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Abstract. A protocol realizing a secure computation using a deck of
physical cards is called a card-based cryptographic protocol. Since Niemi
and Renvall first proposed a few protocols using a commercially avail-
able deck of playing cards in 1999, several protocols for the two-input
AND and XOR functions have been proposed. By combining these ex-
isting protocols, one can construct a protocol for any Boolean function
using a standard deck of playing cards. However, the minimal numbers
of cards needed for Boolean functions having more than two inputs have
not been revealed so much. Recently, Koyama et al. developed a card-
minimal three-input AND protocol. In this study, by extending Koyama’s
AND protocol, we construct a card-minimal protocol for the three-input
majority function. Furthermore, carrying the idea behind these protocols
further, we provide a generic card-minimal three-input protocol, which
covers many important three-input Boolean functions.
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1 Introduction

Card-based cryptographic protocols realize a secure computation using a deck of
physical cards (refer to [5, 25, 37] for surveys). Many researches on card-based
cryptography typically use a two-colored deck of cards whose fronts are red ♡
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or black ♣ and whose backs are indistinguishable ? . The Boolean values are
encoded as follows:

♣♡ = 0, ♡♣ = 1. (1)

When two face-down cards ? ? represent a bit x ∈ {0, 1} according to Eq. (1),
we call them a commitment to x and denote it as follows:

? ?︸︷︷︸
x

.

Given commitments as input, a committed-format protocol produces a com-
mitment to the output value of some predetermined function. For example, the
(two-input) AND protocol designed in [26] produces a commitment to a ∧ b via
a series of actions, given two commitments to a, b ∈ {0, 1} and two helping cards
as input:

? ?︸︷︷︸
a

? ?︸︷︷︸
b

♣♡ → · · · → ♣♡ ? ?︸︷︷︸
a∧b

? ? or ♡♣ ? ? ? ?︸︷︷︸
a∧b

.

1.1 Card-Based Protocols with a Standard Deck of Cards

The protocols using a two-colored deck of cards cannot be implemented with a
single standard deck of commercially available playing cards. The reason is that
such playing cards contain numbers (such as A, 2, 3, 4, . . . , J,Q,K) in addition to
suits (♣,♡,♠,♢), i.e., all the cards are distinct. Therefore, we need to prepare
either multiple decks of playing cards or a tailor-made deck of cards to implement
the protocols.

Fortunately, Niemi and Renvall [30] solved this problem by constructing a few
protocols using a single standard deck of commercially available playing cards.
They regarded a deck of playing cards as a total order on natural numbers from
1 to 52 because there are 52 combinations of numbers and suits in playing cards
(excluding the joker); we denote these cards by 1 2 3 · · · 52 . In their protocols,
a bit x ∈ {0, 1} is encoded using i and j satisfying 1 ≤ i < j ≤ 52, as follows:

i j = 0, j i = 1. (2)

That is, if the number on the left card is smaller, it represents 0, and if the
number on the left card is larger, it represents 1. Thus, similar to the two-
colored-deck case (as defined in Eq. (1)), using two cards i and j (of different
numbers), we can create a commitment to x ∈ {0, 1}, denoted by

? ?︸︷︷︸
[x]{i,j}

,

where the set {i, j} is called the base of the commitment. (We sometimes omit
the description of the base.) For example,

? ?︸︷︷︸
[x]{1,4}
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Table 1. Existing protocols for Boolean functions using standard playing cards

Protocol # of cards # of shuffles finite? Authors

2-AND 5 7.5 (exp.) Niemi & Renvall [30]
8 4 ✓ Mizuki [22]
4 6 (exp.) Koch et al. [6]

2-XOR 4 7 (exp.) Niemi & Renvall [30]
4 1 ✓ Mizuki [22]

3-AND 6 8.5 (exp.) Koyama et al. [12]

is a commitment to x of base {1, 4}; if x = 0, the order of the sequence is 1 4 ,
and if x = 1, it is 4 1 .

1.2 Existing Protocols

Including the Niemi–Renvall protocols mentioned above, there are several exist-
ing protocols (working on a standard deck) in the literature, as shown in Table 1.
In this subsection, we briefly review these protocols one by one.

Throughout the paper, ‘2-AND,’ ‘2-XOR,’ and ‘3-AND’ mean the two-input
AND, two-input XOR, and three-input AND functions, respectively; we also use
similar notations for other functions. In addition, when simply writing ‘AND
protocol’ or ‘XOR protocol,’ it means a two-input protocol, i.e., a 2-AND pro-
tocol or 2-XOR protocol.

Two-Input AND and XOR. As mentioned in Sect. 1.1, Niemi and Ren-
vall [30] proposed the first protocols working on a standard deck. Specifically,
they constructed a protocol for the two-input AND function (namely, 2-AND)
using five cards:

? ?︸︷︷︸
[a]{1,2}

? ?︸︷︷︸
[b]{3,4}

5 → · · · → ? ?︸︷︷︸
[a∧b]{1,4}

.

Therefore, aside from the two input commitments to a, b ∈ {0, 1}, this AND
protocol uses one helping card, namely 5 . The protocol (with the slight mod-
ification by Koch et al. [6]) uses 7.5 shuffles in expectation; thus, it is a Las
Vegas protocol (and it is not a finite-runtime protocol). See the first protocol
listed in Table 1. We call this the Niemi–Renvall AND protocol, whose detailed
explanation will be shown in Sect. 2.4.

