure XOR.
In: FAW 2009, LNCS 5598, pp. 358–369. (2009)

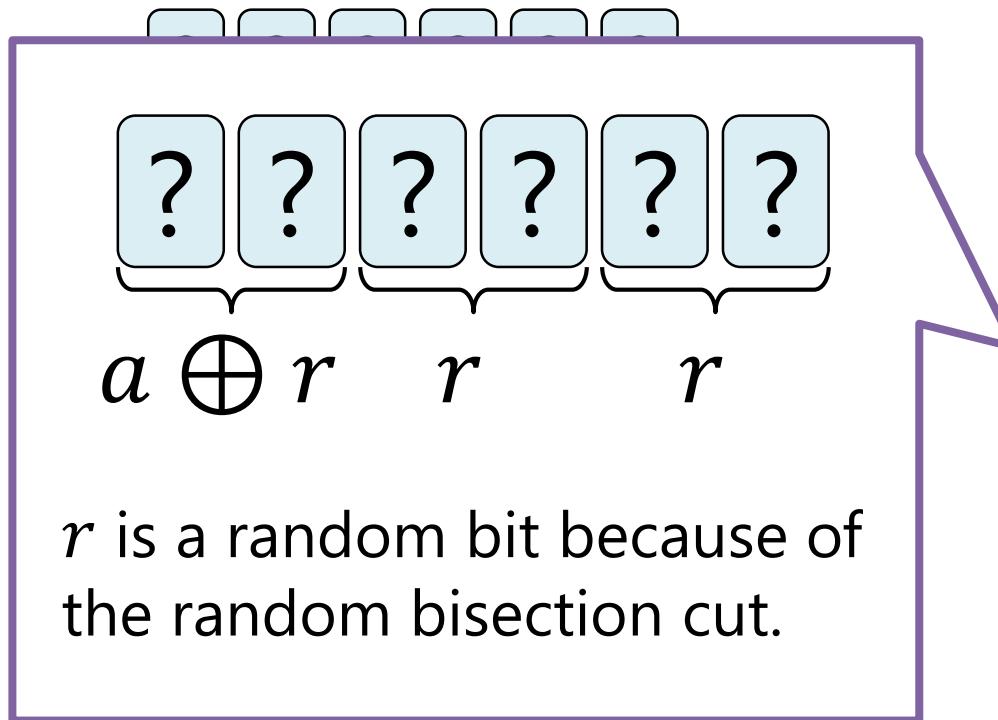
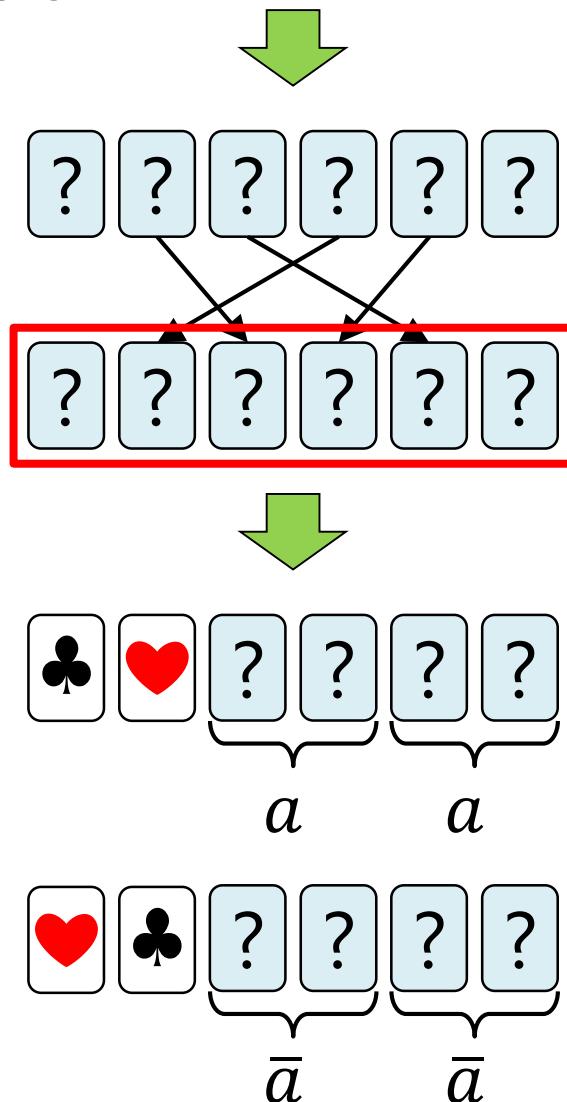
The Copy Protocol with a Random Bisection Cut

$$\begin{array}{c} \text{Club} \quad \text{Heart} \\ \text{Heart} \quad \text{Club} \end{array} = 0 \quad \begin{array}{c} \text{Heart} \quad \text{Club} \\ \text{Club} \quad \text{Heart} \end{array} = 1$$



