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Abstract. Card-based protocols allow to perform secure multiparty
computations using a deck of physical cards, and rely on shuffle actions
such as the (normal) shuffle, the random cut, and the random bisection cut.
A shuffle action is mathematically defined by a pair of a permutation set
(which is a subset of the symmetric group) and a probability distribution
on it; while one can theoretically consider any shuffle action in mind, he
or she may be unable to determine whether it can be easily implemented
by human hands. As one of the most general results, Koch and Walzer
showed that any uniform closed shuffle (meaning that its permutation
set is a subgroup and its distribution is uniform) can be implemented by
human hands with the help of additional cards. However, there are several
existing protocols which use non-uniform and/or non-closed shuffles. To
implement these specific shuffles, Nishimura et al. proposed an idea of
using (special) physical cases that can store piles of cards as well as Koch
and Walzer proposed an implementation of a specific non-closed shuffle
with additional cards. Because their implementations handle a limited
class of non-uniform and/or non-closed shuffles, it is still open to find a
general method for implementing any shuffle. In this paper, we solve the
above problem; we implement “any” shuffle with only additional cards,
provided that every probability of its distribution is a rational number.
Therefore, our implementation works for any non-closed or non-uniform
shuffle (if the distribution is rational as above).

Keywords: Cryptography · Card-based protocols · Implementation of
Shuffle · Unconventional computation

1 Introduction

In 1989, den Boer [1] proposed the first card-based protocol called the “five-card
trick.” This protocol performs a secure computation of the logical AND using
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two black cards ♣ ♣ and three red cards ♥ ♥ ♥ , whose backsides have the same
pattern ? . This paper begins by introducing the five-card trick.

1.1 Five-card Trick

Assume that Alice has a private bit a ∈ {0, 1} and Bob has a private bit b ∈ {0, 1};
the five-card trick takes a and b as inputs and outputs the value of a ∧ b without
revealing any information about a and b more than necessary, as follows.

1. Alice puts two face-down cards commiting to her bit a according to the
encoding: ♣♥ = 0,♥♣ = 1. Bob puts two face-down cards similarly, and
they put an additional red card in the middle. Then, swap the positions of
Alice’s two cards so that we have a negated value a as well as turn over the
middle red card:

? ?︸︷︷︸
a

♥ ? ?︸︷︷︸
b

→ ? ?︸︷︷︸
a

? ? ?︸︷︷︸
b

.

2. Apply a random cut (denoted by 〈·〉) to the sequence of five cards:

〈 ? ? ? ? ? 〉 → ? ? ? ? ? .

A random cut (RC), meaning a cyclic shuffling operation, uniformly and
randomly shifts the positions of a sequence without changing its order.
Mathematically, it uniformly chooses one permutation from the permutation
set

{id, (1 2 3 4 5), (1 2 3 4 5)2, (1 2 3 4 5)3, (1 2 3 4 5)4}, (1)

and the chosen permutation is applied to the sequence of five cards (but
nobody knows which permutation is applied), where id denotes the identity
permutation and (i1 i2 · · · i`) represents a cyclic permutation.

3. Reveal the five cards. If the resulting sequence has three consecutive red cards
♥ ♥ ♥ (apart from cyclic rotation), then a ∧ b = 1. Otherwise, a ∧ b = 0.

To implement an RC, Alice (or Bob) quickly repeats cutting a sequence of
cards until nobody (even including Alice) can trace the offsets. Note that this
implementation was experimentally shown to be secure by Ueda et al. [22].

1.2 Unconventional Shuffles

As seen above, the five-card trick [1] elegantly performs a secure computation of
AND by using an RC, which is implementable. On the other hand, this paper deals
with unconventional shuffles: To understand them, let us consider the following
permutation set, which is similar to the permutation set (1) that represents an
RC used in the five-card trick:

{id, (1 2 3 4 5), (1 2 3 4 5)2, (1 2 3 4 5)3}; (2)

namely, (1 2 3 4 5)4 is excluded from (1). Compared to implementing an RC, it
seems difficult for human hands to implement such a shuffle action of uniformly
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choosing one permutation from the above set and applying that permutation.
This is because the permutation set (2) cannot be generated by a single element,
i.e., it is not a cyclic group.