Niemi and Renvall [30] also constructed a 2-XOR protocol with four cards:

? ?︸︷︷︸
[a]{1,2}

? ?︸︷︷︸
[b]{3,4}

→ · · · → ? ?︸︷︷︸
[a⊕b]{1,2}

.

Because the two input commitments need four cards as long as we follow the
encoding rule in Eq. (2), this XOR protocol, which does not use any helping
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card, is card-minimal5. As shown in Table 1, the protocol uses seven shuffles in
expectation.

In 2016, Mizuki [22] proposed AND and XOR protocols with eight and four
cards, respectively:

? ?︸︷︷︸
[a]{1,2}

? ?︸︷︷︸
[b]{3,4}

5 6 7 8 → · · · → ? ?︸︷︷︸
[a∧b]{5,6}

or ? ?︸︷︷︸
[a∧b]{7,8}

and

? ?︸︷︷︸
[a]{1,2}

? ?︸︷︷︸
[b]{3,4}

→ · · · → ? ?︸︷︷︸
[a⊕b]{3,4}

.

The AND and XOR protocols use four and one shuffles, respectively, and both
the protocols are finite-runtime; see Table 1. While the XOR protocol is card-
minimal, the AND protocol needs four helping cards.

As seen thus far, there had been card-minimal XOR protocols, whereas no
card-minimal AND protocol had been found until 2019: Koch et al. [6] con-
structed a card-minimal AND protocol in 2019:

? ?︸︷︷︸
[a]{1,2}

? ?︸︷︷︸
[b]{3,4}

→ · · · → ? ?︸︷︷︸
a∧b

.

As seen in Table 1, this is a Las Vegas protocol, which uses six shuffles in expec-
tation.

Three-Input AND. If we execute the above-mentioned card-minimal 2-AND
protocol designed by Koch et al. [6] twice, we can securely compute 3-AND
without any helping card, although it needs 12 shuffles in expectation.

In 2021, Koyama et al. [12] improved upon this by nicely making use of the
Niemi–Renvall AND protocol. That is, they proposed a card-minimal 3-AND
protocol with 8.5 shuffles (in expectation):

? ?︸︷︷︸
[a]{1,2}

? ?︸︷︷︸
[b]{3,4}

? ?︸︷︷︸
[c]{5,6}

→ · · · → ? ?︸︷︷︸
[a∧b∧c]{1,4}

.

Hereinafter, we call this protocol Koyama’s AND protocol.
Thus, there have already been card-minimal protocols for 3-AND. In addi-

tion, one can easily construct a card-minimal 3-XOR protocol by executing one
of the existing 2-XOR protocols twice. However, aside from 2-AND and 2-XOR,
there are many other three-input Boolean functions, and it is open to determine
whether all the three-input Boolean functions can be securely computed without
any helping card.

5 This paper (and the literature) assume the encoding (2), i.e., a two-card-per-bit en-
coding, when discussing the card-minimality of protocols; thus, an n-input (Boolean
function) protocol always needs 2n cards for input commitments, and such a protocol
using only 2n cards is card-minimal.
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For example, the three-input majority function maj : {0, 1}3 → {0, 1} defined
as

maj(a, b, c) =

{
0 if a+ b+ c ≤ 1,

1 if a+ b+ c ≥ 2

can be securely computed by combining the existing protocols (including the
“copy” protocols, which will be mentioned in Sect. 1.4), because it suffices to
apply AND, OR, and copy protocols by following a circuit such as

maj(a, b, c) = (a ∧ b) ∨ (b ∧ c) ∨ (c ∧ a).

Note that a 2-OR protocol is obtained immediately by a 2-AND protocol with
De Morgan’s laws, or we will directly display a 2-OR protocol in Sect. 3.1.
When following the circuit for 3-majority above, we need to duplicate some
input commitments, and hence, we need some helping cards, implying that such
a construction is not card-minimal. Thus, designing card-minimal protocols for
three-input Boolean functions (including 3-majority) is considered to be non-
trivial.

1.3 Contribution

In this study, we focus on designing card-minimal protocols for three-input
Boolean functions by extending the idea behind Koyama’s AND protocol [12]
further. Specifically, the contribution of this paper is twofold:

– For the three-input majority function, we construct a protocol using six
cards, i.e., we design a card-minimal 3-majority protocol:

? ?︸︷︷︸
[a]{1,2}

? ?︸︷︷︸
[b]{3,4}

? ?︸︷︷︸
[c]{5,6}

→ · · · → ? ?︸︷︷︸
[maj(a,b,c)]{1,4}

.

As will be explained, our protocol is based on Koyama’s AND protocol [12],
and uses the same number of shuffles, namely 8.5 shuffles (in expectation).
Note that the 3-majority is one of the most important three-input Boolean
functions in terms of practical use.

– We generalize the idea behind Koyama’s AND protocol so that we obtain a
generic card-minimal three-input protocol, which accommodates many three-
input Boolean functions (namely, 140 functions), including important func-
tions such as 3-OR, 3-XOR, 3-NAND, 3-NOR, 3-XNOR, and the 3-minority.

