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Abstract. Zero-Knowledge Proof (ZKP) is a cryptographic technique
that enables a prover to convince a verifier that a given statement is
true without revealing any information other than its truth. It is known
that ZKP can be realized by physical objects such as a deck of cards;
recently, many such “card-based” ZKP protocols for pencil puzzles (such
as Sudoku and Numberlink) have been devised. In this paper, we shift
our attention to graph theory problems from pencil puzzles: We pro-
pose card-based ZKP protocols for the graph 3-coloring problem and the
graph isomorphism problem. Similar to most of the existing card-based
ZKP protocols, our two protocols have no soundness error. The proposed
protocols can be implemented without any technical knowledge, and the
principle of zero-knowledge proof is easy to understand. In particular, our
protocol for the graph isomorphism problem requires only three shuffles
regardless of the sizes of a pair of given graphs. In addition, to deal
with our proposed protocols more rigorously, we present a formal frame-
work for card-based ZKP protocols which are non-interactive and have
no soundness error.

Keywords: Physical zero-knowledge proof - Card-based cryptography -
Graph 3-coloring problem - Graph isomorphism problem

1 Introduction

Suppose that there are two parties, the prover, Peggy, and the verifier, Victor.
The prover Peggy has a witness w guaranteeing that a statement x is true,
while the verifier Victor does not have it. In this case, a Zero-Knowledge Proof
(ZKP) protocol, whose concept was devised by Goldwasser et al. in 1989 [9],
enables Peggy to convince Victor that the statement x is true without leaking
any information about the witness w. Such a ZKP protocol must satisfy the
following three conditions.
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Completeness. If z is true, then Victor accepts.

Soundness. If z is false, then no matter how Peggy behaves, Victor rejects with
an overwhelming probability.

Zero-knowledge. No information about w other than the fact that z is true is
leaked to Victor.

The probability that Victor accepts even though z is false is called a sound-
ness error probability, denoted by §. If a ZKP protocol having such a probability
J is executed ¢ times, Victor rejects with a probability of 1 — §¢. Thus, we can
satisfy the soundness condition by repeatedly running such a protocol sufficient
times.

Normally, ZKP protocols are implemented on computers and network sys-
tems, based on cryptographic primitives, such as public-key cryptography. By
contrast, there are physical ZKP protocols that do not rely on computers; for ex-
ample, Gradwolh et al. [10] in 2009 invented the first physical ZKP protocol for
Sudoku using a deck of physical cards. This protocol directly verifies a solution
of a Sudoku puzzle without reducing it to other NP-complete problems, such as
3SAT. Therefore, a physical ZKP protocol is suitable for visual understanding
of the concept of ZKP, as it can be performed with human hands.

It should be noted that because any Boolean circuit can be securely evaluated
by card-based cryptography (e.g., [4,14,15,19,21,30]), we can construct a physical
ZKP protocol for any 3SAT instance [20)].

1.1 Existing Physical ZKP Protocols

Many physical ZKP protocols using a deck of cards have been constructed for
Nikoli’s pencil puzzles, such as Sudoku [10,24,29], Makaro [3], Slitherlink [16],
and Numberlink [26]. These protocols are fun, and their proofs can be easily
understood because they were presented using pictures of a deck of cards (as
will be seen in Section 2).

Going back to history, Goldreich et al. [8] in 1991 proved that, for all lan-
guages in NP, there exist ZKP protocols based on cryptographic primitives.
In their paper, they also presented a physical ZKP protocol for the 3-coloring
problem using boxes having locks to clarify the presentation of their concept.
This physical ZKP protocol has a soundness error as will be seen in Section 2.3,
meaning that the protocol needs to be repeated many times.

1.2 Contribution

In this paper, we shift our attention to graph theory problems from pencil puzzles.
We propose card-based ZKP protocols for two famous graph problems: the 3-
coloring problem and the graph isomorphism problem. Similar to most of the
existing card-based ZKP protocols, our two protocols have no soundness error.
The proposed protocols can be implemented without any technical knowledge,
and the principle of ZKP is easy to understand. In particular, our protocol for
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the graph isomorphism problem requires only three shuffles regardless of how
large a pair of given graphs is.

In addition to constructing the two protocols, we present a formal framework
for card-based ZKP protocols which are non-interactive and have no soundness
error. Using this proposed framework, we can describe such card-based ZKP
protocols in a rigorous way.

