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Abstract. Assume that, given a sequence of n integers from 1 to n ar-
ranged in random order, we want to sort them, provided that the only
acceptable operation is a prefix reversal, which means to take any num-
ber of integers (sub-sequence) from the left of the sequence, reverse the
order of the sub-sequence, and return them to the original sequence. This
problem is called “pancake sorting,” and sorting an arbitrary sequence
with the minimum number of operations restricted in this way is known
to be NP-hard. In this paper, we consider applying the concept of zero-
knowledge proofs to the pancake sorting problem. That is, we design a
physical zero-knowledge proof protocol in which a user (the prover) who
knows how to sort a given sequence with ¢ operations can convince an-
other user (the verifier) that the prover knows this information without
divulging it.

Keywords: Zero-knowledge proof, Card-based cryptography, Pancake
sorting

1 Introduction

“Pancake sorting” [27] is a problem of sorting a given sequence of n integers
from 1 to n by using only “prefix reversals,” which rearrange a sub-sequence of
any length taken from the left in the reverse order. In this paper, we apply the
concept of zero-knowledge proofs to the pancake sorting problem and propose
a physical zero-knowledge proof protocol for the pancake sorting problem. This
paper begins by explaining the pancake sorting problem in detail.
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1.1 Pancake Sorting Problem

We take a sequence of five integers (3,5, 2, 1,4) as an example. For this sequence,
let us reverse its prefixes of lengths 2, 5, 4, and 3 in this order one by one, so
that the sequence is rearranged as

(3,5,2,1,4) = (5,3,2,1,4) = (4,1,2,3,5) — (3,2,1,4,5) — (1,2,3,4,5).

Thus, the sorting (in ascending order) is completed in four prefix reversals. The
four prefix reversals above can be represented as a sequence (2,5, 4, 3) that con-
sists of the lengths in the prefix reversals; such a sequence of prefix reversal
lengths completing the sorting is called a solution to a given sequence (to be
sorted).

This kind of sorting problem is called pancake sorting [27]; the name comes
from the problem of sorting a stack of pancakes of distinct diameters in order of
diameter size by repeatedly flipping over a number of pancakes at the top with
a spatula.

Let us formalize this problem. Let n > 1, and let (z1, 2, ...,z,) be an input
sequence that consists of n integers randomly arranged from 1 to n. Such a
sequence of n integers can be regarded as a permutation on {1,2,...,n}. That is,
when S, denotes the symmetric group of degree n, the sequence (x1,xa, ..., x,)
can be represented by the following permutation x € S,,:

< 1 23---n )

T = .

T1 T2 T3 " Tn

Next, let us also express the prefix reversal operations in terms of permutation

as follows. For each ¢ such that 1 < ¢ < n, the operation of a prefix reversal of
length i is represented by the following permutation sw; € Sy,:

(12 3 . i—2i—14
Wi=\ii-1i-2... 3 2 1)

Thus, (y1,92,...,9¢) € {1,2,...,n}’ is a solution to a sequence x € S, if and
only if

SWy, OSW,, , O+ 0SW,, oz = id

holds, where id € S,, denotes the identity. Note that the above permutation sw;
is equal to its inverse swi_l. That is, sw; = swi_1 holds for every i, 1 < ¢ < n.
Note furthermore that sw; = id.

Following this formulation, we can check, for example, that the above se-
quence (3,5,2,1,4) and its solution (2, 5,4, 3) satisfy

o s oo osumo (12345 iy
SW3 O SW4 O SW5 O SWo 359214 = 1d.
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Table 1. Values of h(n)

n 12345678 9 10111213141516 171819
h(n) (OEIS A058986) 01 345789101113 14 1516 17 18 19 20 22

1.2 Computational Complexity of Pancake Sorting

Since the pancake sorting problem was introduced in the 1970s, many researchers
have reported algorithms for minimizing the number of prefix reversals and their
lower bounds.

Among all the solutions to a sequence x € S,,, any solution with the minimum
number of prefix reversals is said to be optimal; we denote the minimum number
of prefix reversals as a(x), that is, the length of any optimal solution to x. For
example, because the length of the solution (2, 5, 4, 3) to the sequence (3,5,2,1,4)
is four and there is no solution whose length is smaller than four, it is an optimal
solution and we have «((3,5,2,1,4)) = 4|ﬂ We also write h(n) as the longest
length of optimal solutions to sequences of n integers. That is, we define

h(n) := max{a(x) | x € S, }

for every n > 1.

As shown in Table [1] the values of h(n) have been obtained up to n = 19
by numerical calculations or observations (e.g., [2,19,/10,/19,[30]), and they are
registered in the On-Line Encyclopedia of Integer Sequences (OEIS) as OEIS
A058986ﬂ Finding the values of h(n) for n > 20 is an open problem.

As general upper and lower bounds on h(n), Gates and Papadimitriou [12]
showed that 1n < h(n) < 525 in 1979. Since then, the bounds on h(n) have
been analyzed, and the best lower and upper bounds currently known are %n <
h(n) [19] and h(n) < 18n [8], respectively.

In contrast, the complexity of finding its optimal solution given an arbitrary
sequence x € S, (sorting by prefix reversals, or MIN-SBPR) had been unsolved
for many years, until in 2012 Bulteau, Fertin, and Rusu [3,/4] proved that this

problem, MIN-SBPR, is NP-hard.

1.3 Contribution

As explained in Sect. MIN-SBPR is an NP-hard problem, and hence, there
are possible situations where it is valuable to be the only one who knows a
solution to a particular sequence of a pancake sorting problem. Therefore, we
will attempt to apply the concept of the zero-knowledge proof [13] to the pancake
sorting problem.

3 In this way, we sometimes use the terms “sequence” and “permutation” interchange-
ably.
* https://oeis.org/A058986
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Suppose that there are two users, a prover P and a verifier V| and only
the prover P knows a solution (y1,y2,...,ye) of length ¢ to a sequence = € S,,.
Assume furthermore that P wants to convince V' that P knows the solution with-
out leaking any information about the solution. Our contribution is to propose
a zero-knowledge proof protocol for the pancake sorting problem that achieves
this goal. The proposed protocol is a so-called physical zero-knowledge proof
protocol that can be executed using a physical deck of cards.

The following is an example of a game where the proposed protocol will
be useful. When a sequence (12, 19, 20,4, 13,17,5,10,16,15,11,1,7, 14, 3,6, 18, 8,
2,9) of size n = 20 of the pancake sorting problem is given, multiple players
try to find a solution to it, and a player wins the game if he/she finds the
solution with the shortest length. In this case, if a player discloses the solution
to other players, another player who sees the solution may take it as his/her
own achievement or may use it as a hint for finding a solution to the next game,
which makes the game less fun. Therefore, a player who has found a solution
of certain length first convinces other players that he/she knows the solution
without leaking any information using our zero-knowledge proof protocol, and
then the player discloses the solution after gaining sufficient recognition so that
he/she can correctly claim the achievements or be judged as a winner of the
game.

In addition, we expect that our proposed protocol can be used as a good
educational tool for teaching lay-people the concept of zero-knowledge proof
as well as the sorting problem. Furthermore, as will be explained in Sect. [6]
our proposed technique can be applied to more general problems (beyond the
pancake sorting problem).