1.4 Related Work

Aside from the existing AND and XOR protocols introduced in Sect. 1.2, there
are “copy” protocols working on a standard deck [13, 22, 30]. A copy protocol
duplicates a commitment without revealing any information about the value
of the commitment. Using such a copy protocol as well as 2-AND, 2-XOR, and
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NOT protocols6, we can construct a protocol for any Boolean function. However,
determining whether there exist card-minimal protocols for multi-input functions
remains an open problem (except the n-AND and n-XOR functions).

There are also attractive applications using a standard deck of cards: zero-
knowledge proof protocols for Sudoku [34] and millionaire protocols [18]. More-
over, under another computation model which accepts “private operations” such
as revealing a card behind player’s back, card-minimal AND, XOR, and copy
protocols were constructed [16].

As mentioned at the beginning of this section, many card-based protocols
work on a two-color deck of cards; under several kinds of settings of decks
(including the standard-deck and two-color-deck settings), the research area
on card-based cryptography has grown rapidly recently from both theoretical
and practical aspects. Examples are: constructing zero-knowledge proof pro-
tocols [15, 32, 33, 35], investigating computation models [3, 9, 23, 39] and shuf-
fles [8,21,36], designing private-operation-model protocols [1,17,28,29,31], seek-
ing practical and/or efficient protocols [2, 7, 14, 20, 40], and making use of other
physical objects [4, 11,19,27,38].

1.5 Outline

In Sect. 2, we introduce operations used in card-based cryptography and describe
the existing protocol [30] and technique [12]. In Sect. 3, we show how to construct
a three-input majority protocol by extending the ideas behind the Niemi–Renvall
AND protocol and Koyama’s AND protocol. In Sect. 4, we construct a generic
protocol which covers many three-input Boolean functions by generalizing the
ideas further. Section 5 summarizes our study.

2 Preliminaries

In this section, we introduce the description of operations formalized in the
computational model of card-based cryptography [24]. We also introduce the two
practical shuffles called the “random cut” and “random bisection cut.” Finally,
we describe the Niemi–Renvall AND protocol [30] and the useful technique [12]
called the “swap operation by commitment value.”

2.1 Operations

We here introduce three operations, namely rearrangement, turn, and shuffle. We
assume that we have a sequence of n face-down cards for some natural number
n (≥ 2).

6 A NOT protocol can be simply constructed: swapping two cards comprising a com-
mitment produces a commitment to the negation.
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Rearrangement. This applies some permutation π ∈ Sn to the sequence, where
Sn denotes the symmetric group of degree n. This is written as (perm, π), and
the sequence changes as follows:

1

?
2

? · · ·
n

?
(perm,π)−−−−−→

π−1(1)

?
π−1(2)

? · · ·
π−1(n)

? .

Turn. This reveals the t-th card from the left in the sequence to check its number.
This is written as (turn, {t}), and the sequence changes as follows (for example):

1

?
2

? · · ·
t

? · · ·
n

?
(turn,{t})−−−−−−→

1

?
2

? · · ·
t

7 · · ·
n

? .

Shuffle. This applies a permutation π drawn from a permutation set Π ⊆ Sn

according to a probability distribution F on Π. This is written as (shuf, Π, F),
and the sequence changes as follows:

1

?
2

? · · ·
n

?
(shuf,Π,F)−−−−−−−→

π−1(1)

?
π−1(2)

? · · ·
π−1(n)

? for π ← F .

Note that no one learns which permutation in Π was applied. If F is uniform,
then we simply write it as (shuf, Π).

2.2 Random Cut

A random cut, denoted by ⟨ · ⟩, is an operation that shuffles a sequence by cycli-
cally shifting it. Applying a random cut to a sequence of n cards results in one
of n possibilities, each occurring with a probability of 1/n:

〈 1

?
2

? · · ·
n−1
?

n

?
〉
→



1

?
2

? · · ·
n−1
?

n

? (1/n),

2

?
3

? · · ·
n

?
1

? (1/n),
...

n−1
?

n

? · · ·
n−3
?

n−2
? (1/n),

n

?
1

? · · ·
n−2
?

n−1
? (1/n).

Thus, this operation can be written as (shuf, ⟨(1 2 · · ·n)⟩), where ⟨(i1 i2 · · · iℓ)⟩
denotes the cyclic group generated by a (cyclic) permutation (i1 i2 · · · iℓ).

2.3 Random Bisection Cut (RBC)

A random bisection cut (RBC) [26], denoted by [ · | · ], is a shuffling operation,
which bisects a sequence of cards and then randomly swaps the two halves. Thus,
when an RBC is applied to a sequence of 2n cards, the sequence becomes either
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the original one, or the one in which the first n cards are swapped with the last
n cards, as follows:

[ 1

? · · ·
n

?
∣∣∣ n+1

? · · ·
2n

?
]
→


1

? · · ·
n

?
∣∣∣ n+1

? · · ·
2n

? (1/2),
n+1

? · · ·
2n

?
∣∣∣ 1

? · · ·
n

? (1/2).

This operation can be written as (shuf, {id, (1 n+1)(2 n+2) · · · (n 2n)}), where
id denotes the identity permutation.

2.4 The Niemi–Renvall AND Protocol

The Niemi–Renvall AND protocol [30] takes as input two commitments to a, b ∈
{0, 1} as well as an additional card and outputs a commitment to a ∧ b. This
protocol proceeds as follows.

