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Abstract. Cryptarithmetic, also known as Verbal Arithmetic or Word Addition,
is a popular pencil puzzle in which the aim is to deduce which letter corresponds
to which numeral, given a mathematical equation in which each numeral (from
0 to 9) has been replaced with a unique letter. The most famous instance of this
puzzle is probably "SEND + MORE = MONEY", whose solution is "9567 +
1085 = 10652", i.e., S=9,E=5N=6,D=7,M=1,0=0,R =8, and
Y = 2. In this study, we construct a physical zero-knowledge proof protocol for
a Cryptarithmetic puzzle: That is, our protocol enables a prover who knows a
solution to the puzzle to convince a verifier that he/she knows the solution without
revealing any information about it. The proposed protocol uses a physical deck of
“dihedral cards,” which were developed by Shinagawa in 2019.
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1 Introduction

Cryptarithmetic, also known as Verbal Arithmetic or Word Addition, is a famous pencil
puzzle: given an equation, such as "SEND + MORE = MONEY" (Fig. 1(a)), where each
numeral from 0 to 9 has been replaced with a unique letter, one has to guess which letter
corresponds to which numeral. The solution to the aforementioned example is presented
in Fig. 1(b): That is, the correspondences are S —> 9, E— 5, N+— 6,D—» 7, M - 1,
O~ 0,R— 8 andY — 2.

The rules for solving Cryptarithmetic puzzles are as follows.

1. Any letter (at every position) corresponds to the same numeral, and different letters
correspond to different numerals.

2. The most significant digit (letter) must not correspond to 0.

3. After all letters are replaced with their numerals, the resulting equation must be
mathematically correct.

In this paper, we shall construct a zero-knowledge proof protocol for Cryptarithmetic.
We begin by explaining what zero-knowledge proof protocols for pencil puzzles are.

* This paper appears in Proceedings of UCNC 2021. The final authenticated version is available
online at https://doi.org/10.1007/978-3-030-87993-8_4.
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SEND 9567
+ MORE + 1085
MONEY 10652

(a) (b)

Fig. 1: A puzzle instance of Cryptarithmetic and its solution

1.1 Zero-knowledge Proofs for Puzzles

Consider a situation in which there are two players: a prover P and a verifier V; the prover
P knows a solution w to an instance x of a puzzle (such as Cryptarithmetic and Sudoku'),
whereas the verifier V does not know any solution to x. The verifier V spent considerable
time attempting to find a solution to x, but V was unable to find it. Thus, V becomes
skeptical and asks P to prove that there is a solution to x. However, if P only shows the
solution w to V, the puzzle instance x will not be worth solving. A zero-knowledge proof
protocol, whose concept was first conceived in [6], can solve this dilemma: It enables
P to convince V of the existence of w without revealing any information about w (that
only P knows), satisfying the following three properties.

Completeness. If P knows w, then V is convinced of the existence of w.
Extractability. If P does not know w, then V is not convinced.
Zero-knowledge. V does not obtain any information about w.

In 2007, Gradwohl et al. [7, 8] first constructed zero-knowledge proof protocols for
Sudoku using physical daily-use objects such as a deck of playing cards. Since then, many
zero-knowledge proof protocols for pencil puzzles using a deck of physical cards, which
we call card-based ZKP protocols, have been proposed, such as those for Akari [1],
Hashiwokakero [27], Hitori [21], Juosan [14], Kakuro [1,15], KenKen [1], Makaro [2],
Masyu [10], Nonogram [3,22], Norinori [4], Numberlink [24,25], Nurikabe [21], Ripple
Effect [26], Slitherlink [10, 11], Sudoku [23,28,29], and Takuzu [1, 14]. These physical
zero-knowledge proof protocols do not depend on computers or programs; hence, it is
relatively easy for lay people to perform zero-knowledge proof and/or to understand its
concept.