1.4 Related Work

One problem similar to the pancake sorting problem is Topswops [25,[26/45].
In Topswops, for a sequence of integers, a prefix reversal of the first k integers,
where k is the leading integer of the sequence, is repeated until the leading integer
becomes 1. Recently, the authors constructed a physical zero-knowledge proof
protocol that can verify that a Topswops game terminates with a predefined
number of prefix reversals while the input sequence of integers is kept confidential
[29]. Although pancake sorting is similar to Topswops, what is being kept secret
in the zero-knowledge proofs is different. In the former, the solution should be
kept secret, whereas in the latter, the input sequence of integers should be kept
secret.

In addition, numerous physical zero-knowledge proof protocols for pencil puz-
zles have been constructed to date using a physical deck of cards. Examples are
Akari [5], Cryptarithmetic [22], Hashiwokakero (Bridges) [63], Heyawake [49], Hi-
tori [49,/52], Juosan [39], Kakuro [5,40], KenKen [5], Makaro [6,/66], Masyu [32],
Nonogram [7,/54], Norinori [11], Numberlink [58/60], Nurikabe [491[52], Nurim-
isaki [50], Ripple Effect [61}62], Shikaku [65], Slitherlink [32[33], Sudoku [14}55]
57,/67,68], Suguru [48,51], Takuzu [5,39], and Usowan [53].
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Card-based cryptography that performs cryptographic tasks using a deck of
physical cards has been growing rapidly in recent years [42l/43]. Hot topics include
secure and efficient protocols in the private model |1}35,46], multi-valued-output
symmetric function evaluation [64,|71], information leakage due to operative er-
rors [44], graph automorphism shuffles [41], secure sorting [16], multi-valued
protocols with a direction encoding [76], the half-open action [38], card-minimal
protocols [1528], and single-shuffle protocols [31,73]. Furthermore, very recently,
Shinagawa and Nuida [74] showed that a certain single-shuffle protocol implies
the existence of a private simultaneous messages protocol; this is the first suc-
cessful and amazing result that directly connects ‘physical’ protocols with ‘dig-
ital’ protocols. It should be noted that several studies [34,561[75] on card-based
cryptography were reported in the previous SecITC conferences.

2 Preliminaries

In this section, we first explain the physical properties of cards used in this paper,
then describe how to encode permutations and integers using cards, and finally
introduce the “pile-scramble shuffle” [21], which will be used in our protocol.
Hereinafter, n denotes the size of a pancake sorting problem (i.e., the length of
an input sequence of integers).

2.1 Physical Cards
In this paper, two types of physical cards are used:

Integer cards Each card has an integer from 1 to n written on its face, such as
.- [n], and the reverse side of every card has the same pattern [?].

Black and red cards Each card has a & or © symbol on its face, and the back
of every card has the same pattern [?].

We use the notation

)

to denote a face-down integer card whose face is |4 | for an integer 1 < i < n.

2.2 Permutation Commitment

As explained in Sect. a sequence of integers and an operation of prefix rever-
sal in the pancake sorting problem are represented by permutations. Therefore,
we introduce a method to represent permutations with integer cards, as often
used in card-based cryptography [20L[67].

To represent a permutation = € .S,,, we simply use n integer cards ... .
and arrange them according to the values of m(1),7(2),...,m(n):

rOx@) =)
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Consider turning over these n cards: we call n face-down cards

?
w(1) w(2) 7(3) (n)

a permutation commitment to m € S,,. For example, a permutation commitment
to sws € S, (corresponding to a prefix reversal of length 3) is

32145 n—1n
In the following, we write a permutation commitment to = € S;, as

~FF-F o [
——

s

2.3 Integer Commitment

As explained in Sect. a sequence x € S, and a prefix reversal sw; are
represented with permutation commitments. Another important element of the
pancake problem is a ‘solution,” and hence, we introduce “integer commitments”
here to express the solution with cards.

With n — 1 black cards and one red card, let us encode integers from 1 to n
as

(] o] - - - o] =1
(R[] e]h] - - [ ] = 2
(R R[Ob] - - [ =3

(][] ][] - - [ ] = .

That is, the position of the red card [7] determines the integer. Following this

encoding rule, we will call a sequence of face-down cards an integer commitment.

Such an encoding rule is often used in card-based cryptography [37},59,/77].
According to convention, we write an integer commitment to i, 1 < i < n, as

the symbol E,,(7):
En(i) : - [7],

where only the i-th card is[¥] and the remaining n — 1 cards are [#] as mentioned
above.
2.4 Pile-scramble Shuffle and Composition of Permutations

A pile-scramble shuffle |21] is a shuffling operation by which several piles of cards
of the same size are shuffled.
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As an example, suppose that we have three permutation commitments to a
sequence x € S, the identity id € S, and a prefix reversal sw; € S,,:

o [2]2]7] - 2]
id : [2]7]2] - 7]
sw; « [2][7]2] - [2].

Considering each (vertical) column consisting of three cards as a single pile, we
apply a pile-scramble shuffle to the n piles; then, the transition is as follows:

HEHEESE roz:[2][?][?]--- 2]
zlEl -7l = roid:[7I[7E]- [T
?z]z] - 7] rosw, :[?][2][2]--- [2],

where r € S,, is a uniformly distributed random permutation generated by the
pile-scramble shuffle.

We then turn over the bottom row, namely the permutation commitment to
r o sw;, and sort the vertical columns without collapsing them based on the n
integers appearing in the bottom row. With this sort, (r o sw;)~! acts upon the
top two rows, and the cards are rearranged as follows (note that sw; = sw;1
holds):

sw;ox: [?]?]7]---[7]
swi :[2]2][7] - 2]

Thus, the above series of operations allows us to compose permutations of
the prefix reversal sw; and of the sequence x, while the permutation commitment
to sw; remains intact. The proposed protocol in this paper uses this technique,
which originally comes from the “permutation division protocol” developed by
Hashimoto et al. [17]18].

3 Proposed Protocol

In this section, we propose a physical zero-knowledge proof protocol for the
pancake sorting problem using permutation and integer commitments.

Let « € S,, be an input sequence and let y = (y1,y2,...,ye) be a solution to
x with length ¢. That is, sw,, osw,, , o---osw,, oz = id holds. Assume that
the sequence = and the length of the solution ¢ are public information and that
only the prover P knows the solution y (i.e., the verifier V' does not know ).

3.1 Concept

As seen in Sect. from permutation commitments to x and sw;, it is easy to
construct a composition of permutations sw; o . A permutation commitment
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to the input sequence x can be created publicly. Thus, if the prover P prepares
permutation commitments to swy, ,swy,,...,sw,, corresponding to the solution
y = (y1,¥2,--.,ye), then by composing them, we have

SWy, OSWy, , O+ OSWy, O :

By turning over this permutation commitment and checking that it is the identity
id, we can guarantee that the prover P knows y. Based on these ideas, we propose
our protocol as described below.

Note that if the prover P directly creates and places permutation commit-
ments to swy, ,...,swy, by himself/herself, then we cannot guarantee that they
surely correspond to some prefix reversals; therefore, we need a more elaborate
way to arrange permutation commitments to swy,,...,swy,.

3.2 Protocol Description

First of all, as an input to our protocol, a prover P, who knows a solution
y = (y1,Y2,---,Ye), creates integer commitments F,, (y1), Fn(y2), - - -, En(ye) cor-
responding to (y1,ya,...,yr) in secret and places them on the table as follows:

En(y)« [2]7) - [7]
En(ya) : [2]7] -+ [7]

. (1)
En(ye) : . .