1. Place the two input commitments and the additional card 5 as follows, and
turn over the face-up card:

5 ? ?︸︷︷︸
[a]{1,2}

? ?︸︷︷︸
[b]{3,4}

→ ? ? ?︸︷︷︸
[a]{1,2}

? ?︸︷︷︸
[b]{3,4}

.

2. Swap the third and fourth cards:

1

?
2

?
3

?
4

?
5

? →
1

?
2

?
4

?
3

?
5

? .

The initial and swapped sequences for each input are described in the third
and fourth columns of Table 2. Observe that the order of 1 , 4 , and 5 in
the swapped sequence is 5 → 4 → 1 if and only if a∧ b = 1. Therefore, we
try to remove the two cards 2 and 3 in the next steps.

3. Apply a random cut to the sequence:〈
? ? ? ? ?

〉
→ ? ? ? ? ? .

4. Turn over the first card. Remove the revealed card if it is either 2 or 3 ;
otherwise, turn the card face down. Return to Step 3 unless both 2 and 3
are already removed.

5. Now, the sequence is one of the three possibilities as described in the fifth
column of Table 2. Apply a random cut to the sequence again and then turn
over the first card. We can obtain a commitment to a ∧ b (as output), as
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Table 2. The sequence of five cards for each input during the Niemi–Renvall protocol

Input (a, b) a ∧ b Initial After swap 2 and 3 removed

(0, 0) 0 5 1 2 3 4 5 1 3 2 4 1 4 5 or 4 5 1 or 5 1 4

(0, 1) 0 5 1 2 4 3 5 1 4 2 3 1 4 5 or 4 5 1 or 5 1 4

(1, 0) 0 5 2 1 3 4 5 2 3 1 4 1 4 5 or 4 5 1 or 5 1 4

(1, 1) 1 5 2 1 4 3 5 2 4 1 3 1 5 4 or 4 1 5 or 5 4 1

follows:7

〈
? ? ?

〉
→ ? ? ?

(turn,{1})−−−−−−→



1 ? ?︸︷︷︸
[a∧b]{4,5}

(1/3),

4 ? ?︸︷︷︸
[a∧b]{1,5}

(1/3),

5 ? ?︸︷︷︸
[a∧b]{1,4}

(1/3).

If the first card is 4 , then we obtain a commitment to the negation of a∧ b;
we can obtain a commitment to a∧ b by swapping the two cards comprising
the commitment.

The correctness of this protocol is clear from Table 2. In addition, no information
about the input and output is leaked when a card is turned over because we
always apply a random cut before turning over a card.

2.5 Swapping by Commitment Value

Koyama et al. [12] proposed a sub-protocol called the swapping by commitment
value based on the idea of behind the two-input XOR protocol [22] proposed
by Mizuki. This led to the construction of the 3-AND protocol [12]. Given two
target cards ? ? and a commitment to c ∈ {0, 1} of base {i, j}, the swapping
by commitment value is to swap the two cards ? ? if and only if c = 1, without
leaking any information about the value of c as follows:

1

?
2

? ? ?︸︷︷︸
[c]{i,j}

→


1

?
2

? if c = 0,
2

?
1

? if c = 1.

The procedure is shown below.

1. Place the two target cards and the commitment to c as follows:

? ? ? ?︸︷︷︸
[c]{i,j}

.

7 This step was proposed by Koch et al. [6], reducing the number of shuffles.
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2. Swap the second and third cards, i.e., apply (perm, (2 3)).
3. Apply (shuf, {id, (1 3)(2 4)}) , i.e., apply an RBC as follows:[

? ?
∣∣∣ ? ?

]
→ ? ? ? ? .

4. Apply (perm, (2 3)) again. Then, the sequence becomes one of the following
two possibilities depending on the value of c:

c = 0→


1

?
2

? i j (1/2),
2

?
1

? j i (1/2).

c = 1→


1

?
2

? j i (1/2),
2

?
1

? i j (1/2).

Observe that the order of the first and second cards are desirable if the order
of i and j is i j .

5. Turn over the third and fourth cards to reveal the order of i and j .
(a) If i j appears, then output the first and second cards.
(b) If j i appears, then swap the first and second cards and output them.

Thus, the above sub-protocol achieves the desired functionality without leaking
any information about c.

3 Three-input Majority Protocol

In this section, we construct a card-minimal protocol for the three-input majority
function maj(a, b, c) working on a standard deck. The idea behind our proposed
protocol is based on the Niemi–Renvall AND protocol [30] and Koyama’s AND
protocol [12].

To construct a 3-majority protocol, we utilize the following equation:

maj(a, b, c) =

{
a ∧ b if c = 0,

a ∨ b if c = 1.
(3)

To compute maj(a, b, c), observe that, if c = 0, it suffices to compute a∧ b using
the Niemi–Renvall AND protocol introduced in Sect. 2.4; otherwise, we want to
compute a ∨ b. Therefore, we first construct an OR protocol by modifying the
Niemi–Renvall protocol and then construct a 3-majority protocol.