1.2 Our Contribution

It should be noted that all the pencil puzzles listed above are played with a rectangular
grid (consisting of many cells): That is, all the existing card-based ZKP protocols
have been designed to manipulate a grid with numbers and/or symbols. By contrast,
Cryptarithmetic, for which this study shall design a zero-knowledge proof protocol,
is played not with a grid but with an equation, as already seen in Fig. 1. Therefore,
another technique or treatment is required to construct a card-based ZKP protocol
for Cryptarithmetic. Furthermore, while most of the existing protocols use a deck of

1 Sudoku is the most famous pencil puzzle, which has been published by NIKOLI Co., Ltd.
(https://www.nikoli.co. jp/en/)
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front back
Fig. 2: Dihedral card of 2m-sided polygon for m = 4

physical cards consisting of black and red cards BE x @@ -+- and/or number

cards - - -, these cards are not suitable for computing an arithmetic addition;
in particular, computing a carry causes a heavy load (e.g., [17]). Therefore, we need to
consider other types of physical cards.

In this paper, we construct a zero-knowledge proof protocol for Cryptarithmetic using
dihedral cards, as illustrated in Fig. 2; these novel cards were proposed by Shinagawa
in 2019 [30, 31]%. That is, using our proposed protocol, a prover P who knows the
solution to a given Cryptarithmetic puzzle can convince a verifier V that P knows the
solution without revealing any information about it. As will be seen in Sects. 2 and 3,
the dihedral cards are suitable for Cryptarithmetic because they can efficiently compute
an arithmetic addition with a carry (compared with other regular polygon cards [32], or
a normal deck of cards as mentioned above). After we present our protocol in Sect. 3,
we evaluate its performance and demonstrate its correctness in Sect. 4. The paper is
concluded in Sect. 5.

Although Cryptarithmetic puzzles can have multiple solutions or can be an equation
whose left-hand side has more than two terms (for addition) [33-35], we focus on
Cryptarithmetic puzzles with the addition of exactly two terms such that there is a
unique solution (as shown in Fig. 1) throughout this paper. (We will revisit this point in
Sect. 5.)

Note that if we allow the base, denoted by £, in arithmetic to be arbitrary (aside from
k =10, i.e., decimal arithmetic), the decision problem for Cryptarithmetic becomes NP-
complete [5] (where k is not fixed). The computational complexity of Cryptarithmetic
has been studied, including methods for efficiently deriving solutions using genetic
algorithm [13] and automata that accept Cryptarithmetic problems for bases k < 7 [19].
If we fix k, say k = 10 as in this paper, then we can find a solution to a given
Cryptarithmetic problem (if any) by enumerating at most 10! assignments of numerals
to the given letters. However, pencil puzzles such as Cryptarithmetic are usually solved
with a pen and sheets of paper; hence, without the aid of a computer, 10! possibilities
cannot be enumerated by hands; thus, it is worthwhile to perform zero-knowledge proofs
even for puzzles in P.

ii Figs. 2 to 11 were created based on the figures presented in [31].
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Fig. 3: How to represent integers using a dihedral card of m = 4
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Fig. 4: How to represent integers using a dihedral card considering a carry

2 Preliminaries: Dihedral Cards [30,31]

In this section, we describe the dihedral cards proposed by Shinagawa [30,31], operations
on them, and some sub-protocols that will be used when constructing our protocol in
Sect. 3.

2.1 Dihedral Cards

A dihedral card is a regular polygon card marked with invisible ink. We use dihedral
cards, each of which is a regular 2m-sided polygon, to conduct computations on a finite
field Z/Z,, = {0, 1,...,m — 1} for a positive integer m. Fig. 2 shows an example of a
dihedral card of a 2m-sided polygon for m = 4, i.e., a regular octagon card. The blue
arrows and dots in Fig. 2 have been drawn using invisible ink. Specifically, a symmetric
bidirectional arrow is marked in the center, and m dots corresponding to m consecutive
vertices (among 2m ones) are marked. The same pattern is drawn on the back of the
card, i.e., every vertex marked with a dot in the front also has a dot in the back.

The physical property of invisible ink guarantees that blue arrows and dots are
invisible to the naked eye, but they can be made visible by illuminating with black light.
Therefore, markings on a dihedral card can only be confirmed when illuminated with
black light.