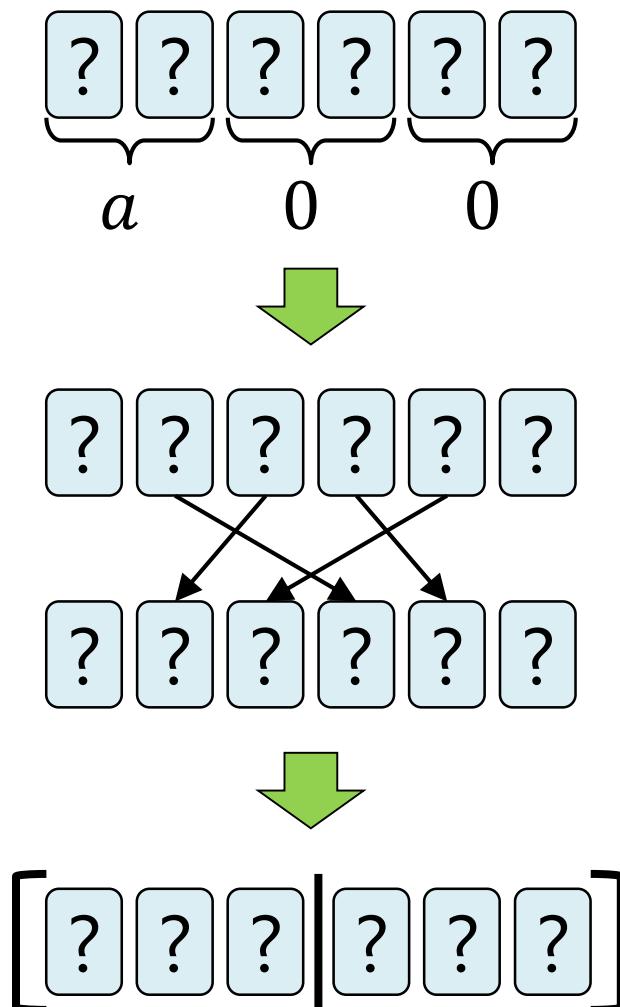
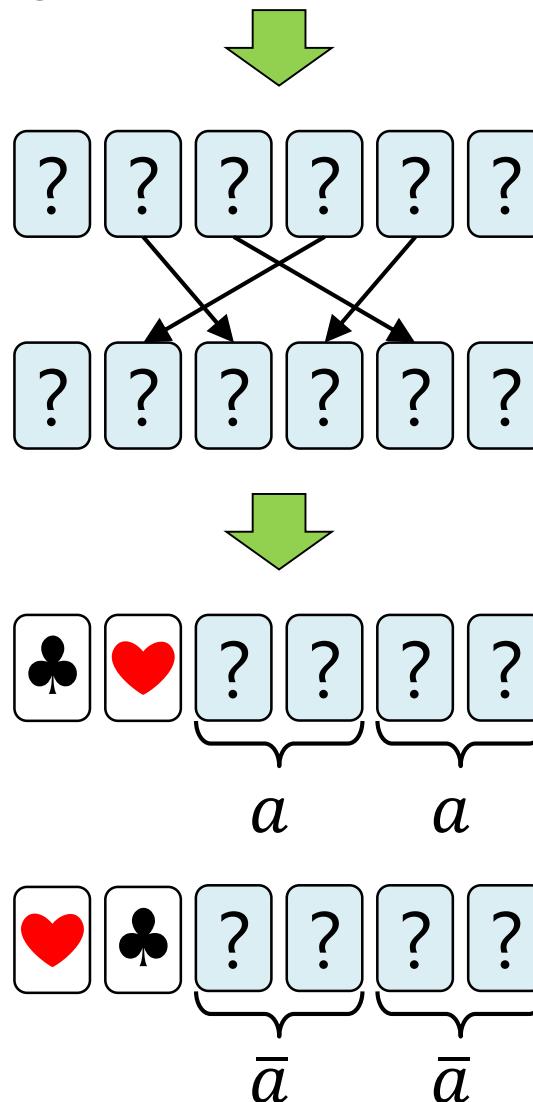
The Copy Protocol with a Random Bisection Cut

$$\begin{array}{c} \text{Club} \quad \text{Heart} \\ \text{Heart} \quad \text{Club} \end{array} = 0 \quad \begin{array}{c} \text{Heart} \quad \text{Club} \\ \text{Club} \quad \text{Heart} \end{array} = 1$$



The Copy Protocol with a Random Bisection Cut

$$\begin{array}{c} \text{Club} \quad \text{Heart} \\ \text{Heart} \quad \text{Club} \end{array} = 0 \quad \begin{array}{c} \text{Heart} \quad \text{Club} \\ \text{Club} \quad \text{Heart} \end{array} = 1$$



Contents

1. Introduction

2. Known Protocols

3. Straightforward

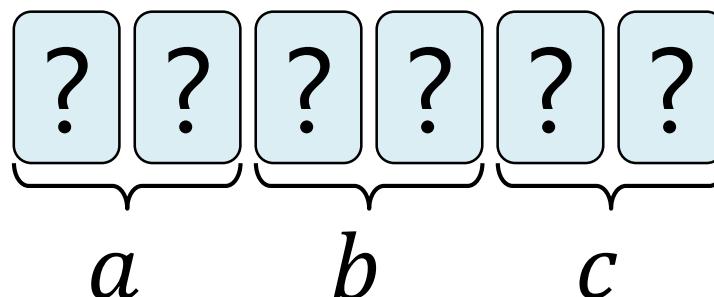
Secure Majority Computations

4. An Improved Secure Majority Protocol

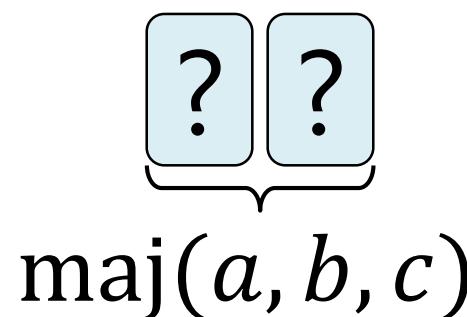
5. Conclusion

Straightforward Secure Majority Computations

- By applying the existing protocols, $\text{maj}(a, b, c)$ can be **naively** computed with 14 cards. That is, given



together with 8 additional cards, we can obtain

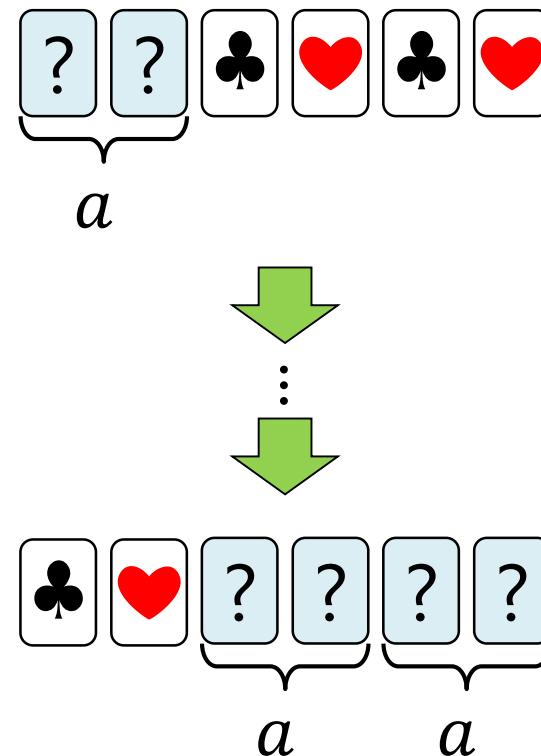


Straightforward Secure Majority Computations

Recall

- Applying the copy protocol to a commitment along with 4 additional cards

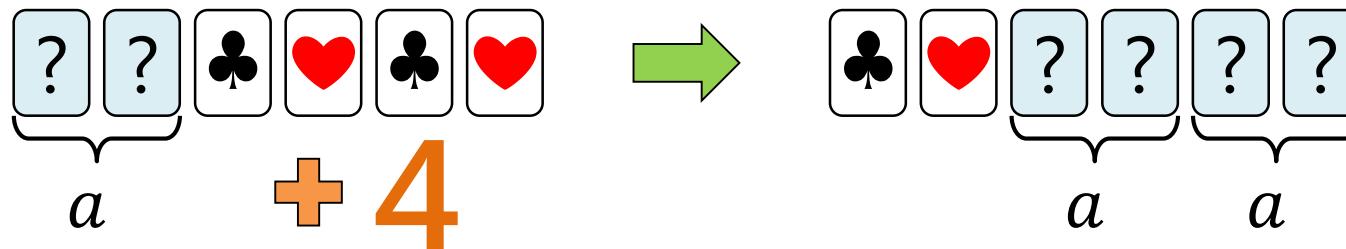
results in 2 copied commitments as well as 2 available cards.