3.1 Two-Input OR Protocol

We construct a two-input OR protocol by changing the rearrangement positions
in the Niemi–Renvall AND protocol. The protocol takes as input two commit-
ments to a, b as well as an additional card and outputs a commitment to a ∨ b,
as follows.
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Table 3. The sequence of five cards for each input during the 2-OR protocol

Input(a, b) a ∨ b Initial Rearranged (Step 2) Removing 2 and 3

(0, 0) 0 5 1 2 3 4 5 3 1 4 2 1 4 5 or 4 5 1 or 5 1 4

(0, 1) 1 5 1 2 4 3 5 4 1 3 2 1 5 4 or 4 1 5 or 5 4 1

(1, 0) 1 5 2 1 3 4 5 3 2 4 1 1 5 4 or 4 1 5 or 5 4 1

(1, 1) 1 5 2 1 4 3 5 4 2 3 1 1 5 4 or 4 1 5 or 5 4 1

1. Place the two input commitments and the additional card 5 and turn it over
as follows:

5 ? ?︸︷︷︸
[a]{1,2}

? ?︸︷︷︸
[b]{3,4}

→ ? ? ?︸︷︷︸
a

? ?︸︷︷︸
b

.

2. Rearrange the sequence as follows, i.e., apply (perm, (2 3 5 4)):

1

?
2

?
3

?
4

?
5

? →
1

?
4

?
2

?
5

?
3

? .

The input and rearranged sequences for each input are described in the third
and fourth columns of Table 3. Observe that the order of 1 , 4 , and 5 in
the rearranged sequence is 5 → 4 → 1 if and only if a ∨ b = 1.

3. Apply Steps 3, 4, and 5 of the Niemi–Renvall AND protocol shown in
Sect. 2.4 to obtain a commitment to a ∨ b.

3.2 Idea

Remember that in Step 2 of the Niemi–Renvall AND protocol and our OR proto-
col, we rearrange the sequence of cards, i.e., the AND protocol uses (perm, (3 4))
and the OR protocol uses (perm, (2 3 5 4)).

Observe that if we apply (perm, (3 4)), namely

1

?
2

?
3

?
4

?
5

? →
1

?
2

?
4

?
3

?
5

? ,

and apply (perm, (2 3)(4 5)), namely

1

?
2

?
3

?
4

?
5

? →
1

?
3

?
2

?
5

?
4

? ,

the resulting sequence becomes the same as the one after executing Step 2 of
our OR protocol. In other words, ((2 3)(4 5))(3 4) = (2 3 5 4).

Therefore, after applying (perm, (3 4)), if we do nothing, it results in the AND
protocol. If we apply (perm, (2 3)(4 5)) after applying (perm, (3 4)), it results
in the OR protocol. Therefore, it suffices to perform the swap operation by
commitment value [12] introduced in Sect. 2.5 to apply (perm, (2 3)(4 5)) if and
only if c = 1 (see Eq. (3) again).
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3.3 Description of Protocol

We are ready to describe the procedure for our 3-majority protocol. The pro-
tocol takes three commitments to a, b, c as input and outputs a commitment to
maj(a, b, c).

1. Place three input commitments as follows:

? ?︸︷︷︸
[a]{1,2}

? ?︸︷︷︸
[b]{3,4}

? ?︸︷︷︸
[c]{5,6}

.

2. Swap the second and the third cards:

1

?
2

?
3

?
4

?
5

?
6

? →
1

?
3

?
2

?
4

?
5

?
6

? .

3. Apply the swap operation by the commitment to c [12] to apply (perm, (1 2)(3 4))
if and only if c = 1 as follows:
(a) Rearrange the sequence as follows:

1

?
2

?
3

?
4

?
5

?
6

? →
1

?
3

?
5

?
2

?
4

?
6

? .

(b) Apply (shuf, {id, (1 4)(2 5)(3 6)}) , i.e., apply an RBC as follows:[
? ? ?

∣∣∣ ? ? ?
]
→ ? ? ? ? ? ? .

(c) Rearrange the sequence as follows:

1

?
2

?
3

?
4

?
5

?
6

? →
1

?
4

?
2

?
5

?
3

?
6

? .

(d) Turn over the fifth and sixth cards. If their order is 5 6 , do nothing;
if it is 6 5 , swap the first and second cards as well as the third and
fourth cards. The sequence for each input is described in Table 4 where
the order of the revealed two cards 5 6 does not matter.

4. Execute Steps 3, 4, and 5 of the Niemi–Renvall AND protocol to obtain a
commitment to maj(a, b, c), where we use the first through fourth cards as
input, and the 5 turned over in Step 3d as an additional card (i.e., place the

5 in the first from the left).

3.4 Correctness and Security

The correctness of this protocol is clear from Table 4 because when the input
(a, b, c) satisfies maj(a, b, c) = 0, the resulting sequence after Step 3 is 1 4 5
(where 2 , 3 , and 6 are removed); otherwise, the sequence is 4 1 5 . As for
the security, we execute the swap operation by commitment value [12] in Step 3
and then the part of the Niemi–Renvall AND protocol (and Steps 1 and 2 just
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Table 4. The sequence of six cards for each input in our 3-majority protocol, where
the sequences in the fourth column are in a case when the order of the revealed fifth
and sixth cards are 5 6 in Step 3d.