Because dihedral cards have the shape of a regular 2m-sided polygon, we can simply
represent every integer from 0 to 2m — 1 depending on the angle at which the cards are
placed, as shown in Fig. 3. However, in our proposed protocol, the values from m to
2m — 1 are treated as the values from 0 to m — 1 with a carry, as shown in Fig. 4. Given
a 2m-sided polygon card having a value x € Z/Z,,,, if we rotate it by cxr/m degrees
for an integer c, its value is changed from x to x + ¢ mod 2m; we refer to this action as
“rotating a card by a degree c.”

In addition to rotation, a dihedral card can be transformed by flipping it face up or
down based on a certain axis of rotation. In this study, we use three axes, i.e., three
flipping methods: Flip the card vertically, as shown in Fig. 5; diagonally, as shown in
Fig. 6; and horizontally, as shown in Fig. 7.

Remember that the value of a dihedral card can be revealed by illuminating with
black light. Next, we describe methods for partially revealing the values of a dihedral
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Fig. 5: Flipping a card vertically
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Fig. 6: Flipping a card diagonally

card. That is, assume that, given a 2m-sided polygon card with a value x € Z/Z;,,, we
want to obtain the one-bit value p(x > m) and/or the m-valued x mod m. Here, we
define p(x > m) =1 if x > m, and p(x > m) = 0 if x < m. We call p(x > m) the sign
of the card, and x mod m the mod-m value of the card. This can be achieved by covering
areas that are not related to the value to be observed; Fig. 8 and Fig. 9 illustrate how
to reveal the sign and the mod-m value of a card, respectively, using covers of special
shapes. As can be verified in Fig. 4, the sign of a card determines whether or not the
digit has a carry, and a dot mark at the point where the black light is irradiated, as shown
in Fig. 8, corresponds to this sign. On the other hand, the mod-m value can be obtained
by looking only at the arrow in the center illuminated by the black light because its
direction reveals the mod-m value only (without its possible carry). In Fig. 8 and Fig. 9,
the sign p(x > m) is 0, and the mod-m value is 1.

2.2 Shuffle Operations on Dihedral Cards

Here, considering a sequence of dihedral cards, we describe two shuffle operations. Let
a positive integer m be fixed, and denote by [[x]] a 2m-sided polygon card with a value
of x € Z/Zy,,. For a positive integer i, we define [i] = {1,2,...,i}. Given a sequence
of ¢ regular 2m-sided dihedral cards ([[x;]], [[x2]],. .., [[x¢]]), we consider two types
of shuffle, as follows.

Rotation shuffle A rotation shuffle with a set T C [{] rotates all cards whose posi-
tions are in 7 by a uniformly distributed random number r € Z/Zy,,; that is, it
shuffles all cards specified by T together. In this case, the sequence of the cards

([lx11, 2210, - - -5 [[x¢]]) becomes x; — x; +7 (mod 2m) wheni € T, and x; — x;
wheni ¢ T.

#5-(2) - K- (0 -0 -
0 0+4 1 3 2 2 3 1 0+4 0

Fig. 7: Flipping a card horizontally
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Fig. 8: Opening the sign
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Fig. 9: Opening the mod-m value
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Two-sided rotation shuffle A rwo-sided rotation shuffle is an operation that randomly
rotates all cards whose positions are in 7 C [£] by 7. In this case, the card sequence
([lx1 5 [x2115 - - - [[xe]l) becomes x; — x; + rm (mod 2m) when i € T, and
x; — x; when i ¢ T, where r is a random bit » € {0, 1}. This shuffle can be
implemented using two clips to fix and rotate the cards, as illustrated in Fig. 10.

2.3 Protocols with Dihedral Cards

In this subsection, we briefly introduce several basic protocols for computations working
on dihedral cards [30, 31]; refer to [31] for details.

2.3.1 Initialization Protocol The initialization protocol takes as input a card [[x]]
such that x € Z/Z,,, and initializes its value to O: [[x]] = [[O]]. It proceeds as follows.

1. Apply a rotation shuffle to the card.
2. Tlluminate the whole card with black light and let the opened value be x” € Z/Z;,,.
3. Rotate the card by a degree —x’.

This protocol requires one shuffle.