$$\boxed{\begin{array}{|c|c|} \hline \clubsuit & \heartsuit \\ \hline \end{array}} = 0 \quad \boxed{\begin{array}{|c|c|} \hline \heartsuit & \clubsuit \\ \hline \end{array}} = 1$$

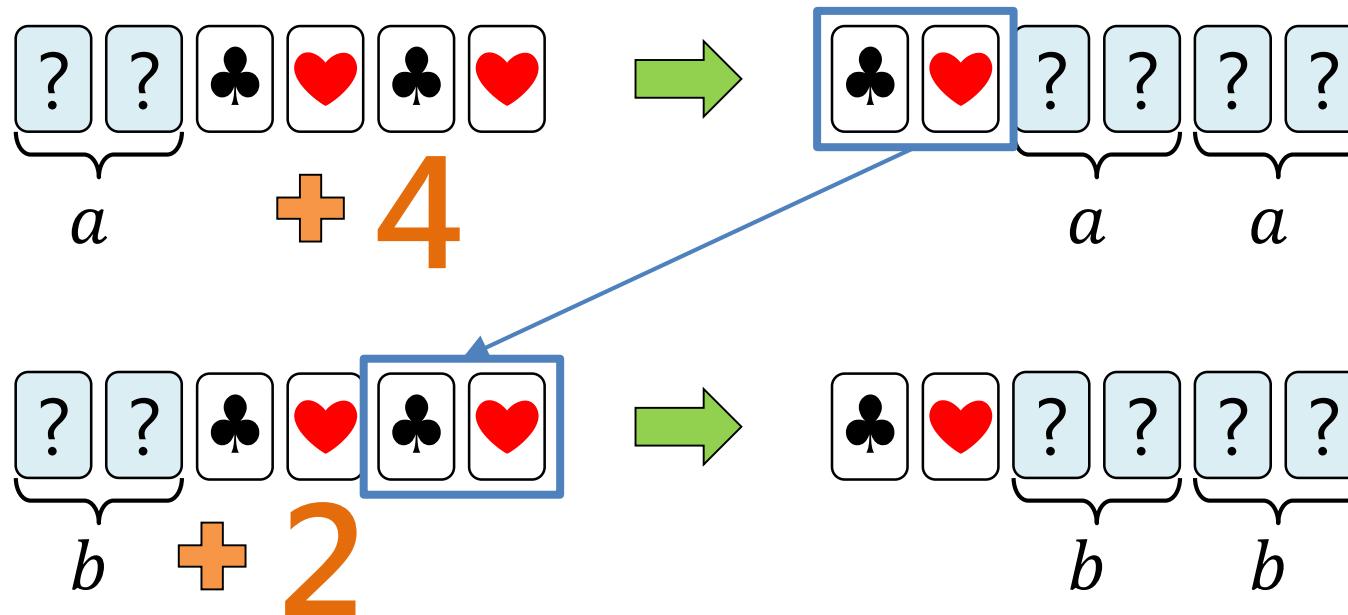
Straightforward Secure Majority Computations

- Applying the copy protocol 3 times.



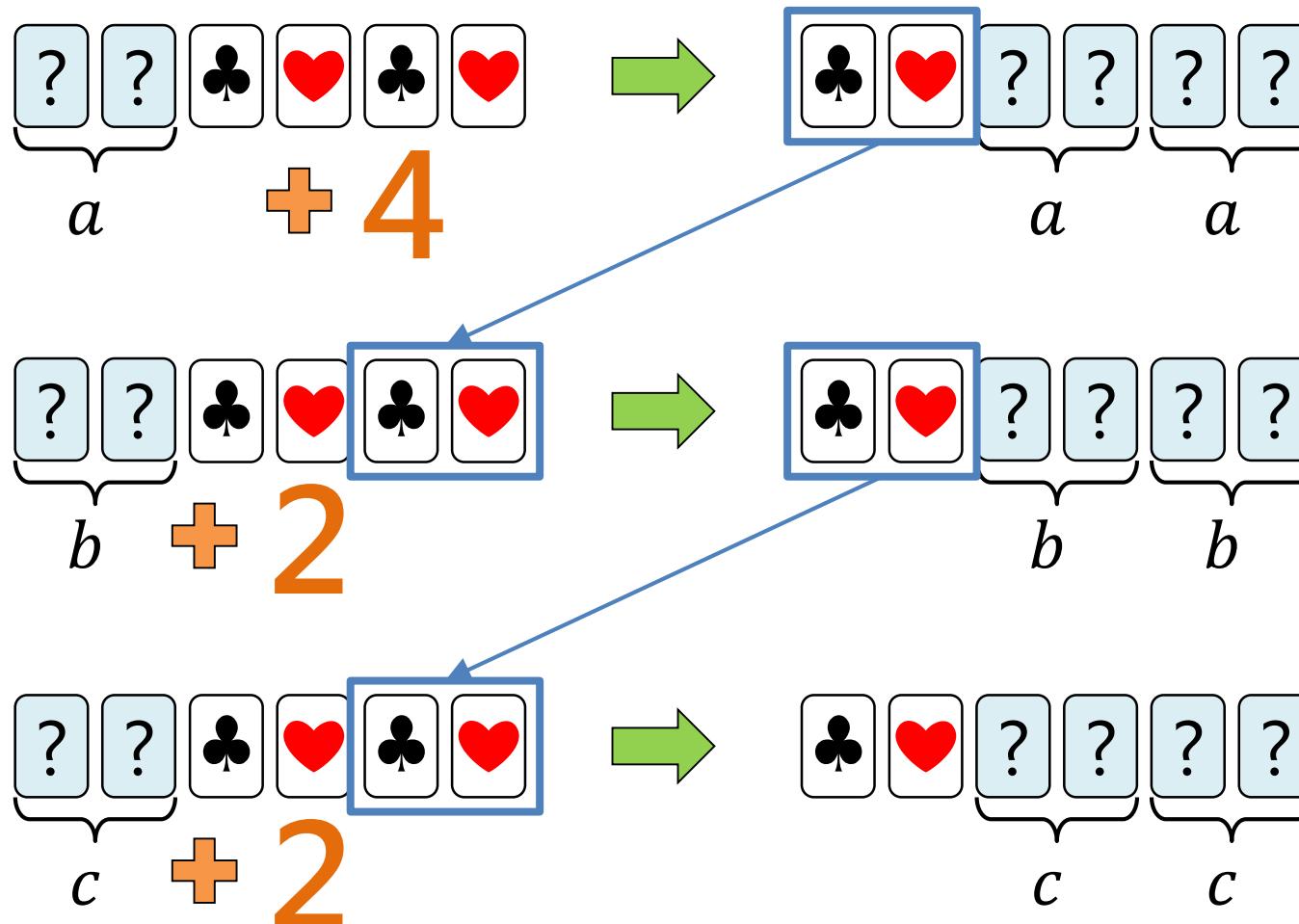
Straightforward Secure Majority Computations