Input(a, b, c) maj(a, b, c) Initial After Swap (Step 3d) Removing 2 3 6

(0, 0, 0) 0 1 2 3 4 5 6 1 3 2 4 5 6 1 4 5

(0, 0, 1) 0 1 2 3 4 6 5 3 1 4 2 5 6 1 4 5

(0, 1, 0) 0 1 2 4 3 5 6 1 4 2 3 5 6 1 4 5

(0, 1, 1) 1 1 2 4 3 6 5 4 1 3 2 5 6 4 1 5

(1, 0, 0) 0 2 1 3 4 5 6 2 3 1 4 5 6 1 4 5

(1, 0, 1) 1 2 1 3 4 6 5 3 2 4 1 5 6 4 1 5

(1, 1, 0) 1 2 1 4 3 5 6 2 4 1 3 5 6 4 1 5

(1, 1, 1) 1 2 1 4 3 6 5 4 2 3 1 5 6 4 1 5

place and swap the sequence, respectively), no information about the input and
output is leaked.

More formally, we use the KWH-tree [10] to prove the security (and cor-
rectness) of this protocol; we depict the KWH-tree of our three-input majority
protocol in Fig. 1. In the diagram, states of a sequence of cards are expressed as
nodes, and operations on the sequence of cards are expressed as edges. Because
the sum of the probability distributions of the nodes is equal to the probability
distribution of the input, the protocol is guaranteed to be secure.

4 Generic Protocol for Three-Input Functions

In this section, we generalize our 3-majority protocol described in Sect. 3 so as
to obtain a generic card-minimal protocol for three-input Boolean functions.

After we describe the idea behind the generalization in Sect. 4.1, we gener-
alize the Niemi–Renvall AND protocol and the swap operation by commitment
value [12] in Sects 4.2 and 4.3, respectively.

Before going into the subsections, we define a notation; hereinafter, πijkℓ

denotes a permutation in S4 such that

πijkl =

(
1 2 3 4
i j k ℓ

)
for four distinct integers i, j, k, ℓ ∈ {1, 2, 3, 4}. For example, π1234 = id and
π1324 = (2 3).

4.1 Idea

Our idea is that, as maj(a, b, c) is represented with the two elementary functions
of a and b depending on the value of c (as in Eq. (3)), every three-input Boolean
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Fig. 1. The KWH-tree of three-input majority protocol
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function f : {0, 1}3 → {0, 1} can be also written as follows:

f(a, b, c) =

{
g(a, b) if c = 1,

h(a, b) if c = 0,
(4)

where there exist two functions g, h : {0, 1}2 → {0, 1}.
Remember that in our 3-majority protocol proposed in Sect. 3, we first apply

the permutation π1324 (to compute 2-AND) and then, if c = 1, apply the permu-
tation π2143 by the swap operation (to compute 2-OR); π1324 leads to 2-AND,
and π2143π1324 leads to 2-OR. If we replace these two permutations with other
ones, then we will obtain (possibly) another three-input protocol.

Bearing this in mind, we first investigate what two-input function (as a can-
didate for g or h in Eq. (4)) will be computed for every permutation πijkℓ ∈ S4

(in Sect. 4.2). Then, we enumerate all possible swap operations (in Sect. 4.3).

4.2 Generalizing the Niemi–Renvall AND Protocol

In this subsection, we generalize the Niemi–Renvall AND protocol by considering
all permutations for Step 2 of the protocol.

Assume that we apply a permutation π ∈ S4 (instead of the original permu-
tation) in Step 2 of the Niemi–Renvall AND protocol. Then, at the end of the
protocol, we should obtain a commitment to a certain two-input function; we
denote this function by NRπ : {0, 1}2 → {0, 1}.

We examined all 4! possibilities for π and write NRπ(a, b) in Table 5. This
table tells us that aside from 2-XOR and 2-XNOR, all two-input functions can
be obtained.

4.3 Generalizing Swap Operation by Commitment Value

In this subsection, consider all possible swapping operations.
Assume that we have four cards along with a commitment to c ∈ {0, 1} of

base {5, 6}:
? ? ? ? ? ?︸︷︷︸

[c]{5,6}

.

We want to apply a permutation in S4 to the first four cards if and only if
c = 1. What are the possible permutations? We can consider two kind of swap
operations.

(i j)-swap. Remember that the swap operation introduced in Sect. 2.5 swaps
two cards (or does not) depending on the value of c. As a natural extension,
let us consider a swap operation such that the i-th and j-th cards (among the
leftmost four cards) for 1 ≤ i < j ≤ 4 are swapped or not; we call this the
(i j)-swap, which can be achieved as follows.

1. Apply the permutation corresponding to (i j) according to Table 6.
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Table 5. Output NRπ of the generalized Niemi–Renvall protocol with π

Permutation π NRπ(a, b)

π1234, π1243, π2134, π2143 0
π1324 a ∧ b
π1423 a ∧ b̄
π1342, π1432 a
π2314 ā ∧ b
π3124, π3214 b
N/A a⊕ b
π3142 a ∨ b

π2413 a ∨ b

N/A a⊕ b
π4123, π4213 b̄
π4132 a ∨ b̄
π2341, π2431 ā
π3241 ā ∨ b

π4231 a ∧ b
π3412, π3421, π4312, π4321 1

2. Apply (shuf, {id, (3 5)(4 6)}) , i.e., apply an RBC as follows:

? ?
[
? ?