R om0

[x,1 [x,1 [x; +rm]  [x; +rm]

Fig. 10: Implementation of two-sided rotation shuffle (¢ = 2)
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2.3.2 Addition Protocol The addition protocol takes as input two cards [[x]], [[x2]]
such that x,x, € Z/Z,,, and outputs the arithmetic addition of the two (and [[0]]):

([xt1l, [[x211) = (ILOT], [[x1 + x2 mod 2m]]).
It proceeds as follows.

1. Flip the left card vertically, as shown in Fig. 5, to obtain [[—x;]].

2. Apply a rotation shuffle to the sequence of two cards.

3. Illuminate the entire left card with black light. Let the opened value be x’ € Z/Z;,,.
4. Rotate the sequence of cards by a degree —x’.

This protocol also requires one shuffle.

2.3.3 Sign Normalization Protocol The sign normalization protocol takes as input a
card [[x]] such that x € Z/Z,,, and changes its value to x mod m:

[x]] = [[x mod m]].
It proceeds as follows.

1. Apply a two-sided rotation shuffle to the card.

2. Reveal the sign of the card (using the method illustrated in Fig. 8). Let s’ € {0, 1}
be the sign of the card.

3. Rotate the card by a degree s'm.

This protocol uses one shuffle.

2.3.4 Sign-to-Value Protocol The sign-to-value protocol takes as input a card [[x]]
such that x € Z/Z,,, (along with card [[0]]), and outputs the sign of the card (and [[0]]):

([Lx11, [I01) = (llp(x = m)11, [[O1]).
It proceeds as follows.

. Apply a two-sided rotation shuffle to the sequence of two cards.

. Reveal the sign of the left card. Let s; € {0, 1} be the revealed sign.

. Rotate the right card by a degree sm.

. Apply the initialization protocol to the left card. We now have ([[O]], [[p(x >

m) -m]]).

5. Consider a diagonal axis (as in Fig. 6) for the left card and a horizontal axis (as
shown in Fig. 7) for the right card. Then, the cards are randomly flipped together
based on these axes; to achieve this, after adjusting the degree of the left card, fix
the two cards together with two plates, as illustrated in Fig. 11, and repeatedly rotate
them quickly.

6. Reveal the sign of the right card. Let s, € {0, 1} be the revealed sign.

(a) If s, = 0, output the current sequence.

(b) If s, = 1, rotate the right card by a degree m, and then, flip the left card

diagonally (as shown in Fig. 6).

EESOSI \S R

Three shuffles are required for the sign-to-value protocol.
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Fig. 11: Implementation of uniform random flipping

[0 + 10] [1+10] [9 + 10]

Fig. 12: Dihedral cards of regular 20-sided polygons

3 Zero-knowledge Proof Protocol for Cryptarithmetic

In this section, we construct a card-based zero-knowledge proof protocol for Cryptarith-
metic using dihedral cards, utilizing the basic sub-protocols introduced in the previous
section.

First, in Sect. 3.1, we propose a copy protocol for use in our proposed protocol. This
copy protocol creates multiple dihedral cards with the same value from one dihedral card
without revealing any information about its value. We then describe the procedure for
our proposed protocol in Sect. 3.2. To deal with decimal arithmetic in Cryptarithmetic,
we set m = 10, i.e., our protocol uses dihedral cards, each of whose shape is a regular
20-sided polygon, as illustrated in Fig. 12.

In Sect. 4, we will evaluate the numbers of cards and shuffles required for executing
our proposed protocol and prove that our protocol satisfies the three properties of the
zero-knowledge proof.

3.1 How to Duplicate Commitment

Let us call a dihedral card with a value x € Z/Z,,, a commitment to x. We present a
copy protocol that duplicates a given commitment. As can be observed in Sect. 3.2, we
use this copy protocol to duplicate a commitment to every i, 0 < i < 9, when setting up
our proposed protocol.

Given a commitment [[x]], our copy protocol making € (> 2) copied commitments
proceeds as follows.