In addition, n + 2 sets of integer cards --+|n| as additional cards are
prepared.

Our protocol is executed with the above cards as input. Because our protocol
is non-interactive (cf. [36]), it may be executed individually by either the prover
P or by the verifier V' (or even by any third party).

Protocol 1 (Proposed protocol)

1. Using additional n + 2 sets of integer cards, arrange m + 2 permutation

commitments to swy,swa,...,swy, x, and id, as follows:
N~~~
SW1  SWo SWop,

w:[2]2]7] - 2]
id : [2][2][7] - [2].

2. Take the permutation commitments to swq,sws,...,sw,, and place them
along with the integer commitments F,,(y1), Fn(y2), - , En(ye) of Eq.
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as follows:

]
]

(
{ :
<

]

SW1 SWo SWp,
En(yn) -
En(y2) -

Note that in the first row, the permutation commitment to sw,, for each i,
1 < i < ¢, appears in the column where the card [9] appears in the (i+1)-th
ro

3. Apply a pile-scramble shuﬂifﬂc

Because the pile-scramble shuffle does not change within each vertical col-
umn, the above statement “in the first row, the permutation commitment
to swy, appears in the column where the card [D] appears in the (i 4+ 1)-th
row” remains valid. Therefore, we turn over the integer commitment in the
second row, and identify the permutation commitment above []:

SWyq

%)
2

<

o

{

[~
g

4. Use the permutation commitment to swy, just identified and the permutation

commitments to x and id to construct a composition of permutations sw,, oz
(still holding a permutation commitment to sw,, ), as described in Sect.

x: ﬂﬂ -[7] HEENE swy, oz :[?][?]--- [7]

. N 20zl - - 2] N SWyli

SWy1 ﬂﬂ -[7] 7] 2]
® Here, E,(y1) is the second row, Ey,(y2) is the third row, and so on.

5 Instead of a pile-scramble shuffle, one may use a “pile-shifting shuffle” [47,/72].
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5. Return obtained in the previous step to its original position in Step (3)
—~—

SWy1
and remove the second row:

-

SWyq

6. Repeat Steps (3) through (5) ¢ — 1 times, but do not execute the process
corresponding to Step (5) in the last iteration. That is, we identify the per-
mutation commitments from sw,, to sw,, and compose them sequentially to
the composition of permutations sw,, ox. Finally, we obtain the composition
of permutations as follows:

swy, 0 swy,_, 0 -oswy, o [?]2]7].[2].

7. Turn over the permutation commitment to sw,,osw,, ,o---osw,, ox obtained
in the previous step and return “accept” if it is id; otherwise return “reject.”

4 Security and Performance

In this section, we discuss the security and performance of Protocol |1 described
in Sect. Bl

4.1 Security

First, let us check that, for a given sequence x € S,, and a length ¢, our protocol
performs a zero-knowledge proof for a solution y (of length £); in other words,
we need to show that the protocol satisfies the completeness, soundness, and
zero-knowledge properties.

Completeness Suppose that the prover P correctly places integer commitments
according to the solution y. In this case, as can be seen from the construction of
our protocol, it is not rejected at any step and is also accepted at the final step.
Soundness Assume that the prover P places illegal commitments as input.
There are two cases to be considered; we will show that our protocol eventually
rejects the invalid solution in both cases.

(i) If there is an illegal integer commitment (placed by P) which does not consist
of one red card and n — 1 black cards, then it is detected and rejected when the
integer commitment is turned over in Step (3) of our protocol.

(ii) If the input integer commitments correspond to an incorrect solution y' =
(Y1, Y5, -.-,Y,), then the permutation commitment to z is rearranged according
to ', as can be seen from the construction of our protocol. However, the rear-
ranged permutation is not id in Step (7) and our protocol rejects it.



Card-Based Zero-Knowledge Proof Protocol for Pancake Sorting 11

Zero-knowledge Suppose that the integer commitments corresponding to the
solution y = (y1,¥a2,...,y¢) are correctly placed. No information about y; is
leaked during the execution of our protocol, because a pile-scramble shuffle is
applied immediately before the cards are turned over to be face-up (except in the
final step). The identity id that is opened in the final step is public information.
Therefore, our protocol is information-theoretically secure.

4.2 Performance

This subsection discusses the number of cards and the number of shuffles required
in our protocol.

First, for the number of cards, as described at the beginning of Sect. [3.2] we
use ¢ [V cards and (n — 1)¢ [ cards for integer commitments. In addition, we
use n + 2 sets of cards from |1| to || as additional cards. Thus, nf black and
red cards and n(n + 2) integer cards are used. Therefore, our protocol requires
n? + (2 + £)n cards in total.

The only shuffling operation used in the proposed protocol is the pile-scramble
shuffle. The pile-scramble shuffle is performed once in Step (3) and once in Step
(4), and each of these steps is executed ¢ times. Therefore, in total, the number
of shuffles required in our protocol is 2.

5 Variants

This section presents variants of our protocol.

5.1 Non-interactive Protocol with Fewer Additional Cards

In our protocol, the first integer commitment is

En(yl) : e 7

where the yi-th card is [¥] and the other n — 1 cards are [#]. Let us consider a

variant that uses [1]instead of [¥] and [2],[3],--- ,[7] instead of [|. In this case,
after is identified in Step (3) of our protocol, the opened [1}[2l[3],--- ,[n]
can be used as additional cards in Step (4), and hence, we can reduce the number
of additional cards by n.

5.2 Interactive Protocol with Fewer Additional Cards

Our protocol uses ¢ [O] cards and (n — 1)¢ [&] cards for integer commitments
En(y1), En(y2), -+ En(ye). Instead of preparing all Ey(y1), En(y2), -, En(ye)
in advance, if the prover P places E,(y;) every time Steps (3) and (6) are exe-
cuted, the protocol could be executed with one @ card and n — 1 @ cards.
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Note that the order of permutation commitments - [7] is ran-
= =~
SWyq SWyg SWyn,
domized by the pile-scramble shuffle in Step (3). Hence, the prover can not
determine the correct position of the permutation commitment corresponding
to the next prefix reversal, and hence, it is impossible for the prover to place a
new integer commitment correctly. To address this issue, just after returning the
permutation commitment to its original position in Step (5), the prover applies
a pile-scramble shuffle, turns over the permutation commitments to be face-up,
places a new integer commitment corresponding to the next prefix reversal, and
turns over the permutation commitments again to be face-down. After that, the
piles of cards are shuffled with a pile-scramble shuffle in Step (3), as invoked by
Step (6). Hence, although this variant can reduce the number of required cards,
the number of shuffles increases by ¢ — 1.
Similar to Sect. the number of additional cards can be reduced more by

using ... [n]instead of one [9] card and n — 1 [#] cards.

5.3 Protocol with Fewer Shuffles

Because sw; satisfies sw; = SW;1 (namely, sw; o sw; = sw;1 osw; = id), two
consecutive applications of sw; to a sequence x € S, will not change it. If a
player tries to find a solution with a shorter length for the pancake sorting
problem, the same prefix reversal is never performed twice in a row. Instead of
executing Step (3) of our protocol (and the step that is equivalent to Step (3) in
Step (6)) for E,(y;) one at a time, executing two steps for E,,(y;) and Fy,(yit+1)
together can reduce the number of shuffles by |£/2]. This variant applies to both
the interactive and non-interactive protocols above.