∣∣∣ ? ?
]
→ ? ? ? ? ? ? .

3. Apply the inverse of the permutation applied in Step 1.
4. Turn over the fifth and sixth cards (namely, apply (turn, {5, 6})). If the or-

der of the revealed cards are 6 5 , swap the i-th and j-th cards (namely,
(perm, (i j))); otherwise, do nothing.

(i j)(k ℓ)-swap. Remember that our 3-majority protocol uses (perm, (2 3)(4 5))
in the swap operation, and note that the permutations (2 3) and (4 5) are
disjoint. Therefore, we can consider a swap operation such that the i-th and j-th
cards as well as the k-th and ℓ-th cards are swapped or not for 1 ≤ i < j ≤ 4
and {k, ℓ} = {1, 2, 3, 4} − {i, j}; we call this the (i j)(k ℓ)-swap, which can be
achieved as follows.

1. Apply the permutation corresponding to (i j)(k ℓ) according to Table 7.
2. Apply (shuf, {id, (1 4)(2 5)(3 6)}), i.e., apply an RBC as follows:[

? ? ?
∣∣∣ ? ? ?

]
→ ? ? ? ? ? ? .

3. Apply the inverse of the permutation applied in Step 1.
4. Turn over the fifth and sixth cards (namely, apply (turn, {5, 6})). If the order

of the revealed cards are 6 5 , swap the i-th and j-th cards as well as k-th
and ℓ-th cards (namely, (perm, (i j)(k ℓ))); otherwise, do nothing.
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Table 6. Actions for Steps 1 and 3 of the (i j)-swap

(i j) Action for Step 1 Action for Step 3 (Inverse of Step 1)

(1 2) (perm, (1 3)(2 5 4)) (perm, (1 3)(2 4 5))
(1 3) (perm, (1 3 5 4 2)) (perm, (1 2 4 5 3))
(1 4) (perm, (1 3 2)(4 5)) (perm, (1 2 3)(4 5))
(2 3) (perm, (2 3 5 4)) (perm, (2 4 5 3))
(2 4) (perm, (2 3)(4 5)) (perm, (2 3)(4 5))
(3 4) (perm, (4 5)) (perm, (4 5))

Table 7. Actions for Steps 1 and 3 of the (i j)(k ℓ)-swap

(i j)(k ℓ) Action for Step 1 Action for Step 3 (Inverse of Step 1)

(1 2)(3 4) (perm, (2 4 5 3)) (perm, (2 3 5 4))
(1 3)(2 4) (perm, (3 4 5)) (perm, (3 5 4))
(1 4)(2 3) (perm, (3 5)) (perm, (3 5))

4.4 Description of Protocol

We are now ready to describe our generic protocol for three-input Boolean func-
tion.

Our protocol owns two permutations π, σ ∈ S4 as parameter, where either
σ = (i j) for 1 ≤ i < j ≤ 4, or σ = (i j)(k ℓ) for 1 ≤ i < j ≤ 4 and
{k, ℓ} = {1, 2, 3, 4} − {i, j}; it proceeds as follows.

1. Place three input commitments as:

? ?︸︷︷︸
[a]{1,2}

? ?︸︷︷︸
[b]{3,4}

? ?︸︷︷︸
[c]{5,6}

.

2. Apply (perm, π).
3. Apply σ-swap.
4. Apply Steps 3, 4, and 5 of the Niemi–Renvall AND protocol.

4.5 Covered Functions

In this subsection, we comprehensively reveal what three-input functions our
generic protocol computes.

Executing our generic protocol with parameter π, σ ∈ S4 is equivalent to
executing a protocol for the three-input Boolean function f such that

f(a, b, c) =

{
NRσπ(a, b) if c = 1,

NRπ(a, b) if c = 0.

For example, if we take π, σ as in the first and second columns of Table 8,
we have NRπ and NRσπ as in the fourth and fifth columns, and hence, the
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Table 8. Covered main functions

π σ σπ NRπ NRσπ f(a, b, c)

π1234 (2 3) π1324 AND 0 3-AND [12]
π3412 (2 3) π3142 1 OR 3-OR
π3412 (1 4)(2 3) π2143 NAND OR 3-XOR
π4321 (2 3) π4231 NAND 1 3-NAND
π2413 (2 3) π2143 0 NOR 3-NOR
π2413 (1 3)(2 4) π1324 AND NOR 3-XNOR
π1324 (1 2)(3 4) π3142 OR AND 3-majority
π2413 (1 2)(3 4) π4231 NOR NAND 3-minority

corresponding three-input Boolean functions are shown in the sixth column.
This table tells us that major three-input Boolean functions are covered by our
generic protocol.

From the user’s perspective, given a three-input function f , we want to find
two permutations π, σ ∈ S4 which lead to f . Table 9 helps us: We first find g, h
such that

f(a, b, c) =

{
g(a, b) if c = 1,

h(a, b) if c = 0;

then, using Table 9, find the corresponding parameter π, σ.

Although not all three-input Boolean functions have a corresponding param-
eter π, σ, our generic protocol covers 140 three-input Boolean functions among
the 256 ones.

5 Conclusion

In this study, we showed how to construct a card-minimal 3-majority protocol
by extending the Niemi–Renvall AND protocol [30] and Koyama’s AND pro-
tocol [12]. Furthermore, we constructed a generic card-minimal protocol that
covers many three-input Boolean functions as shown in Table 9.