As another example, let us consider a shuffle action that divides a sequence
of four cards into two halves and randomly swaps them. Mathematically, it
uniformly and randomly chooses one permutation from the permutation set

{id, (1 3)(2 4)},

and applies that permutation to the sequence. This kind of a shuffle is called
a random bisection cut (RBC) and is used in several card-based protocols
(e.g., [12,13,20]). Ueda et al. [21,22] showed the secure implementation of an RBC
called the “spinning throw” as well as a more secure way using a polystyrene
ball. Now, let us consider a “modified RBC” with a non-uniform probability
distribution. For example, how could we implement a shuffle where id is chosen
with a probability of 1/3 and (1 3)(2 4) is chosen with a probability of 2/3?
Surprisingly, such a non-uniform RBC is required for executing the card-based
AND protocols with the minimal number of cards [7]. Implementing such a
non-uniform shuffle seems difficult by only human hands.

Hereinafter, assume that, for a sequence of m (≥ 2) face-down cards, we want
to apply a shuffle action. Formally, a shuffle is defined as a set of permutations
Π ⊆ Sm along with a probability distribution F on Π [10,11], where Sm denotes
the symmetric group of degree m: We use the notation (shuf, Π,F) to mean that
a permutation π ∈ Π is drawn according to the distribution F and π is applied
to the sequence of m cards.

There are three important categories of a shuffle.

Uniform shuffle. A shuffle (shuf, Π,F) is said to be uniform if the distribution
F is uniform. That is, any π ∈ Π is drawn with the equal probability. We
sometimes write it as (shuf, Π) if F is uniform and (shuf,F) if F is non-
uniform for simplicity.

Cyclic shuffle. A shuffle (shuf, Π,F) is said to be cyclic if the permutation
set Π is a cyclic group, i.e., there exists a permutation π in Π such that
Π = 〈π〉 = {πi | i is an integer}.

Closed shuffle. A shuffle (shuf, Π,F) is said to be closed if Π is a subgroup
of the symmetric group.

As shown in the above examples, one can consider any shuffle in mind although
it is not so easy to determine whether such a (possibly, complex) shuffle is
implementable by humans. One of the most general results is as follows: Koch
and Walzer [6] in 2017 showed that any uniform closed shuffles can be implemented
with additional cards whose back pattern is different from the pattern of cards
to be shuffled.

For implementing a non-uniform and/or non-closed shuffle, there are two
existing works, each of which proposed implementations of specific non-uniform
and/or non-closed shuffles, as follows. Nishimura et al. [14] in 2018 proposed
implementations of two kinds of shuffles:

(shuf, {id, π},F1) and (shuf, Π(s1,s2,··· ,sk),F2),
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using (special) physical card cases that can store piles of cards. Here, π is any
permutation in the symmetric group and Π(s1,s2,··· ,sk) is the permutation set
obtained by dividing a sequence of cards into k piles, where the i-th pile consists
of si cards, and arbitrarily shifting them. F1 and F2 are any distributions where
each probability is a rational number. In 2017, Koch and Walzer [6] showed an
implementation of the uniform non-closed shuffle

(shuf, {id, (1 2 3 4 5)3})

using additional cards (and they mentioned that its formalization is possible).
To summarize, their proposed implementations focus on a limited class of non-
uniform and/or non-closed shuffles: How to implement any shuffle including
non-uniform or non-closed shuffles remains an open problem.

1.3 Contribution

In this paper, we solve the above problem. That is, we propose implementations
of any shuffle

(shuf, {π1, π2, . . . , πk}, π1 7→ p1, π2 7→ p2, . . . , πk 7→ pk),

for a positive integer k (≥ 2), where πi is a permutation in Sm and pi is a rational

number for every i, 1 ≤ i ≤ k. (Note that
∑k
i=1 pi = 1.) Therefore, we can

implement any shuffle even if it is non-uniform or non-closed (provided that the
distribution is rational as above). Our proposed implementations require only
additional cards (called “padding cards” in this paper), and hence, our result
shows that the above problem can be solved without relying on any additional
tool, such as special physical cases as proposed by Nishimura et al. [14].

Specifically, we propose two implementations. In Section 3, we show the first
one that is specialized for k = 2: We implement a non-uniform RBC with padding
cards and combine our implementation and the idea by Koch and Walzer [6]. In
Section 4, we show the second one that is for any k. It is based on another idea
where we regard a permutation as a sequence of number cards.

One might think that this paper considered a narrow problem and our
proposed methods would have less applications. We note that our proposed
techniques can be applied to the problem of uniformly generating a hidden
random permutation without fixed points (also known as Secret Santa) [2]
although we omit the details due to the page limit length.