- Applying the copy protocol 3 times.



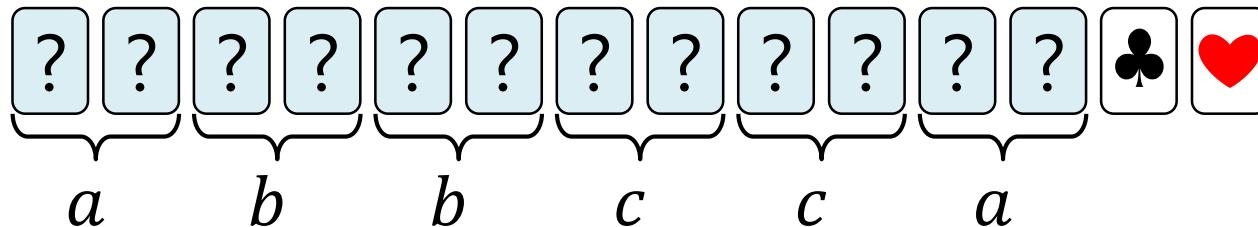
Straightforward Secure Majority Computations

- Applying the copy protocol 3 times.



Straightforward Secure Majority Computations

- We have



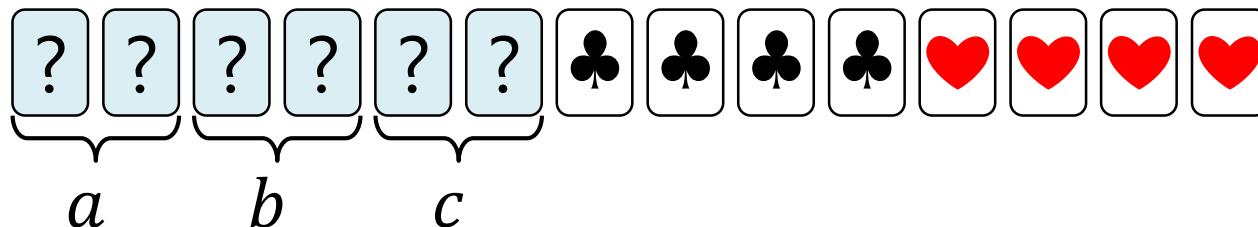
- Since

$$\text{maj}(a, b, c) = (a \wedge b) \vee (b \wedge c) \vee (c \wedge a)$$

we can easily obtain a commitment to $\text{maj}(a, b, c)$ by applying the AND/OR protocol mentioned before.

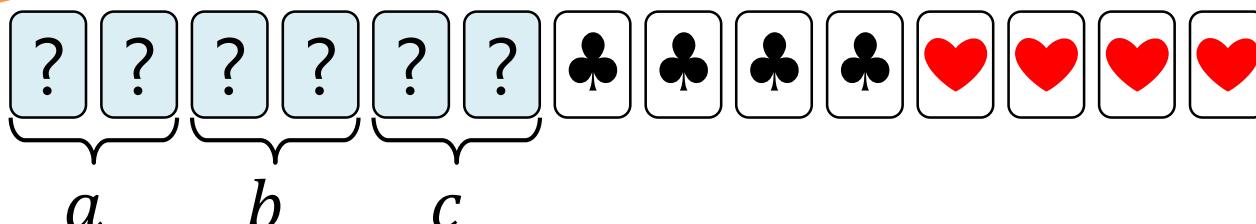
Straightforward Secure Majority Computations

- Thus, $\text{maj}(a, b, c)$ can be straightforwardly conducted with 8 additional cards.



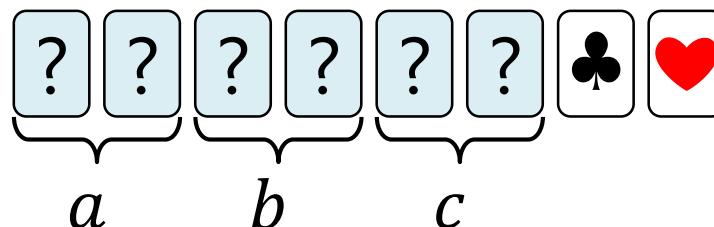
Straightforward Secure Majority Computations

- Thus, $\text{maj}(a, b, c)$ can be straightforwardly conducted with 8 additional cards.



We design a tailor-made protocol for $\text{maj}(a, b, c)$ that is simple and needs only 2 additional cards.

Next Section!



Contents

1. Introduction

2. Known Protocols

3. Straightforward

Secure Majority Computations

4. An Improved Secure Majority Protocol

5. Conclusion

Contents

1. Introduction

2. Known Protocols

3.