5.4 Protocol with Fewer Cards

The permutation commitment sw; = id does not change a sequence =z € S,.
Similar to the discussion in Sect. if a player tries to find a solution with a
shorter length for the pancake sorting problem, sw; = id is never performed in
our protocol as well as the above-mentioned variants. Hence, we can omit the
leftmost column in Step (2) of our protocol so that Steps (2), (3), and (5) are
performed with n —1 piles (columns) of cards. In this variant, we can reduce the
number of cards by n + £.

6 Conclusion

In this paper, we proposed a physical zero-knowledge proof protocol for the
pancake sorting problem. The main idea is to combine permutation and integer
commitments so that a prover can efficiently place a solution and efficiently
perform prefix reversals secretly.

Because the pancake sorting problem has many variations (e.g., the intro-
duction of settings where pancakes have two distinct sides [12}/69,/70]), building
new or generic protocols for them is one of our future works.
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Beyond the pancake sorting problem and its variants, our zero-knowledge
proof protocol can be modified for the following general problenﬂ Assuming
that a sequence z of length n (which is not necessarily a permutation) and an
integer ¢ along with m distinct permutations o1, 03,...,0, € S, and a sequence
z of length n are public, the prover wants to convince the verifier that the prover
knows (y1,¥s2,--.,ye) such that

Oy, © 0y, o"'oayl(x) =2z,

where 7(z) for a permutation 7 represents the permuted sequence according to
7. This general problem includes solving the Rubik’s Cube, for instance.

The graph obtained by connecting two vertices that can be transitioned by a
prefix reversal with edges, where each sequence is regarded as a vertex, is called
a pancake network [19], and is considered to be the origin of the reconfiguration
problem (e.g., [23}|24]), which is currently popular in the study of algorithm
theory. Our protocol can be regarded as a technique to show that a vertex can
be transitioned from one vertex to another in a pancake network without leaking
any information, and we believe that it is an attractive topic to investigate
whether card-based cryptography and zero-knowledge proofs can be applied to
various other reconfiguration problems.

Acknowledgements

We thank the anonymous referees, whose comments have helped us improve the
presentation of the paper. This work was supported by Grant-in-Aid for Scientific
Research (JP18H05289, JP21K11881). We thank Koji Nuida for advising us to
generalize the problem, as described in the third paragraph of Sect. [6]

References

1. Yoshiki Abe, Takeshi Nakai, Yoshihisa Kuroki, Shinnosuke Suzuki, Yuta Koga,
Yohei Watanabe, Mitsugu Iwamoto, and Kazuo Ohta. Efficient card-based ma-
jority voting protocols. New Gener. Comput., 40:173-198, 2022. URL: https:
//doi.org/10.1007/s00354-022-00161-7.

2. Shogo Asai, Yuusuke Kounoike, Yuji Shinano, and Keiichi Kaneko. Computing
the diameter of 17-pancake graph using a pc cluster. In Wolfgang E. Nagel, Wolf-
gang V. Walter, and Wolfgang Lehner, editors, Furo-Par 2006 Parallel Processing,
pages 1114-1124, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

3. Laurent Bulteau, Guillaume Fertin, and Irena Rusu. Pancake flipping is hard. In
Branislav Rovan, Vladimiro Sassone, and Peter Widmayer, editors, Mathematical
Foundations of Computer Science 2012, pages 247-258, Berlin, Heidelberg, 2012.
Springer Berlin Heidelberg.

4. Laurent Bulteau, Guillaume Fertin, and Irena Rusu. Pancake Aflip-
ping is hard. Journal of Computer and System Sciences, 81(8):1556—
1574, 2015. URL: https://www.sciencedirect.com/science/article/pii/
50022000015000124, doi:https://doi.org/10.1016/j.jcss.2015.02.003.

" This generalization was pointed out by Koji Nuida.


https://doi.org/10.1007/s00354-022-00161-7
https://doi.org/10.1007/s00354-022-00161-7
https://www.sciencedirect.com/science/article/pii/S0022000015000124
https://www.sciencedirect.com/science/article/pii/S0022000015000124
https://doi.org/https://doi.org/10.1016/j.jcss.2015.02.003

14

10.

11.

12.

13.

14.

15.

16.

Y. Komano and T. Mizuki

Xavier Bultel, Jannik Dreier, Jean-Guillaume Dumas, and Pascal Lafourcade.
Physical zero-knowledge proofs for Akari, Takuzu, Kakuro and KenKen. In
Erik D. Demaine and Fabrizio Grandoni, editors, Fun with Algorithms, volume 49
of LIPIcs, pages 8:1-8:20, Dagstuhl, Germany, 2016. Schloss Dagstuhl. URL:
https://doi.org/10.4230/LIPIcs.FUN.2016.8.

Xavier Bultel, Jannik Dreier, Jean-Guillaume Dumas, Pascal Lafourcade, Daiki
Miyahara, Takaaki Mizuki, Atsuki Nagao, Tatsuya Sasaki, Kazumasa Shinagawa,
and Hideaki Sone. Physical zero-knowledge proof for Makaro. In Stabilization,
Safety, and Security of Distributed Systems, volume 11201 of LNCS, pages 111—
125, 2018. URL: https://doi.org/10.1007/978-3-030-03232-6_8|

Yu-Feng Chien and Wing-Kai Hon. Cryptographic and physical zero-knowledge
proof: From Sudoku to Nonogram. In Paolo Boldi and Luisa Gargano, editors, Fun
with Algorithms, volume 6099 of LNCS, pages 102-112, Berlin, Heidelberg, 2010.
Springer. URL: https://doi.org/10.1007/978-3-642-13122-6_12.

B. Chitturi, W. Fahle, Z. Meng, L. Morales, C.O. Shields, I.H. Sudborough,
and W. Voit. An (18/11)n upper bound for sorting by prefix reversals. The-
oretical Computer Science, 410(36):3372-3390, 2009. Graphs, Games and Com-
putation: Dedicated to Professor Burkhard Monien on the Occasion of his
65th Birthday. URL: https://www.sciencedirect.com/science/article/pii/
S50304397508003575, doi:https://doi.org/10.1016/j.tcs.2008.04.045.

Josef Cibulka. On average and highest number of flips in pancake
sorting. Theoretical Computer Science, 412(8):822-834, 2011. URL:
https://www.sciencedirect.com/science/article/pii/S0304397510006663,
doi:https://doi.org/10.1016/3.tcs.2010.11.028,

David S. Cohen and Manuel Blum. On the problem of sorting burnt pan-
cakes. Discrete Applied Mathematics, 61(2):105-120, 1995. URL: https://
www.sciencedirect.com/science/article/pii/0166218X94000093, doi:https:
//doi.org/10.1016/0166-218X(94)00009-3.

Jean-Guillaume Dumas, Pascal Lafourcade, Daiki Miyahara, Takaaki Mizuki, Tat-
suya Sasaki, and Hideaki Sone. Interactive physical zero-knowledge proof for Nori-
nori. In Ding-Zhu Du, Zhenhua Duan, and Cong Tian, editors, Computing and
Combinatorics, volume 11653 of LNCS, pages 166-177, Cham, 2019. Springer.
URL: https://doi.org/10.1007/978-3-030-26176-4_14,

William H. Gates and Christos H. Papadimitriou. Bounds for sorting by prefix
reversal. Discret. Math., 27(1):47-57, 1979. |doi:10.1016/0012-365X(79)90068-2.
S Goldwasser, S Micali, and C Rackoff. The knowledge complexity of interactive
proof-systems. In Annual ACM Symposium on Theory of Computing, STOC’85,
pages 291-304, New York, 1985. ACM. URL: https://doi.org/10.1145/22145.
22178.