1.4 Related work

The mainstream in the field of card-based protocols was to use a uniform and
cyclic shuffle. In 2015, Koch et al. [7] first studied non-uniform and/or non-closed
shuffles and proposed card-minimal AND protocols using such unconventional
shuffles. In 2015, Nishimura et al. [15] showed that a non-closed shuffle can be
used to construct a COPY protocol with the minimal number of cards (and the
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general one was proposed in [16]) . In 2017, Kaster et al. [3] showed that using
non-uniform and/or non-closed shuffles is related to the necessary and sufficient
numbers of cards for constructing an AND protocol. In 2018, Ruangwises and
Itoh [17] and Koch [4] independently showed a card-minimal AND protocol with
non-closed shuffles. In 2018, Hashimoto et al. [2] showed that a non-uniform
shuffle is useful for uniformly generating a random permutation without fixed
points.

Recently, Koch et al. [5] proposed a card-minimal AND protocol with a
standard deck of cards using an RC in 2019. Miyahara et al. [8] proposed efficient
implementations of Yao’s millionaire protocol using an RC in 2020. A uniform
closed shuffle called a pile-scramble shuffle has been often used when constructing
zero-knowledge proof protocols for puzzles [9,18] and secure ranking protocols [19].

2 Preliminaries

In this section, we formally explain a deck of cards and introduce the shuffle
action called a pile-shifting scramble used in our implementations.

Card. In Section 1.1, we introduced the five-card trick that uses a deck of
cards, each of whose front side is ♣ or ♥ and each of whose backside is ? . Our
implementations use such a two-colored deck of cards as well as number cards
having numbers written on the front side:

1 2 · · · n

for some natural number n. Those cards satisfy the following two conditions.

– All cards are of the same size and weight, and we cannot distinguish them
from the backsides, e.g., there is no scratch on the backsides.

– The pattern on the backside is vertically asymmetric such as ?

?

.

The first condition is necessary for ensuring the security of card-based protocols:
If this condition does not hold, a player may identify each face-down card and
information about it will be leaked. The second is necessary when we use a
two-colored deck of cards as padding cards in our proposed methods, as seen
later.

Pile-shifting scramble. Nishimura et al. [14] showed the notion of a pile-
shifting scramble and use it for their implementation. It is a shuffle action denoted
by 〈·| · | · · · |·〉 that randomly shifts a sequence of piles of cards (A1, . . . , Ak):

〈 ? ? · · · ?
A1

| ? ? · · · ?
A2

| · · · | ? ? · · · ?
Ak

〉,

where each pile consists of the same number of cards. We demonstrate that it
can be implemented by using the vertically asymmetric property, as proposed by
Ueda et al. [21].
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1. Make the first card of each pile Ai upside down for every i, 1 ≤ i ≤ k:

Ai :

?

? · · · ? .

2. Apply an RC to the sequence of piles:

〈

?

? ? · · · ?

?

? ? · · · ? · · ·

?

? ? · · · ? 〉.

Then, shift the sequence so that an arbitrary upside down card becomes the
first one.

3 Our implementation for Two-state Shuffles

In this section, we show our implementation that performs (shuf, {π1, π2},F)
with padding cards, where F is rational. Note that our implementation does not
require any additional tool such as the special physical cases used in [14]. We
first show the idea behind our implementation in Section 3.1. Then, we present
our methods in the succeeding subsections.

3.1 Idea

Assume a sequence of m face-down cards (to be shuffled). To implement

(shuf, {π1, π2},F),

let us first transform it as follows.

1. To “virtually” transform π1 to id, we apply a permutation π1 (to a sequence
of m cards), i.e., apply (perm, π1), before applying the shuffle. Hence, we
derive (shuf, {id, π2π−11 },F).

2. To see π2π
−1
1 in a different angle, we use the well-known fact that any

permutation can be uniquely expressed as the product of disjoint cyclic
permutations. That is, π2π

−1
1 can be expressed as σ1σ2 · · ·σ` for some natural

number ` where σi is a cyclic permutation and any pair of σi and σj , i 6= j,
is disjoint; we derive (shuf, {id, σ1σ2 · · ·σ`},F).

3. To make σ1σ2 · · ·σ` simple, we use another well-known fact that any permuta-
tion π can be expressed as a conjugate τρτ−1 for some permutation τ where
ρ is of the same type of π. Using this fact, for example, we can transform
(1 3 5 7 9)(2 4 6 8 10) to τ(1 2 3 4 5)(6 7 8 9 10)τ−1 where τ = (2 6 8 9 5 3)(4 7). In
this way, we transform σ1σ2 · · ·σ` to τρ1ρ2 · · · ρ`τ−1 where

ρi = (1+Σi−1
j=1|ρj | 2+Σi−1

j=1|ρj | · · · Σi
j=1|ρj |), (3)

and |π| denotes the length of a cyclic permutation π. Note that ρi has the
same length of σi.
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To summarize, we transform (shuf, {π1, π2},F) into a series of four actions:

(perm, π1)

(perm, τ−1)

(shuf, {id, ρ1ρ2 · · · ρ`},F)

(perm, τ).