We emphasize that this paper is an attempt to connect physical ZKP proto-
cols (in cryptology) and graph theory. Hence, we believe that our work explores
new directions of physical ZKP protocols toward graph problems. Constructing
efficient ZKP protocols for other famous graph problems is an interesting prob-
lem, including the ones in Karp’s 21 NP-complete problems [13], as a physical
ZKP protocol for the Hamiltonian cycle problem has recently been designed [28].

2 Preliminaries

In this section, we introduce notations of a deck of cards and a shuffling action
used in our proposed protocols later. We then introduce the 3-coloring problem
and the graph isomorphism problem. We also describe an existing protocol for
the 3-coloring problem [8].

2.1 A Deck of Cards

Both of our proposed protocols use a two-colored deck of cards, such as black E]
and red @ cards. In addition, our protocol for the graph isomorphism problem
(presented in Section 4) uses numbered cards, such as -++. The backs
of all these cards, denoted by , are indistinguishable.

2.2 Pile-scramble Shuffle

In our construction, we will use a shuffling action called the pile-scramble shuffie.
This action uniformly shuffles multiple piles of face-down cards at random. More
precisely, for some natural number n (> 2), let (pile,, piles, ..., pile,) denote a
sequence of n piles of cards where each pile consists of the same number of cards.
Applying a pile-scramble shuffle to such a sequence of piles (denoted by [-]...]|])
results in:

—

pile;

: — : : :
~~ g —~~ —

pile,, pileﬁfl(m pileﬂ,l(m pilew,lm)

=5
;

where m € S, is a random permutation uniformly chosen from the symmetric
group of degree n, denoted by S,. In this case, we regard cards in the same
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“column” as a pile; thus, the resulting order of cards in each pile does not
change. We also consider applying a pile-scramble shuffle “vertically,” i.e., cards
in the same row are regarded as a pile and all the piles are shuffled.

A pile-scramble shuffle was first used by Ishikawa et al. [12] in 2015. It can be
easily implemented by using rubber bands or envelopes to fix each pile of cards
and scrambles the piles to randomize the order of them. We assume that, as in
the case of usual card games, even if only one player performs a pile-scramble
shuffle, nobody (including the executor) can know the resulting order of piles.
If some players are skeptical, they may repeat the shuffling action in turn until
they are satisfied.

2.3 Known Physical Protocol for 3-coloring Problem [8]

The 3-coloring problem is a decision problem to determine whether vertices of
a given undirected graph G = (V,E) can be colored with three colors such
that every two adjacent vertices are assigned different colors. More precisely, the
problem is to determine whether there exists a mapping ¢ : V — {1, 2,3} such
that any edge (u,v) € E satisfies ¢(u) # ¢(v). This problem is known to be
NP-complete [6].

Goldreich et al. [8] in 1991 presented a physical ZKP protocol for the 3-
coloring problem. It uses boxes each having a lock with a corresponding key,
such as safety boxes. Assuming that Peggy knows a correct coloring ¢ but Victor
does not, the protocol proceeds as follows.

1. Let n be the number of vertices in a given graph G. Peggy prepares n boxes
and assigns a box to each vertex.

2. Peggy assigns three random colors to {1,2,3} and puts the corresponding
color for each vertex into the box without Victor’s seeing it. More precisely,
Peggy chooses a random permutation m € S3, and for every u € V, Peggy
puts 7(¢(u)) into the box corresponding to w.

3. Victor randomly chooses one edge (u,v) € E and tells it to Peggy.

. Peggy sends Victor the keys to the two boxes corresponding to v and v.

5. Victor opens the two boxes using the keys received. If they contain different
colors, then Victor continues to the next iteration; otherwise, Victor rejects.

W~

This protocol satisfies the three conditions required for a ZKP protocol. If
Peggy has a correct mapping ¢, then Peggy can always convince Victor because
the two boxes corresponding to the two adjacent vertices chosen by Victor never
contain the same color, i.e., m(¢(u)) # 7(H(v)). If Peggy does not have ¢, then
Victor rejects with a probability of at least 1/m, where m is the number of edges
in the given graph G, i.e., this protocol has a soundness error. By repeating this
protocol ¢ times, Victor can detect such a malicious prover Peggy with a proba-
bility of 1 —(1— %)f. Since Peggy discloses to Victor only the randomly assigned
colors of the two adjacent vertices, Victor cannot obtain more information than
the fact that the two vertices are colored with different colors.
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2.4 Graph Isomorphism Problem

The graph isomorphism problem is a decision problem to determine whether two
given undirected graphs are isomorphic. More specifically, given two graphs G; =
(V1, E1) and Go = (Va, E3), the problem is to determine whether there exists a
permutation 7 : V4 — V4 such that (u,v) € E; if and only if (7(u), 7(v)) € Ex.