Ronen Gradwohl, Moni Naor, Benny Pinkas, and Guy N. Rothblum. Cryptographic
and physical zero-knowledge proof systems for solutions of Sudoku puzzles. Theory
of Computing Systems, 44(2):245-268, 2009. URL: https://doi.org/10.1007/
s00224-008-9119-9.

Rikuo Haga, Yuichi Hayashi, Daiki Miyahara, and Takaaki Mizuki. Card-minimal
protocols for three-input functions with standard playing cards. In Lejla Batina
and Joan Daemen, editors, Progress in Cryptology—AFRICACRYPT 2022, volume
13503 of LNCS, pages 448-468, Cham, 2022. Springer.

Rikuo Haga, Kodai Toyoda, Yuto Shinoda, Daiki Miyahara, Kazumasa Shinagawa,
Yuichi Hayashi, and Takaaki Mizuki. Card-based secure sorting protocol. In Chen-
Mou Cheng and Mitsuaki Akiyama, editors, Advances in Information and Com-


https://doi.org/10.4230/LIPIcs.FUN.2016.8
https://doi.org/10.1007/978-3-030-03232-6_8
https://doi.org/10.1007/978-3-642-13122-6_12
https://www.sciencedirect.com/science/article/pii/S0304397508003575
https://www.sciencedirect.com/science/article/pii/S0304397508003575
https://doi.org/https://doi.org/10.1016/j.tcs.2008.04.045
https://www.sciencedirect.com/science/article/pii/S0304397510006663
https://doi.org/https://doi.org/10.1016/j.tcs.2010.11.028
https://www.sciencedirect.com/science/article/pii/0166218X94000093
https://www.sciencedirect.com/science/article/pii/0166218X94000093
https://doi.org/https://doi.org/10.1016/0166-218X(94)00009-3
https://doi.org/https://doi.org/10.1016/0166-218X(94)00009-3
https://doi.org/10.1007/978-3-030-26176-4_14
https://doi.org/10.1016/0012-365X(79)90068-2
https://doi.org/10.1145/22145.22178
https://doi.org/10.1145/22145.22178
https://doi.org/10.1007/s00224-008-9119-9
https://doi.org/10.1007/s00224-008-9119-9

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Card-Based Zero-Knowledge Proof Protocol for Pancake Sorting 15

puter Security, volume 13504 of LNCS, pages 224—240, Cham, 2022. Springer. URL:
https://doi.org/10.1007/978-3-031-15255-9_12.

Yuji Hashimoto, Kazumasa Shinagawa, Koji Nuida, Masaki Inamura, and Goichiro
Hanaoka. Secure grouping protocol using a deck of cards. In Junji Shikata, editor,
Information Theoretic Security, volume 10681 of LNCS, pages 135-152, Cham,
2017. Springer. URL: https://doi.org/10.1007/978-3-319-72089-0_8.

Yuji Hashimoto, Kazumasa Shinagawa, Koji Nuida, Masaki Inamura, and Goichiro
Hanaoka. Secure grouping protocol using a deck of cards. IEICE Trans. Fundam.
Electron. Commun. Comput. Sci., E101.A(9):1512-1524, 2018. URL: https://
doi.org/10.1587/transfun.E101.A.1512.

Mohammad H. Heydari and I.Hal Sudborough. On the diameter of
the pancake network. Journal of Algorithms, 25(1):67-94, 1997.  URL:
https://www.sciencedirect.com/science/article/pii/S0196677497908749,
doi:https://doi.org/10.1006/jagm.1997.0874.

T. Ibaraki and Y. Manabe. A more efficient card-based protocol for generating
a random permutation without fixed points. In Mathematics and Computers in
Sciences and in Industry (MCSI), pages 252-257, 2016. URL: https://doi.org/
10.1109/MCSI.2016.054.

Rie Ishikawa, Eikoh Chida, and Takaaki Mizuki. Efficient card-based protocols
for generating a hidden random permutation without fixed points. In Cristian S.
Calude and Michael J. Dinneen, editors, Unconventional Computation and Natural
Computation, volume 9252 of LNCS, pages 215-226, Cham, 2015. Springer. URL:
https://doi.org/10.1007/978-3-319-21819-9_16.

Raimu Isuzugawa, Daiki Miyahara, and Takaaki Mizuki. Zero-knowledge proof
protocol for Cryptarithmetic using dihedral cards. In Irina Kostitsyna and Pekka
Orponen, editors, Unconventional Computation and Natural Computation, volume
12984 of LNCS, pages 51-67, Cham, 2021. Springer. URL: https://doi.org/10.
1007/978-3-030-87993-8_4.

Takehiro Ito, Erik D. Demaine, Nicholas J.A. Harvey, Christos H. Papadim-
itriou, Martha Sideri, Ryuhei Uehara, and Yushi Uno. On the complex-
ity of reconfiguration problems. Theoretical Computer Science, 412(12):1054—
1065, 2011. URL: https://www.sciencedirect.com/science/article/pii/
S0304397510006961, doi:https://doi.org/10.1016/j.tcs.2010.12.005.
Takehiro Ito, Naonori Kakimura, Naoyuki Kamiyama, Yusuke Kobayashi, and
Yoshio Okamoto. Shortest reconfiguration of perfect matchings via alternating
cycles. SIAM Journal on Discrete Mathematics, 36(2):1102-1123, 2022. arXiv:
https://doi.org/10.1137/20M1364370, doi:10.1137/20M1364370.

Kento Kimura, Atsuki Takahashi, Tetsuya Araki, and Kazuyuki Amano. Maximum
number of steps of topswops on 18 and 19 cards. arXiv:2103.08346, 2021. URL:
https://arxiv.org/abs/2103.08346, doi:10.48550/ARXIV.2103.08346.

Murray S. Klamkin. Problems in Applied Mathematics: Selections from SIAM Re-
view. 1990. URL: https://epubs.siam.org/doi/abs/10.1137/1.9781611971729.
ch4, arXiv:https://epubs.siam.org/doi/pdf/10.1137/1.9781611971729.ch4,
d0i:10.1137/1.9781611971729.ch4.