- The Idea
- An Eight-Card Secure Majority Protocol

4. An Improved Secure Majority Protocol

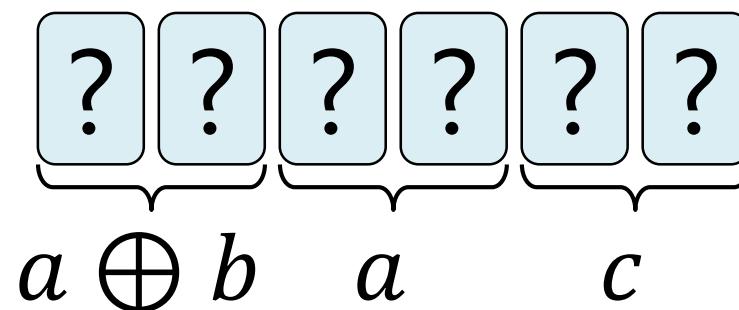
5. Conclusion

The Idea

$$\text{maj}(a, b, c) = \begin{cases} a & \text{if } a = b \\ c & \text{if } a \neq b \end{cases}$$

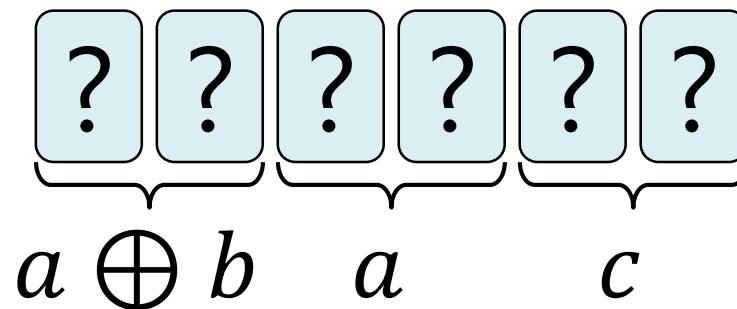
$$\therefore \text{maj}(a, b, c) = \text{get}^{a \oplus b}(a, c)$$

- Hence, our protocol first makes the following sequence:



The Idea

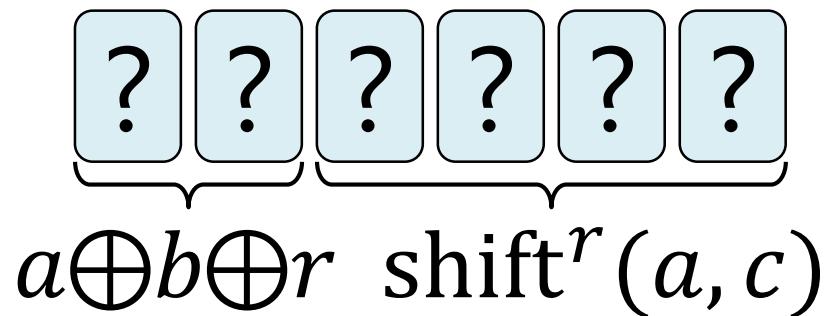
- If we turned over the leftmost 2 cards, then we could determine the position of the desired commitment to get $^{a \oplus b}(a, c)$, but the value of $a \oplus b$ would also be leaked.



$$\text{maj}(a, b, c) = \text{get}^{a \oplus b}(a, c)$$

The Idea

- Therefore, our protocol next adds randomization to hide the value of $a \oplus b$: it produces a sequence



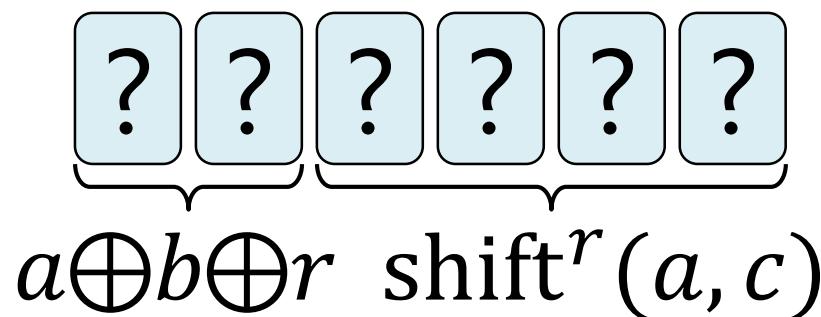
where r is a random bit.

The Idea

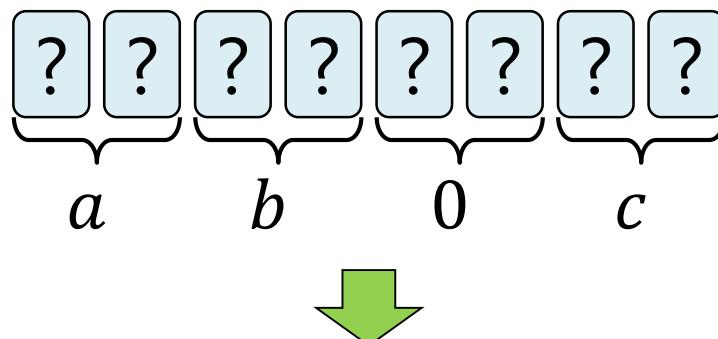
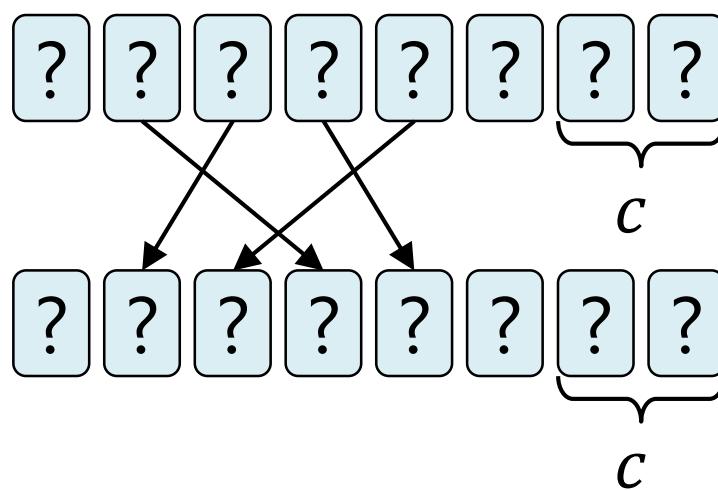
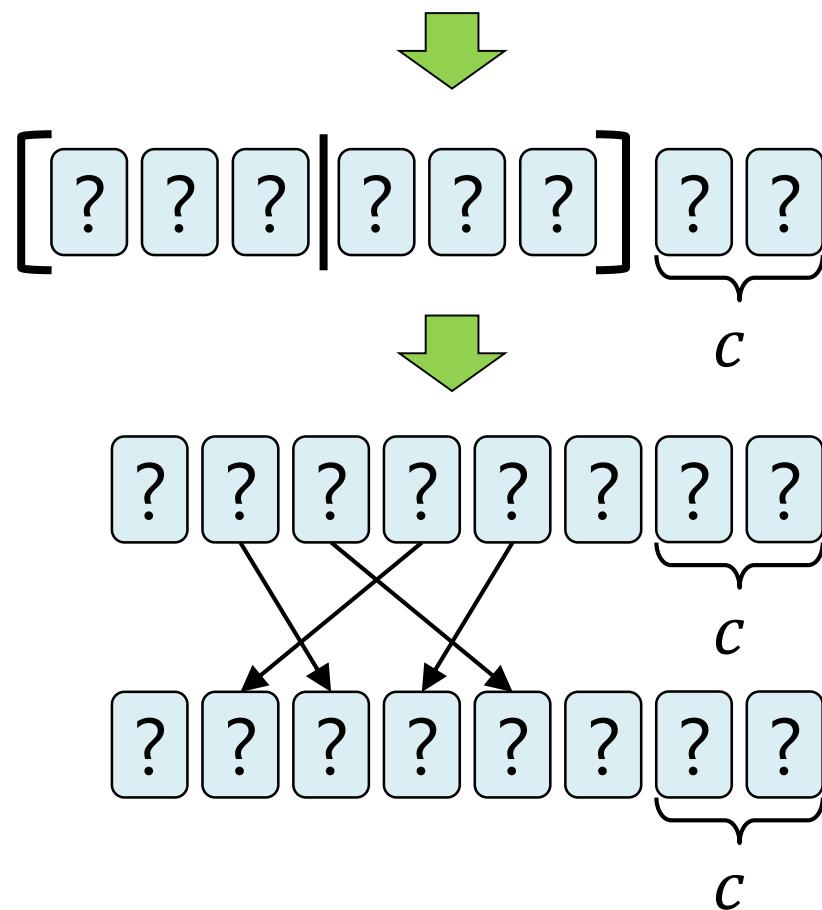
- Based on the equality