Although the proposed protocol accommodates many major functions as seen
in Table 8, not all the three-input Boolean functions can be computed by it. It is
open to determine whether there exists a six-card protocol for every three-input
Boolean function. While 3-XOR and 3-XNOR can be computed without any
helping card by using the existing protocols, we conjecture that some functions,
say

f(a, b, c) =

{
a ∧ b if c = 1,

a⊕ b if c = 0,

would need helping cards.
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Table 9. Parameter π, σ leading to g, h

h
g

0 a ∧ b a ∧ b a a ∧ b b a⊕ b a ∨ b a ∨ b a⊕ b b a ∨ b a a ∨ b a ∧ b 1

0 π1234 π1234 π1243 π1234 π2134 π1234 N/A π2143 π2143 N/A π2143 π2134 π2143 π1243 π1234 π2143

(3 4) (2 3) (2 3) (2 4) (2 3) (1 3) (1 4) (2 3) (1 3) (1 4) (2 4) (1 4) (1 4) (1 4)(2 3)

a ∧ b π1324 N/A π1324 π1324 π1324 π1324 N/A π1324 π1324 N/A N/A N/A N/A N/A π1324 π1324

(2 3) (2 4) (3 4) (1 3) (1 2) (1 2)(3 4) (1 3)(2 4) (1 4)(2 3) (1 4)

a ∧ b π1423 π1423 N/A π1423 π1423 N/A N/A N/A π1423 N/A π1423 π1423 N/A π1423 N/A π1423

(2 3) (2 4) (3 4) (1 3)(2 4) (1 3) (1 2) (1 2)(3 4) (1 4)(2 3) (1 4)

a π1342 π1342 π1432 π1432 N/A π1342 N/A π1342 N/A N/A π1342 π1432 π1432 N/A N/A π1432

(2 4) (3 4) (3 4) (2 3) (1 2)(3 4) (1 2) (1 3)(2 4) (1 2) (1 4)(2 3) (1 3)

a ∧ b π2314 π2314 π2314 N/A N/A π2314 N/A N/A π2314 N/A N/A π2314 π2314 π2314 N/A π2314

(2 3) (1 3) (1 3)(2 4) (1 2) (2 4) (1 4)(2 3) (3 4) (1 2)(3 4) (1 4)

b π3124 π3124 N/A π3124 π3214 π3124 N/A π3124 N/A N/A π3214 N/A π3214 π3214 N/A π3124

(1 3) (1 2) (1 2)(3 4) (1 2) (2 3) (3 4) (1 4)(2 3) (1 2)(3 4) (3 4) (2 4)

a⊕ b N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

a ∨ b π3142 π3142 N/A π3142 N/A π3142 N/A N/A π3142 N/A N/A π3142 N/A π3142 π3142 π3142

(1 4) (1 2)(3 4) (1 2) (3 4) (1 4)(2 3) (1 3) (2 4) (1 3)(2 4) (2 3)

a ∨ b π2413 π2413 π2413 N/A π2413 N/A N/A π2413 N/A N/A π2413 N/A π2413 N/A π2413 π2413

(2 3) (1 3)(2 4) (1 3) (1 4) (1 4)(2 3) (1 2) (3 4) (1 2)(3 4) (1 4)

a⊕ b N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

b π4123 N/A π4123 π4213 N/A π4123 N/A N/A π4213 N/A π4123 π4123 π4123 N/A π4213 π4123

(1 3) (1 2) (1 3)(2 4) (1 4) (1 2) (2 3) (3 4) (1 3)(2 4) (3 4) (2 4)

a ∨ b π4132 N/A π4132 π4132 π4132 N/A N/A π4132 N/A N/A π4132 N/A N/A π4132 π4132 π4132

(1 4) (1 2)(3 4) (1 2) (1 4)(2 3) (1 3) (3 4) (1 3)(2 4) (2 4) (2 3)

a π2341 N/A N/A π2341 π2341 π2341 N/A N/A π2431 N/A π2341 N/A π2341 π2341 π2431 π2431

(2 4) (1 4) (3 4) (1 2)(3 4) (3 4) (1 3)(2 4) (2 3) (1 2) (1 2) (1 3)

a ∨ b π3241 N/A π3241 N/A π3241 π3241 N/A π3241 N/A N/A N/A π3241 π3241 N/A π3241 π3241

(1 4) (1 4)(2 3) (1 2)(3 4) (3 4) (2 4) (1 3)(2 4) (1 2) (1 3) (2 3)

a ∧ b π4231 π4231 N/A N/A N/A N/A N/A π4231 π4231 N/A π4231 π4231 π4231 π4231 N/A π4231

(1 4) (1 4)(2 3) (1 3)(2 4) (1 2)(3 4) (3 4) (2 4) (1 2) (1 3) (2 3)

1 π3412 π4321 π3421 π3412 π4312 π3421 N/A π3412 π3412 N/A π4312 π4312 π4321 π3421 π4321 π3412

(1 4)(2 3) (1 4) (1 4) (1 3) (1 4) (2 4) (2 3) (1 4) (2 4) (2 3) (1 3) (2 3) (2 3) (3 4)
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