To implement (shuf, {id, ρ1ρ2 · · · ρ`},F), we first show an implementation of
a uniform shuffle (shuf, {id, ρ1ρ2 · · · ρ`}) (which might formalize the implemen-
tation proposed by Koch and Walzer [6, Appendix B]) using the RC and RBC.
Then, by implementating a non-uniform RBC with padding cards, we show our
implementation of (shuf, {id, ρ1ρ2 · · · ρ`},F).

3.2 Uniform and Single Cycle Case

As mentioned before, Koch and Walzer [6] showed an implementation of (shuf,
{id, (1 2 3 4 5)3}) and stated that its formalization is possible. Let us show that
given a single cycle ρi in (3), implementing (shuf, {id, ρi}) is possible, which is
almost the same as the implementation in [6], as follows.

1. Suppose that we have a sequence of |ρi| face-down cards (to which we want
to apply the shuffle). Place a sequence of additional |ρi| face-down cards as
padding cards below the sequence:

1

?
2

? · · ·
|ρi|

?
?
♥

?
♣
· · · ?

♣
.

The first card in the additional sequence is ♥ and the remaining cards are
♣s.

2. Apply an RBC as follows:

? ? · · · ?[
? | ?

]
· · · ?

→ ? ? · · · ?
? ? · · · ? .

That is, ♥ is either in the first or the second with the equal probability in
the resulting sequence.

3. Considering the cards in the same column as a pile, apply a pile-shifting
scramble to the sequence of piles:〈

?
?

∣∣∣∣ ?
?

∣∣∣∣ · · · ∣∣∣∣ ?
?

〉
→ ? ? · · · ?

? ? · · · ? .

Remember that this shuffle can be reduced to an RC as shown in Section 2.
4. Reveal the sequence of padding cards; one ♥ should appear.
5. Shift the sequence of piles so that the revealed ♥ becomes in the first position.

The resulting upper sequence is either the original one or the shifted one to
the right with a probability of 1/2, i.e., the desired shuffle has been applied.
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3.3 Uniform and Multiple Cycles Case

The previous subsection implies that applying (shuf, {id, ρi}) and (shuf, {id, ρj}),
i 6= j, sequentially is possible. We now show that these two can be applied
simultaneously, i.e., (shuf, {id, ρiρj}) is possible by performing an RBC once.
(Remember that ρi and ρj are disjoint.)

1. Suppose that we have a sequence of |ρi| face-down cards and a sequence
of |ρj | ones. Place a sequence of |ρi| padding cards and a sequence of |ρj |
padding ones below the two sequences, as follows:

? ? · · · ?
?
♥

?
♣
· · · ?

♣

? ? · · · ?
?
♥

?
♣
· · · ?

♣
.

The first card in each sequence is ♥ and the remaining cards are ♣s.
2. Apply an RBC as follows:

? ? · · · ?

?
1

?
2

· · · ?

? ? · · · ?

?
3

?
4

· · · ? →
[

?
1

?
3

∣∣∣∣ ?
2

?
4

]
.

That is, ♥ is either in the first or the second with a probability of 1/2 in
each of the resulting sequences.

3. The remaining steps are exactly the same as the implementation described
in the previous subsection. That is, we apply a pile-shifting scramble to
each sequence of piles, reveal every additional sequence, and then shift each
sequence according to the positions of each of revealed ♥s.

Similarly, (shuf, {id, ρ1ρ2 · · · ρ`}) is possible by performing an RBC and pile-
shifting scrambles.

3.4 Non-uniform Case

Here, we consider non-uniform shuffles (shuf, id 7→ p/q, ρ1ρ2 · · · ρ` 7→ 1−p/q).
Extending the above discussion, it suffices to deal with a non-uniform RBC:

(shuf, id 7→p/q, (1 `+1)(2 `+2) · · · (` 2`) 7→1−p/q),

where the probability p/q is a non-zero rational number and p is relatively prime
to q. We show that it can be implemented with 2q padding cards, as follows.