$$\text{maj}(a, b, c) = \text{get}^{a \oplus b \oplus r}(\text{shift}^r(a, c))$$

we can obtain a commitment to $\text{maj}(a, b, c)$ by revealing the leftmost 2 cards.

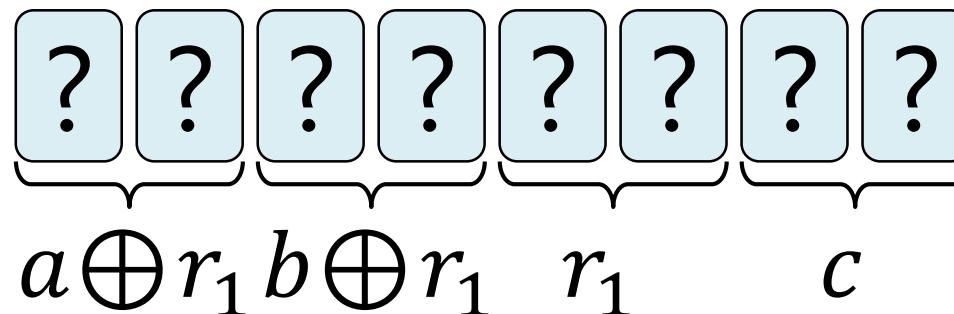


An Eight-Card Secure Majority Protocol

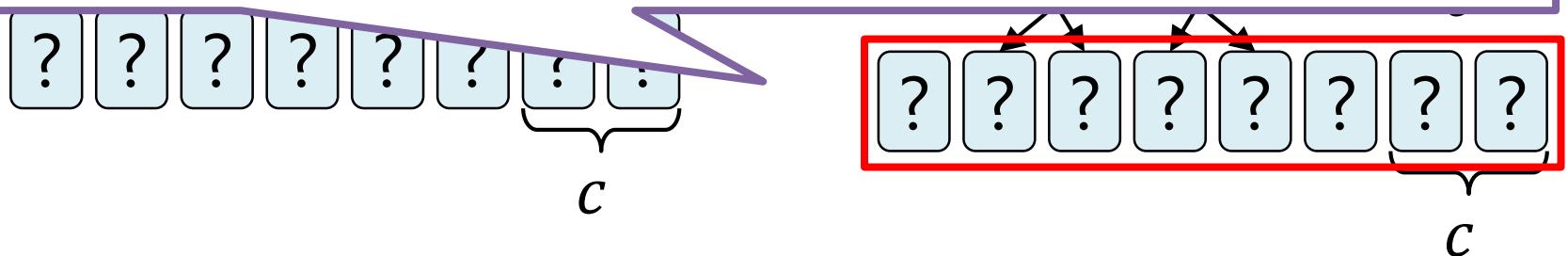


$$\boxed{\begin{array}{|c|c|} \hline \clubsuit & \heartsuit \\ \hline \end{array}} = 0 \quad \boxed{\begin{array}{|c|c|} \hline \heartsuit & \clubsuit \\ \hline \end{array}} = 1$$

An Eight-Card Secure Majority Protocol



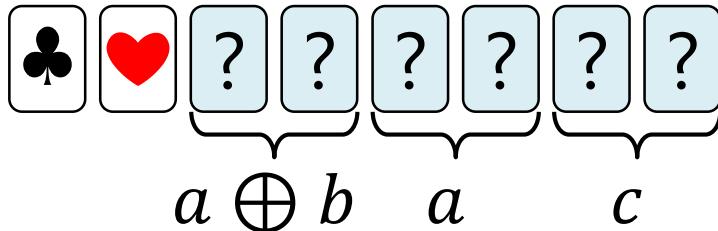
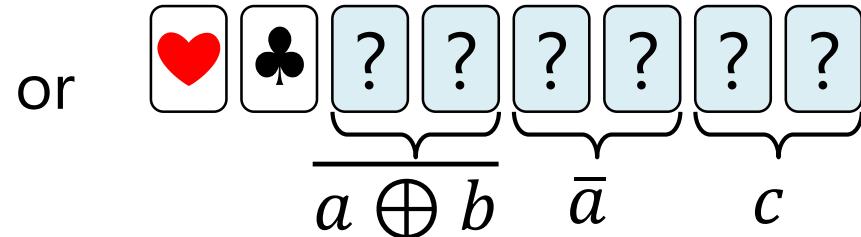
r_1 is a random bit because of the random bisection cut.