1. Place a sequence of ¢ dihedral cards [[0]], all having a value of 0, next to the given
commitment to be copied.

2. Apply the addition protocol to the sequence of cards so that the value of the given
commitment is added to all the £ cards, resulting in a sequence of £ commitments
([[=1, - - ., [[x]). (Note that the addition protocol presented in Sect. 2.3.2 takes only
two cards as input, but one can easily extend it by rotating the € + 1 cards together.)
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In this protocol, the given commitment is duplicated by adding its value to the
desired number of dihedral cards that we want to obtain. Thus, it requires ¢ dihedral
cards as well as a given commitment, and requires only one shuffle.

3.2 Procedure

In this subsection, we describe the procedure for our proposed protocol. Given a
Cryptarithmetic problem, our protocol enables a prover P who knows the solution
to the problem to convince a verifier V that P knows the solution without revealing any
information about the solution. It consists of four phases: Setup, Adding least significant
digits (half adder), Adding higher digits (full adder), and Verification.

Setup. In this phase, dihedral cards corresponding to the solution are created.

1. Prepare a commitment to i for every i, 0 < i < 9, i.e., [[O]l,..., [[9]]. The values
of the commitments should be disclosed so that V can be convinced that every
commitment corresponds to a distinct integer.

2. Prepare symbolic cards corresponding to the letters appearing in the puzzle instance,
as illustrated in Fig. 13; this example corresponds to the puzzle shown in Fig. 1, i.e.,
we have eight cards with a letter S, E, N, D, M, O, R, or Y on their front, along with
two dummy cards with blank surfaces, where all 10 cards have indistinguishable
backs. The letters on the front can be numbers (as in the case of playing cards), but
for the sake of clarity, we use symbolic cards that have the same letters that appeared
in the puzzle instance. If the number of letters appearing in the puzzle is less than
10, dummy cards are used for the missing letters, as in the example above.

3. Remember that only the prover P knows the solution, i.e., the one-to-one correspon-
dence between numerals and letters. The prover P takes all the symbolic cards in
his/her hand, and places them face-down below the 10 commitments (which were
prepared in the first step), such that each pair of a commitment and a symbolic card
follows the one-to-one correspondence, as illustrated in Fig. 14, where a dummy
card is placed if there is no letter corresponding to that numeral. Because commit-
ments to 3 and 4 do not appear in the example solution, dummy cards with blank
surfaces are placed below them. Note that the face-down 10 symbolic cards have
been placed secretly by P without V knowing their order.

SENDEORY

Fig. 13: Examples of symbolic cards

4. Fix the 10 pairs of commitments and symbolic cards (or dummy cards) using
envelopes or clips and then shuffle them by hand. This shuffling operation is called
a pile-scramble shuffle [9]. The shuffle is performed by P and/or V; they can repeat
shuffling until both of them are satisfied.



10 R. Isuzugawa et al.

ololelelololololsle

[o] [1l [2] [31 [41 (5] fel (71 (8] [o1
] ™ O 0 B MO B E

Fig. 14: Example of correspondence between 10 dihedral cards and symbolic cards; P
places symbolic cards face-down

5. Turn over all the symbolic cards to see the mapping from letters to commitments. If
the revealed card is a dummy card, the corresponding commitment can be discarded
after applying a rotation shuffle.

6. Remember that a puzzle instance has an equation where the left-hand side is an
addition of two sequences of letters; without loss of generality, we assume that the
number of letters in the second term on the left-hand side is greater than or equal to
that in the first term. Repeatedly execute the copy protocol presented in Sect. 3.1 to
ensure that we have a sufficient number of duplicated commitments to accomplish
the following: (i) for every letter in the first term on the left-hand side of addition
(in the puzzle instance), place one commitment corresponding to that letter; (ii) for
every letter in the second term, place two commitments corresponding to that letter;
and (iii) for every letter on the right-hand side, place one commitment corresponding
to that letter. (The two commitments in (ii) will be used to obtain commitments to
both an addition result and a carry.)