D. J. Kleitman, Edvard Kramer, J. H. Conway, Stroughton Bell, and Harry
Dweighter. Elementary problems: E2564-e2569. The American Mathematical
Monthly, 82(10):1009-1010, 1975. URL: http://www.jstor.org/stable/2318260.
Alexander Koch. The landscape of optimal card-based protocols. Mathe-
matical Cryptology, 1(2):115-131, 2022. URL: https://journals.flvc.org/
mathcryptology/article/view/130529.


https://doi.org/10.1007/978-3-031-15255-9_12
https://doi.org/10.1007/978-3-319-72089-0_8
https://doi.org/10.1587/transfun.E101.A.1512
https://doi.org/10.1587/transfun.E101.A.1512
https://www.sciencedirect.com/science/article/pii/S0196677497908749
https://doi.org/https://doi.org/10.1006/jagm.1997.0874
https://doi.org/10.1109/MCSI.2016.054
https://doi.org/10.1109/MCSI.2016.054
https://doi.org/10.1007/978-3-319-21819-9_16
https://doi.org/10.1007/978-3-030-87993-8_4
https://doi.org/10.1007/978-3-030-87993-8_4
https://www.sciencedirect.com/science/article/pii/S0304397510006961
https://www.sciencedirect.com/science/article/pii/S0304397510006961
https://doi.org/https://doi.org/10.1016/j.tcs.2010.12.005
http://arxiv.org/abs/https://doi.org/10.1137/20M1364370
http://arxiv.org/abs/https://doi.org/10.1137/20M1364370
https://doi.org/10.1137/20M1364370
https://arxiv.org/abs/2103.08346
https://doi.org/10.48550/ARXIV.2103.08346
https://epubs.siam.org/doi/abs/10.1137/1.9781611971729.ch4
https://epubs.siam.org/doi/abs/10.1137/1.9781611971729.ch4
http://arxiv.org/abs/https://epubs.siam.org/doi/pdf/10.1137/1.9781611971729.ch4
https://doi.org/10.1137/1.9781611971729.ch4
http://www.jstor.org/stable/2318260
https://journals.flvc.org/mathcryptology/article/view/130529
https://journals.flvc.org/mathcryptology/article/view/130529

16

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Y. Komano and T. Mizuki

Yuichi Komano and Takaaki Mizuki. Physical zero-knowledge proof protocol for
Topswops. In Chunhua Su, Dimitris Gritzalis, and Vincenzo Piuri, editors, Infor-
mation Security Practice and Experience - 17th International Conference, ISPEC
2022, volume 13620 of Lecture Notes in Computer Science, pages 537-553. Springer,
2022. URL: https://doi.org/10.1007/978-3-031-21280-2_30.

Y. Kounoike, K. Kaneko, and Y. Shinano. Computing the diameters of 14-
and 15-pancake graphs. In 8th International Symposium on Parallel Architec-
tures, Algorithms and Networks (ISPAN’05), pages 6 pp.—, 2005. |doi:10.1109/
ISPAN.2005.31.

Tomoki Kuzuma, Kodai Toyoda, Daiki Miyahara, and Takaaki Mizuki. Card-based
single-shuffle protocols for secure multiple-input AND and XOR computations.
In ASIA Public-Key Cryptography, pages 51-58, NY, 2022. ACM. URL: https:
//doi.org/10.1145/3494105. 3526236

Pascal Lafourcade, Daiki Miyahara, Takaaki Mizuki, Léo Robert, Tatsuya Sasaki,
and Hideaki Sone. How to construct physical zero-knowledge proofs for puzzles
with a “single loop” condition. Theor. Comput. Sci., 888:41-55, 2021. URL:
https://doi.org/10.1016/j.tcs.2021.07.019.

Pascal Lafourcade, Daiki Miyahara, Takaaki Mizuki, Tatsuya Sasaki, and Hideaki
Sone. A physical ZKP for Slitherlink: How to perform physical topology-preserving
computation. In Swee-Huay Heng and Javier Lopez, editors, Information Security
Practice and Ezxperience, volume 11879 of LNCS, pages 135-151, Cham, 2019.
Springer. URL: https://doi.org/10.1007/978-3-030-34339-2_8.

Yoshifumi Manabe and Hibiki Ono. Secure card-based cryptographic protocols
using private operations against malicious players. In Diana Maimut, Andrei-
George Oprina, and Damien Sauveron, editors, Innovative Security Solutions for
Information Technology and Communications, volume 12596 of LNCS, pages 55—
70, Cham, 2021. Springer. URL: https://doi.org/10.1007/978-3-030-69255-1_
Sl

Yoshifumi Manabe and Hibiki Ono. Card-based cryptographic protocols with mali-
cious players using private operations. New Gener. Comput., 40:67-93, 2022. URL:
https://doi.org/10.1007/s00354-021-00148-w.

Daiki Miyahara, Hiromichi Haneda, and Takaaki Mizuki. Card-based zero-
knowledge proof protocols for graph problems and their computational model. In
Qiong Huang and Yu Yu, editors, Provable and Practical Security, volume 13059 of
Lecture Notes in Computer Science, pages 136-152, Cham, 2021. Springer. URL:
https://doi.org/10.1007/978-3-030-90402-9_8.

Daiki Miyahara, Yu ichi Hayashi, Takaaki Mizuki, and Hideaki Sone. Practical
card-based implementations of Yao’s millionaire protocol. Theor. Comput. Sci.,
803:207-221, 2020. URL: https://doi.org/10.1016/j.tcs.2019.11.005.

Daiki Miyahara and Takaaki Mizuki. Secure computations through checking suits
of playing cards. In Frontiers in Algorithmics, Lecture Notes in Computer Science,
Cham, 2022. Springer. to appear.

Daiki Miyahara, Léo Robert, Pascal Lafourcade, So Takeshige, Takaaki Mizuki,
Kazumasa Shinagawa, Atsuki Nagao, and Hideaki Sone. Card-based ZKP protocols
for Takuzu and Juosan. In Martin Farach-Colton, Giuseppe Prencipe, and Ryuhei
Uehara, editors, Fun with Algorithms, volume 157 of LIPIcs, pages 20:1-20:21,
Dagstuhl, Germany, 2020. Schloss Dagstuhl. URL: https://doi.org/10.4230/
LIPIcs.FUN.2021.20.

Daiki Miyahara, Tatsuya Sasaki, Takaaki Mizuki, and Hideaki Sone. Card-based
physical zero-knowledge proof for Kakuro. IEICE Trans. Fundam. Electron. Com-


https://doi.org/10.1007/978-3-031-21280-2_30
https://doi.org/10.1109/ISPAN.2005.31
https://doi.org/10.1109/ISPAN.2005.31
https://doi.org/10.1145/3494105.3526236
https://doi.org/10.1145/3494105.3526236
https://doi.org/10.1016/j.tcs.2021.07.019
https://doi.org/10.1007/978-3-030-34339-2_8
https://doi.org/10.1007/978-3-030-69255-1_5
https://doi.org/10.1007/978-3-030-69255-1_5
https://doi.org/10.1007/s00354-021-00148-w
https://doi.org/10.1007/978-3-030-90402-9_8
https://doi.org/10.1016/j.tcs.2019.11.005
https://doi.org/10.4230/LIPIcs.FUN.2021.20
https://doi.org/10.4230/LIPIcs.FUN.2021.20

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

Card-Based Zero-Knowledge Proof Protocol for Pancake Sorting 17

mun. Comput. Sci., 102(9):1072-1078, 2019. URL: https://doi.org/10.1587/
transfun.E102.A.1072.

Kengo Miyamoto and Kazumasa Shinagawa. Graph automorphism shuffles from
pile-scramble shuffles. New Gener. Comput., 40:199-223, 2022. URL: https://
doi.org/10.1007/s00354-022-00164-4.

Takaaki Mizuki. Preface: Special issue on card-based cryptography. New Gener.
Comput., 39:1-2, 2021. URL: https://doi.org/10.1007/s00354-021-00127-1,
Takaaki Mizuki. Preface: Special issue on card-based cryptography 2. New Gener.
Comput., 40:47-48, 2022. URL: https://doi.org/10.1007/s00354-022-00170-6|
Takaaki Mizuki and Yuichi Komano. Information leakage due to operative errors
in card-based protocols. Inf. Comput., 285:104910, 2022. URL: https://doi.org/
10.1016/j.ic.2022.104910.