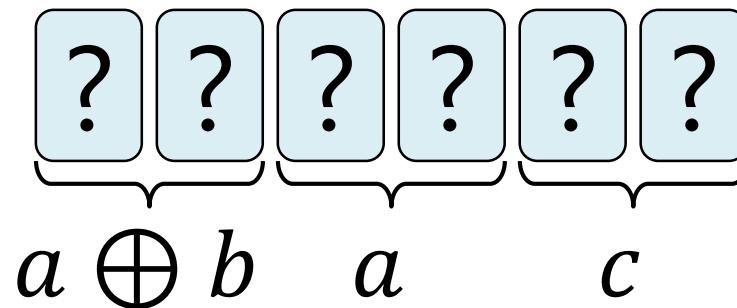
		$= 0$
		$= 1$

An Eight-Card Secure Majority Protocol

- Reveal the leftmost two cards. Then, we have either

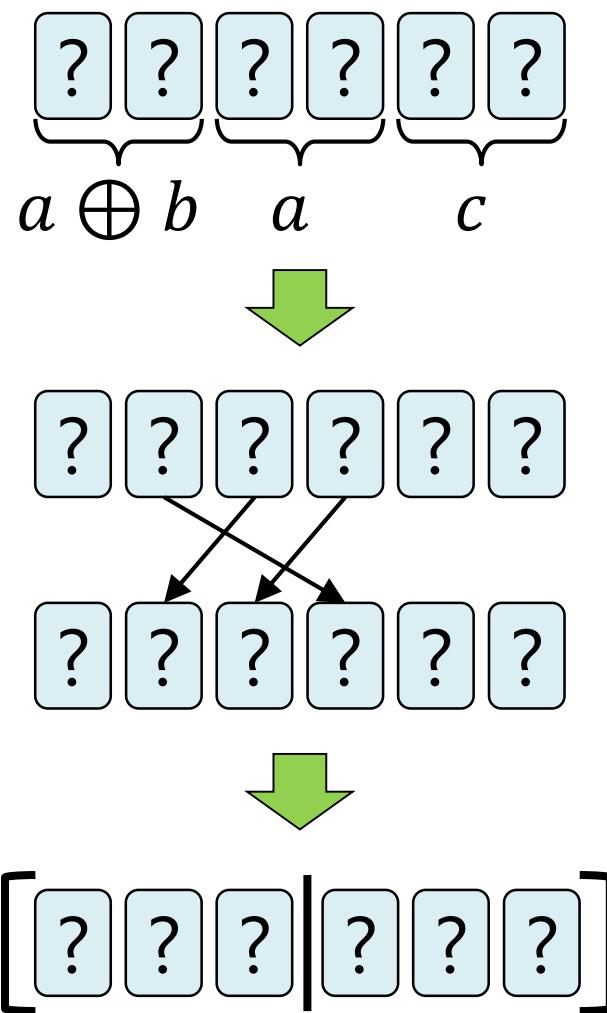


- In the latter case, apply the secure NOT operation to $\overline{a \oplus b}$ and $\overline{\bar{a}}$. Hence, in either case, we have 3 commitments

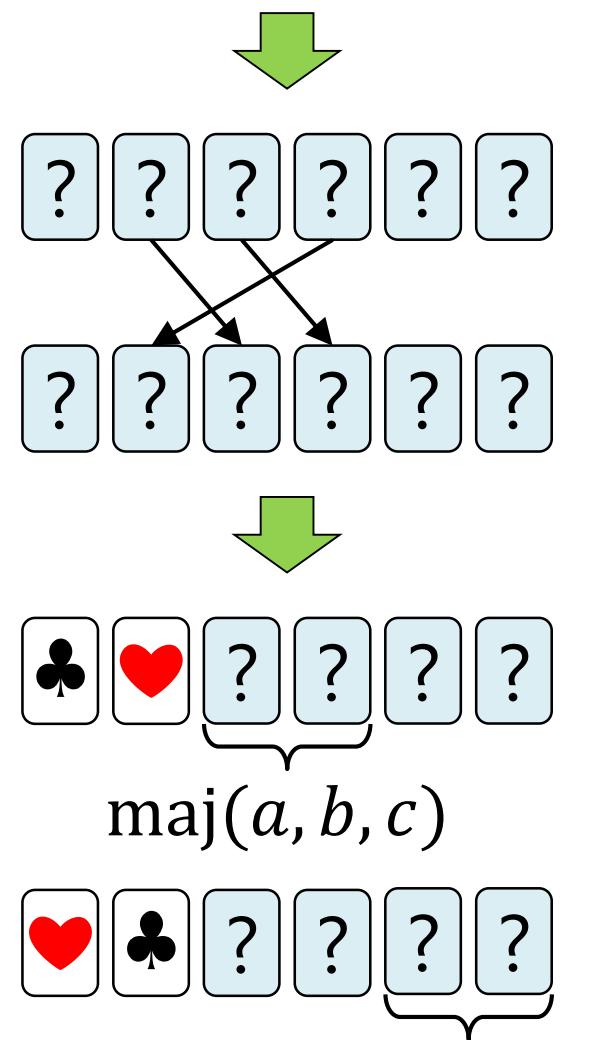


$\boxed{\spadesuit \heartsuit} = 0 \quad \boxed{\heartsuit \clubsuit} = 1$

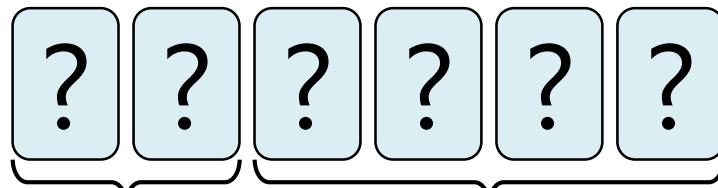
An Eight-Card Secure Majority Protocol



$$\boxed{\begin{array}{|c|c|} \hline \clubsuit & \heartsuit \\ \hline \end{array}} = 0 \quad \boxed{\begin{array}{|c|c|} \hline \heartsuit & \clubsuit \\ \hline \end{array}} = 1$$

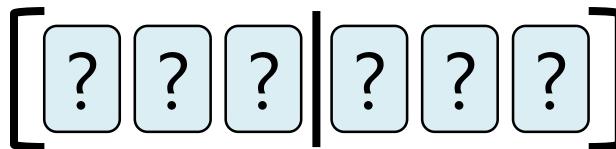


An Eight-Card Secure Majority Protocol



$$a \oplus b \oplus r_2 \text{ shift}^{r_2}(a, c)$$

r_2 is a random bit because of the random bisection cut.



?

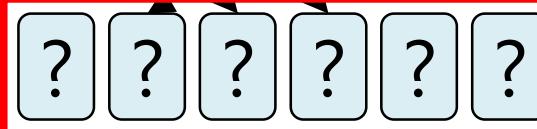
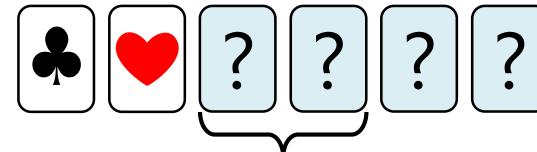
?

$$= 0$$

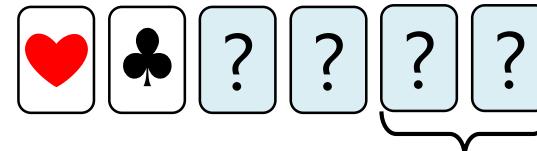
?