Let us illustrate how to arrange commitments in Step 6 by considering the puzzle
problem shown in Fig. 1 as an example; note that "SEND" is the first term on the left-hand
side, "MORE" is the second term, and "MONEY" is the right-hand side. Because letters
M, O, R, and E (which constitute the second term) appear twice, twice, once, and thrice,
respectively, we apply the copy protocol to obtain three commitments corresponding
to “M,” three commitments corresponding to “O,” two commitments corresponding to
“R,” and four commitments corresponding to “E.” For the other letters, i.e., S, N, D, and
Y, we obtain as many commitments as appeared in the problem. After copying, we place
the obtained commitments at the corresponding positions on the board, as illustrated in
Fig. 15. Note that there should be two commitments corresponding to each of letters M,
O, R, and E in the figure. Recall that the blue arrows and dots in Fig. 15 were drawn
with invisible ink, and that V does not know any values of the cards.

Addition of least significant digits (half adder). In this phase, we compute the addition
of the two commitments corresponding to the least significant digits placed in the Setup
phase and output commitments to the result of addition and carry (to the higher digits),
i.e., we perform the half adder.

1. Utilizing the addition protocol introduced in Sect. 2.3.2, add the value of the com-
mitment corresponding to the least significant digit in the first term (on the left-hand
side) to the two commitments corresponding to the least significant digit in the sec-
ond term. (Recall that two commitments were placed for every letter in the second
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[6] [5] [2]

Fig. 15: Example of commitment placement

term.) Therefore, P and V obtain two identical commitments corresponding to the
result of the addition.

Apply the sign-to-value protocol introduced in Sect. 2.3.4 to one of the two com-
mitments obtained in the previous step to obtain a commitment to the carry to the
higher digits.

Apply the sign normalization protocol introduced in Sect. 2.3.3 to the other com-
mitment, i.e., the one that was not used in the previous step. (Thanks to this step,
any commitment has a value between 0 and m — 1.)

We do not explicitly use the carry protocol proposed by Shinagawa [30,31] to obtain

a commitment corresponding to a carry of addition, but we do employ the same idea
behind the protocol, i.e., combining the addition and sign-to-value protocols.

Addition of higher digits (full adder). In this phase, we compute the addition of com-
mitments placed on higher digits in the Setup phase and a commitment to a carry from
the lower digits so that we obtain commitments to the addition result and a carry, i.e.,
we perform the full adder. For every pair of higher digits (on the left-hand side of the
equation), we perform the following one by one. That is, execute Steps 1 to 4 from the
second lowest digit until the addition of the most significant digit is completed.

1.

Utilizing the addition protocol, add the commitment [[x]] in the first term (on the
right-hand side) to the two commitments [[y]], [[y]] in the second term to obtain
two commitments to the result of addition [[x + y]], [[x + y]].

Similarly, add the commitment to the carry [[c]] to the two commitments obtained
in Step 1 to obtain two commitments to the result of addition with carry [[x +y +

cll, [x+y+c]l.

. Apply the sign normalization protocol to one of the two commitments obtained in

Step 2.
Apply the sign-to-value protocol to the other commitment to obtain a commitment
corresponding to a carry to the higher digit.
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Verification. In this phase, we verify whether the rules of Cryptarithmetic are satisfied
using the commitments placed in the Setup phase and those obtained in the addition
phases.

1. The verifier V checks that every most significant digit is not equal to 0 by partially
illuminating the commitment with black light, as shown in Sect. 2.1. This is possible
because of the application of the sign normalization protocol in the addition phase.
If V finds a value of O (for at least one of them), then V rejects it.

2. The verifier V checks that the result of addition is equal to the left-hand side: Apply
a rotation shuffle to every pair of commitments that should correspond to the same
letter, i.e., a commitment placed in the Setup phase and the one obtained in the
addition phase, and then reveal their values. If V finds a pair with different values,
then V rejects it.

4 Evaluation

In this section, we demonstrate that our protocol constructed in Sect. 3 works. Specifi-
cally, in Sect. 4.1, we count the numbers of cards and shuffles required for our proposed
protocol. In Sect. 4.2, we show that our protocol is surely a zero-knowledge proof
protocol.

4.1 Numbers of Cards and Shuffles

In this subsection, we evaluate the performance of our proposed protocol, i.e., we count
the numbers of required cards and shuffies.