Linda Morales and Hal Sudborough. A quadratic lower bound for
topswops. Theoretical Computer Science, 411(44):3965-3970, 2010. URL:
https://www.sciencedirect.com/science/article/pii/S0304397510004287,
doi:https://doi.org/10.1016/j.tcs.2010.08.011,

Takeshi Nakai, Yuto Misawa, Yuuki Tokushige, Mitsugu Iwamoto, and Kazuo
Ohta. Secure computation for threshold functions with physical cards: Power
of private permutations. New Gener. Comput., 40:95-113, 2022. URL: https:
//doi.org/10.1007/s00354-022-00153-7.

Akihiro Nishimura, Yu-ichi Hayashi, Takaaki Mizuki, and Hideaki Sone. Pile-
shifting scramble for card-based protocols. IEICE Trans. Fundam. Electron. Com-
mun. Comput. Sci., 101(9):1494-1502, 2018. URL: https://doi.org/10.1587/
transfun.E101.A.1494.

Léo Robert, Daiki Miyahara, Pascal Lafourcade, Luc Libralesso, and
Takaaki Mizuki. Physical zero-knowledge proof and NP-completeness
proof of Suguru puzzle. Information and Computation, page 104858,
2021. in press. URL: https://www.sciencedirect.com/science/article/pii/
50890540121001905, doi:https://doi.org/10.1016/j.1ic.2021.104858.

Léo Robert, Daiki Miyahara, Pascal Lafourcade, and Takaaki Mizuki. Card-based
ZKP for connectivity: Applications to Nurikabe, Hitori, and Heyawake. New
Gener. Comput., pages 1-23, 2022. in press. URL: https://doi.org/10.1007/
s00354-022-00155-5.

Léo Robert, Pascal Lafourcade, Daiki Miyahara, and Takaaki Mizuki. Card-based
ZKP protocol for Nurimisaki. In Stéphane Devismes, Franck Petit, Karine Altisen,
Giuseppe Antonio Di Luna, and Antonio Fernandez Anta, editors, Stabilization,
Safety, and Security of Distributed Systems, volume 13751 of LNCS, pages 285—298,
Cham, 2022. Springer.

Léo Robert, Daiki Miyahara, Pascal Lafourcade, and Takaaki Mizuki. Physical
zero-knowledge proof for Suguru puzzle. In Stéphane Devismes and Neeraj Mittal,
editors, Stabilization, Safety, and Security of Distributed Systems, volume 12514 of
LNCS, pages 235-247, Cham, 2020. Springer. URL: https://doi.org/10.1007/
978-3-030-64348-5_19.

Léo Robert, Daiki Miyahara, Pascal Lafourcade, and Takaaki Mizuki. Interactive
physical ZKP for connectivity: Applications to Nurikabe and Hitori. In Liesbeth
De Mol, Andreas Weiermann, Florin Manea, and David Fernandez-Duque, editors,
Connecting with Computability, volume 12813 of LNCS, pages 373-384, Cham,
2021. Springer. URL: https://doi.org/10.1007/978-3-030-80049-9_37.

Léo Robert, Daiki Miyahara, Pascal Lafourcade, and Takaaki Mizuki. Hide a liar:
Card-based ZKP protocol for Usowan. In Theory and Applications of Models of
Computation, LNCS, Cham, 2022. Springer. to appear.


https://doi.org/10.1587/transfun.E102.A.1072
https://doi.org/10.1587/transfun.E102.A.1072
https://doi.org/10.1007/s00354-022-00164-4
https://doi.org/10.1007/s00354-022-00164-4
https://doi.org/10.1007/s00354-021-00127-1
https://doi.org/10.1007/s00354-022-00170-6
https://doi.org/10.1016/j.ic.2022.104910
https://doi.org/10.1016/j.ic.2022.104910
https://www.sciencedirect.com/science/article/pii/S0304397510004287
https://doi.org/https://doi.org/10.1016/j.tcs.2010.08.011
https://doi.org/10.1007/s00354-022-00153-7
https://doi.org/10.1007/s00354-022-00153-7
https://doi.org/10.1587/transfun.E101.A.1494
https://doi.org/10.1587/transfun.E101.A.1494
https://www.sciencedirect.com/science/article/pii/S0890540121001905
https://www.sciencedirect.com/science/article/pii/S0890540121001905
https://doi.org/https://doi.org/10.1016/j.ic.2021.104858
https://doi.org/10.1007/s00354-022-00155-5
https://doi.org/10.1007/s00354-022-00155-5
https://doi.org/10.1007/978-3-030-64348-5_19
https://doi.org/10.1007/978-3-030-64348-5_19
https://doi.org/10.1007/978-3-030-80049-9_37

18

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

Y. Komano and T. Mizuki

Suthee Ruangwises. An improved physical ZKP for Nonogram. In Ding-Zhu Du,
Donglei Du, Chenchen Wu, and Dachuan Xu, editors, Combinatorial Optimization
and Applications, volume 13135 of LNCS, pages 262272, Cham, 2021. Springer.
URL: https://doi.org/10.1007/978-3-030-92681-6_22.

Suthee Ruangwises. Two standard decks of playing cards are sufficient for a ZKP
for Sudoku. In Chi-Yeh Chen, Wing-Kai Hon, Ling-Ju Hung, and Chia-Wei Lee,
editors, Computing and Combinatorics, volume 13025 of LNCS, pages 631-642,
Cham, 2021. Springer. URL: https://doi.org/10.1007/978-3-030-89543-3_52.
Suthee Ruangwises. Using five cards to encode each integer in Z/6Z. In Peter Y. A.
Ryan and Cristian Toma, editors, Innovative Security Solutions for Information
Technology and Communications - 14th International Conference, SecITC 2021,
volume 13195 of Lecture Notes in Computer Science, pages 165-177, Cham, 2021.
Springer. URL: https://doi.org/10.1007/978-3-031-17510-7_12.

Suthee Ruangwises. Two standard decks of playing cards are sufficient for a ZKP
for sudoku. New Gener. Comput., pages 1-17, 2022. in press. URL: https:
//doi.org/10.1007/s00354-021-00146-y.

Suthee Ruangwises and Toshiya Itoh. Physical zero-knowledge proof for Number-
link. In Martin Farach-Colton, Giuseppe Prencipe, and Ryuhei Uehara, editors,
Fun with Algorithms, volume 157 of LIPIcs, pages 22:1-22:11, Dagstuhl, Germany,
2020. Schloss Dagstuhl. URL: https://doi.org/10.4230/LIPIcs.FUN.2021.22.
Suthee Ruangwises and Toshiya Itoh. Securely computing the n-variable equality
function with 2n cards. In Jianer Chen, Qilong Feng, and Jinhui Xu, editors, The-
ory and Applications of Models of Computation, volume 12337 of LNCS, pages 25—
36, Cham, 2020. Springer. URL: https://doi.org/10.1007/978-3-030-59267-7_
3.

Suthee Ruangwises and Toshiya Itoh. Physical zero-knowledge proof for Number-
link puzzle and k vertex-disjoint paths problem. New Gener. Comput., 39(1):3-17,
2021. URL: https://doi.org/10.1007/s00354-020-00114-y.

Suthee Ruangwises and Toshiya Itoh. Physical zero-knowledge proof for Ripple
Effect. In Seokhee Hong, Subhas Nandy, and Ryuhei Uehara, editors, WALCOM:
Algorithms and Computation, volume 11737 of LNCS, pages 296-307, Cham, 2021.
Springer. URL: https://doi.org/10.1007/978-3-030-68211-8_24.