?

$$= 1$$

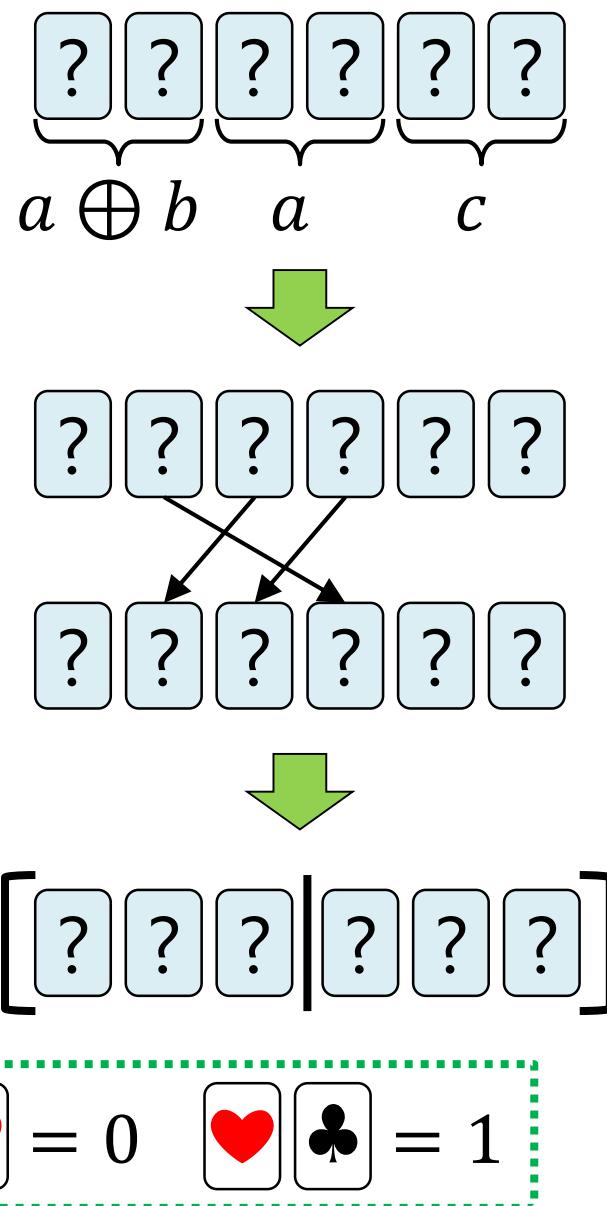
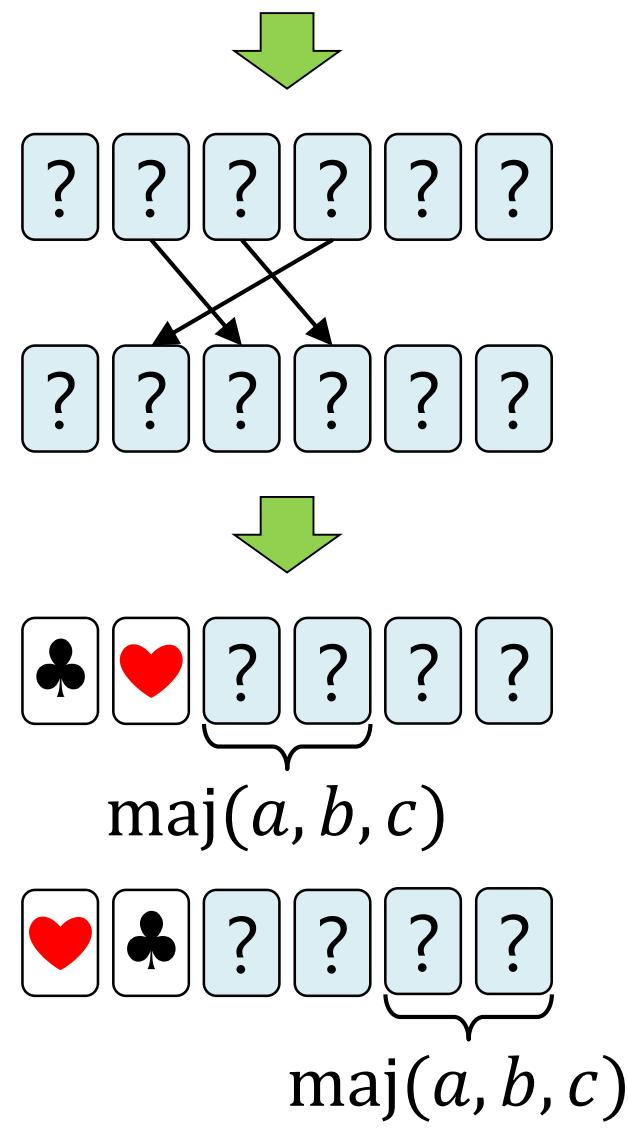


$$\text{maj}(a, b, c)$$



$$\text{maj}(a, b, c)$$

An Eight-Card Secure Majority Protocol



Contents

1. Introduction

2. Known Protocols

3. Straightforward

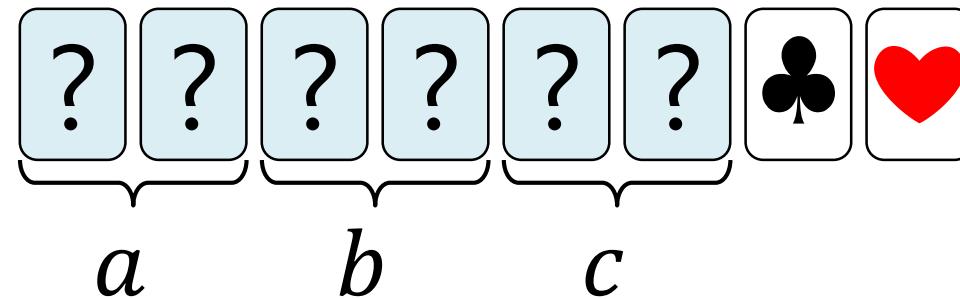
Secure Majority Computations

4. An Improved Secure Majority Protocol

5. Conclusion

Conclusion

- We designed an 8-card 3-input secure majority protocol.
- Since the naive implementation of $\text{maj}(a, b, c)$ requires 14 cards, we have reduced the # of required cards by 6.
- We can also easily prove that **any 3-variable symmetric function** can be securely computed with **8 cards or less**.



Thank you!