Because the number of symbolic cards is fixed, i.e., it is always 10, we consider only
the number of dihedral cards. Regarding the number of shuffles, we consider the worst
case. For simplicity, a puzzle instance is assumed to be an equation in which the two
terms on the left-hand side have the same number of letters and the right-hand side has
one more than that, e.g., the puzzle shown in Fig. 1. We denote the number of letters
in the first term on the left-hand side by d. Note that the second term also has d letters
and the right-hand side has d + 1 letters; hence, the total number of letters in the puzzle
instance is 3d + 1.

Let us count the number of required dihedral cards. After the setup phase, there are
4d + 1 commitments (cards), and to produce such copied commitments, one more card
is required during the final copy. Therefore, the protocol uses 4d + 2 cards.

Next, let us count the number of shuffles. For the setup, in addition to the pile-
scramble shuffle, the initialization protocol and the copy protocol use a shuffle and they
are executed at most 10 times in total. Thus, the total number of shuffles in the setup is
11. To add the least significant digit, the addition, sign-to-value, and sign normalization
protocols are performed once each. Thus, the total number of shuffles here is 5. For the
addition of the higher digits, the addition is performed twice, sign-to-value and sign
normalization protocols are performed once per digit, and the process is repeated for
the number of digits to be added. Thus, the total number of shuffles here is 6(d — 1).
For verification, the rotation shuffle is executed for the number of digits of the addition
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Tab. 1: Number of cards and shuffles in the proposed protocol

Number of cards Number of shuffles

4d +2 7d+11

result. Thus, the total number of shuffles in the verification is d + 1. Therefore, the total
number of shuffles in the entire protocol is at most 7d + 11.

Table 1 shows the number of cards and the number of shuffles derived from the
foregoing discussion.

4.2 Proof

In this subsection, we verify that the proposed protocol described in Sect. 3.2 satisfies
the zero-knowledge proof property.

Completeness. The verifier V verifies that the values of the 10 dihedral cards are all
different, from 0 to 9, in Step 1 of the Setup phase. Because the same commitment
is assigned to the same letter and different commitments are assigned to different
letters, V is convinced that the same numeral is assigned to the same letter and
different numerals are assigned to different letters. Furthermore, if the prover P
knows the solution, P places the symbolic card corresponding to each letter of the
puzzle instance that satisfies the rules; hence, V is convinced that the solution that
P knows satisfies the rule in the Verification phase.

Extractability. As mentioned above, the value of any commitment in the Setup phase
is between 0 and 9. If P gives a false input, i.e., a numeral that does not match the
solution for a certain letter, V will not be convinced because the solution is assumed
to be unique in this study and will output an addition result that is different from the
solution, meaning that the value disclosed in Step 2 of the Verification phase will
be different.

Zero-Knowledge. Because the commitments corresponding to the letters are prepared
using symbolic cards so that V does not know the correspondence, V cannot see
which numeral corresponds to which letter in the Setup phase. In the Addition
phases, the values of both input and output are not disclosed, so that no information
about the solution is leaked to V. In the Verification phase, the values of the
commitments are disclosed in Step 2, but V cannot know the information about the
original value due to the shuffle operation.

5 Conclusion

In this paper, we proposed a card-based ZKP protocol for Cryptarithmetic using dihe-
dral cards. Our protocol was obtained by constructing copy, half-adder, and full-adder
protocols working on dihedral cards with the help of existing basic sub-protocols.

Our future work includes improving the efficiency of the protocol. For example, as
shown in Fig. 1, when the number of letters on the right-hand side is larger than that
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of each of the two terms on the left-hand side, the numeral corresponding to the most
significant digit on the right-hand side is automatically determined to be 1. Therefore,
the number of shuffles can be reduced by disclosing the commitment to confirm whether
itis 1, instead of a rotation shuffle. It would also be interesting to measure the execution
time of our protocol in more detail, e.g., [16], or to adopt the “private permutation”
model, which allows players’ private actions, e.g., [12, 18,20, 36].

In actual examples [33-35], there are many Cryptarithmetic problems involving the
addition of two inputs as well as the addition of three or more inputs. Therefore, one of
the tasks is to consider the application to the addition of three or more inputs.
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