Suthee Ruangwises and Toshiya Itoh. Physical zero-knowledge proof for Ripple
Effect. Theor. Comput. Sci., 895:115-123, 2021. URL: https://doi.org/10.1016/
j-tcs.2021.09.034.

Suthee Ruangwises and Toshiya Itoh. Physical ZKP for connected spanning sub-
graph: Applications to Bridges Puzzle and other problems. In Unconventional
Computation and Natural Computation, volume 12984 of LNCS, Cham, 2021.
Springer. URL: https://doi.org/10.1007/978-3-030-87993-8_10.

Suthee Ruangwises and Toshiya Itoh. Securely computing the n-variable equality
function with 2n cards. Theor. Comput. Sci., 887:99-110, 2021. URL: https:
//doi.org/10.1016/j.tcs.2021.07.007.

Suthee Ruangwises and Toshiya Itoh. How to physically verify a rectangle in a grid:
A physical ZKP for Shikaku. In Pierre Fraigniaud and Yushi Uno, editors, Fun
with Algorithms, volume 226 of LIPIcs, pages 24:1-24:12, Dagstuhl, 2022. Schloss
Dagstuhl. URL: https://doi.org/10.4230/LIPIcs.FUN.2022.24.

Suthee Ruangwises and Toshiya Itoh. Physical ZKP for Makaro using a standard
deck of cards. In Theory and Applications of Models of Computation, LNCS, Cham,
2022. Springer. to appear.


https://doi.org/10.1007/978-3-030-92681-6_22
https://doi.org/10.1007/978-3-030-89543-3_52
https://doi.org/10.1007/978-3-031-17510-7_12
https://doi.org/10.1007/s00354-021-00146-y
https://doi.org/10.1007/s00354-021-00146-y
https://doi.org/10.4230/LIPIcs.FUN.2021.22
https://doi.org/10.1007/978-3-030-59267-7_3
https://doi.org/10.1007/978-3-030-59267-7_3
https://doi.org/10.1007/s00354-020-00114-y
https://doi.org/10.1007/978-3-030-68211-8_24
https://doi.org/10.1016/j.tcs.2021.09.034
https://doi.org/10.1016/j.tcs.2021.09.034
https://doi.org/10.1007/978-3-030-87993-8_10
https://doi.org/10.1016/j.tcs.2021.07.007
https://doi.org/10.1016/j.tcs.2021.07.007
https://doi.org/10.4230/LIPIcs.FUN.2022.24

67.

68.

69.

70.

71.

72.

73.

4.

75.

76.

7.

Card-Based Zero-Knowledge Proof Protocol for Pancake Sorting 19

Tatsuya Sasaki, Daiki Miyahara, Takaaki Mizuki, and Hideaki Sone. Efficient card-
based zero-knowledge proof for Sudoku. Theor. Comput. Sci., 839:135-142, 2020.
URL: https://doi.org/10.1016/j.tcs.2020.05.036.

Tatsuya Sasaki, Takaaki Mizuki, and Hideaki Sone. Card-based zero-knowledge
proof for Sudoku. In Hiro Ito, Stefano Leonardi, Linda Pagli, and Giuseppe
Prencipe, editors, Fun with Algorithms, volume 100 of LIPIcs, pages 29:1-29:10,
Dagstuhl, Germany, 2018. Schloss Dagstuhl. URL: https://doi.org/10.4230/
LIPIcs.FUN.2018.29.

Joe Sawada and Aaron Williams. Greedy flipping of pancakes and burnt pancakes.
Discret. Appl. Math., 210:61-74, 2016. |doi:10.1016/j.dam.2016.02.005.

Joe Sawada and Aaron Williams. Successor rules for flipping pancakes and burnt
pancakes. Theor. Comput. Sci., 609:60-75, 2016. |doi:10.1016/j.tcs.2015.09.
007.

Hayato Shikata, Kodai Toyoda, Daiki Miyahara, and Takaaki Mizuki. Card-
minimal protocols for symmetric boolean functions of more than seven inputs. In
Helmut Seidl, Zhiming Liu, and Corina S. Pasareanu, editors, Theoretical Aspects
of Computing — ICTAC 2022, pages 388-406, Cham, 2022. Springer International
Publishing.

Kazumasa Shinagawa, Takaaki Mizuki, Jacob Schuldt, Koji Nuida, Naoki
Kanayama, Takashi Nishide, Goichiro Hanaoka, and Eiji Okamoto. Card-based
protocols using regular polygon cards. IEICE Trans. Fundam. FElectron. Com-
mun. Comput. Sci., E100.A(9):1900-1909, 2017. URL: https://doi.org/10.
1587 /transfun.E100.A.1900.

Kazumasa Shinagawa and Koji Nuida. A single shuffle is enough for secure card-
based computation of any Boolean circuit. Discrete Applied Mathematics, 289:248—
261, 2021. URL: https://doi.org/10.1016/j.dam.2020.10.013.

Kazumasa Shinagawa and Koji Nuida. Single-shuffle full-open card-based protocols
imply private simultaneous messages protocols. Cryptology ePrint Archive, Paper
2022/1306, 2022. https://eprint.iacr.org/2022/1306. URL: https://eprint.
iacr.org/2022/1306.

Yuto Shinoda, Daiki Miyahara, Kazumasa Shinagawa, Takaaki Mizuki, and
Hideaki Sone. Card-based covert lottery. In Diana Maimut, Andrei-George Op-
rina, and Damien Sauveron, editors, Innovative Security Solutions for Information
Technology and Communications, volume 12596 of LNCS, pages 257-270, Cham,
2021. Springer. URL: https://doi.org/10.1007/978-3-030-69255-1_17.

Yuji Suga. A classification proof for commutative three-element semigroups with
local AND structure and its application to card-based protocols. In 2022 IEEE
International Conference on Consumer Electronics - Taiwan, pages 171-172, NY,
2022. IEEE. URL: https://doi.org/10.1109/ICCE-Taiwan55306.2022.9869063.
Ken Takashima, Yuta Abe, Tatsuya Sasaki, Daiki Miyahara, Kazumasa Shi-
nagawa, Takaaki Mizuki, and Hideaki Sone. Card-based protocols for secure
ranking computations. Theor. Comput. Sci., 845:122-135, 2020. URL: https:
//doi.org/10.1016/j.tcs.2020.09.008!


https://doi.org/10.1016/j.tcs.2020.05.036
https://doi.org/10.4230/LIPIcs.FUN.2018.29
https://doi.org/10.4230/LIPIcs.FUN.2018.29
https://doi.org/10.1016/j.dam.2016.02.005
https://doi.org/10.1016/j.tcs.2015.09.007
https://doi.org/10.1016/j.tcs.2015.09.007
https://doi.org/10.1587/transfun.E100.A.1900
https://doi.org/10.1587/transfun.E100.A.1900
https://doi.org/10.1016/j.dam.2020.10.013
https://eprint.iacr.org/2022/1306
https://eprint.iacr.org/2022/1306
https://eprint.iacr.org/2022/1306
https://doi.org/10.1007/978-3-030-69255-1_17
https://doi.org/10.1109/ICCE-Taiwan55306.2022.9869063
https://doi.org/10.1016/j.tcs.2020.09.008
https://doi.org/10.1016/j.tcs.2020.09.008

	Card-Based Zero-Knowledge Proof Protocol for Pancake Sorting