1. Suppose that we have a sequence of m = 2` face-down cards ? ? (to
be shuffled), each of which consists of ` cards. Place q padding cards in
the middle of the sequence and also q padding cards next to the resulting
sequence, as follows:

? ♣ ♣ · · · ♣︸ ︷︷ ︸
p cards

♥ ♥ · · · ♥︸ ︷︷ ︸
q−p cards

? ♣ ♣ · · · ♣︸ ︷︷ ︸
q−p cards

♥ ♥ · · · ♥︸ ︷︷ ︸
p cards

.

Then, turn over all the face-up cards.
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2. Apply an RBC to the sequence:[
? ? · · · ? | ? ? · · · ?

]
.

3. Apply an RC to the left padding cards:

?
〈

? · · · ?
〉

? ? · · · ? → ? ? · · · ? ? ? · · · ? .

Note that if the two halves were not swapped by the RBC in step 2, the
first card in the left padding cards is ♣ with a probability of p/q. If the two
halves were swapped, the first card in the left additional cards is ♣ with a
probability of 1− p/q.

4. Reveal the first card of the left padding cards. If it is ♣, do nothing; otherwise,
swap the two halves.4

4 Our Implementation for General Case

In this section, let us implement a shuffle

(shuf, π1 7→ p1/q, π2 7→ p2/q, . . . , πk 7→ pk/q), (4)

where each probability is a non-zero rational number and the greatest common
divisor of (p1, . . . , pk) is relatively prime to q. Note that

∑k
i=1 pi = q. The

following implementation generalizes our implementation of a non-uniform RBC
proposed in Section 3.

4.1 Applying a Permutation with Number Cards

Hereinafter, we express a permutation π by a sequence of number cards. For
example, using five number cards, express π = (3 4 1 2 5) as follows:

π : 3 4 1 2 5 .

We show that applying π to a sequence of cards is possible without revealing any
information about π using the above sequence, as follows [2]:

1. Place the sequence representing π below to a sequence to which we want to
apply π:

? ? ? ? ?
π : ? ? ? ? ? .

2. Considering the cards in the two same column as a pile, apply a pile-shifting
scramble to the sequence of piles:〈

?
?

∣∣∣∣ ?
?

∣∣∣∣ · · · ∣∣∣∣ ?
?

〉
→ ? ? · · · ?

? ? · · · ? .
4 After swapping them, the padding 2q cards are discarded.
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3. Reveal all the cards in the second row. Then, rearrange the two sequences
together so that the second row becomes id.

1

?
2

?
3

?
4

?
5

? →
5

?
1

?
2

?
3

?
4

?
2 3 4 5 1 → 1 2 3 4 5 .

Thus, to implement the shuffle (4), it suffices to choose a sequence of number
cards representing πi with a probability of pi/q.

4.2 Description

We are now ready to show our implementation for the general case.

1. Let n be the greatest number among |π1|, . . . , |πk|. Place a sequence of
face-down (number) cards that represents πi, 1 ≤ i ≤ k; we denote it by
Ai: ? :

πi :

n cards︷ ︸︸ ︷
? ? · · · ? → Ai : ? .

2. Place q additional cards next to Ai according to the probability of πi as
follows:

Ai : ? 1 1 · · · 1︸ ︷︷ ︸
pi+1 mod k

2 2 · · · 2︸ ︷︷ ︸
pi+2 mod k

· · · k k · · · k︸ ︷︷ ︸
pi+k mod k

→ A′i : ? .

Regard Ai and the q additional cards as a pile denoted by A′i.
3. Apply a pile-shifting scramble to the sequence of piles A′1, A

′
2, ..., A

′
k:〈

? | ? | · · · | ?
〉
→ ? ? · · · ? .

4. Take one pile among the resulting piles; we denote it by A′j . Apply an RC to
its additional cards:

A′j : ?
〈

? ? · · · ?
〉
.

5. Reveal any card of the resulting additional cards. Let the revealed card be ` .
Then A′j+` mod k is the desired sequence. That is, the `-th pile to the right of
A′j (up to rotation) is chosen with the desired probability.

5 Conclusion

In this paper, we proposed implementations of any shuffles (including non-uniform
and non-cyclic shuffle) (shuf, {π1, π2, . . . , πk},F) for a positive integer k (≥ 2),
where πi is a permutation and F is any distribution where every probability
is a rational number. For k = 2, the main idea is to implement a non-uniform
RBC. For k > 2, the main idea is to introduce number cards corresponding to
permutations, among which we choose one according the distribution.

It is an interesting open problem to deal with non-uniform shuffles whose
probabilities are not rational numbers. (This might be impossible.) Also, for k > 2,
a large number of cards are required depending on the probability distribution in
our implementation. To improve upon this would be an intriguing future work.
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