It has been believed that the graph isomorphism problem is neither in P nor
NP-complete. A quasi-polynomial time algorithm has been reported by Babai [1,
11].

3 Card-based ZKP for 3-coloring Problem

In this section, we construct a physical ZKP protocol for the 3-coloring problem
with no soundness error. As in the existing protocol [8] introduced in Section 2.3,
our proposed protocol enables the prover, Peggy, to convince the verifier, Victor,
that, for a given undirected graph G = (V, E), Peggy has a mapping ¢ : V —
{1,2,3} such that any edge (u,v) € E satisfies ¢(u) # ¢(v) without revealing
any information about ¢.

In our protocol, Peggy first places sequences of cards representing ¢ that
she has, and then Peggy and Victor publicly manipulate the sequences for the
verification. Thus, after Peggy places the sequences as input, either Peggy or
Victor (or even a third party) may manipulate the cards.

The idea behind our proposed protocol is to verify that every pair of adjacent
vertices is colored with different colors one by one. Our protocol proceeds as
follows.

1. Let V = {1,2,...,n}. For every vertex i € {1,2,...,n}, Peggy prepares
a sequence of face-down cards representing ¢(i) according to the following
encoding rule (with one red card and two black cards):?

Ol =1 [S][Of[#]=2 []#][0]=3. (1)

Place such n sequences vertically one by one as follows:
= ¢(1)
= ¢(2)
HBEIQ

2. For every edge (i,j) € E, perform the following steps. If Victor does not
reject for any edge, then Victor accepts.

3 An encoding rule representing a positive integer in this manner was first considered
by Shinagawa et al. in 2015 [31].
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(a) Regarding cards in the same column as a pile, apply a pile-scramble
shuffle (horizontally) to the n sequences as follows:

| EEE

Let us emphasize that anyone cannot know the resulting order after
performing a pile-scramble shuffie.*

(b) Reveal all the cards of the i-th and j-th sequences. If the two sequences
represent different colors, i.e., the two red cards are revealed to be at
different positions, it means that ¢(i) # ¢(j), and hence, continue the
protocol after turning over the revealed cards; otherwise, Victor rejects.
Note that information about the values of ¢(i) and ¢(j) does not leak
because a pile-scramble shuffle has been applied to the sequences in the
previous step.

Let m be the number of edges in the given graph G. The number of required
cards and shuffles for this protocol is 3n and m, respectively.

We present a security proof of this protocol in Section 6.1. This proof is based
on our computational model formalized in Section 5.

4 Card-based ZKP for Graph Isomorphism Problem

In this section, we construct a card-based ZKP protocol for the graph isomor-
phism problem with no soundness error. Our proposed protocol enables Peggy
to convince Victor that for two given undirected graphs G; = (Vi,E;) and
G2 = (Va, E3), Peggy has a permutation 7 : V; — V5 (as a witness) such that
(u,v) € Fy if and only if (7(u), w(v)) € Es.

4.1 Idea

Assume that Peggy has a correct permutation m € S, where n denotes the
number of vertices in the two given graphs G and Ga. Let A(G1) and A(Ga)
denote their adjacency matrices, respectively. Then, the following equation holds
for the permutation matrix P, corresponding to = [7]:

A(Gs) = PLA(Gy) P,

4 One might think that the resulting order could be easily known because there are
only six possibilities. One possible implementation is to put piles of cards into a box
or ball whose inside is invisible from outside and then throw it up to randomize the
order of them (cf. [32]).
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where for a row vector e; in which the i-th element is 1 and the remaining ones
are 0, 1 < ¢ < n, the permutation matrix P, is

€r(1)
P‘n’ = P
€r(n)

and PT is the transpose. From this equation, it suffices that Peggy and Victor
place sequences of face-down cards representing A(G1), and Peggy having 7
rearranges the sequences according to the permutation matrix P, so that the
resulting sequences represent A(G2) (without revealing any information about

).

4.2 Description

In our proposed protocol, Peggy first prepares a sequence of face-down cards
representing 7, and then Peggy and Victor publicly manipulate the sequences
for the verification. Our protocol proceeds as follows.

1. Peggy prepares a sequence of face-down numbered cards from to
representing the inverse permutation 7—! € S, (that she knows as a witness)
according to the following encoding:

[Wfl]_
~— ~~

(1) w(2) w(n)

This sequence is called the sequence [7~!] where the parentheses indicate
that all cards in the sequence are face-down.

2. Let @ represent 0 and @ represent 1. According to this encoding, place
sequences of face-down cards representing the n x n adjacency matrix of
G1, namely A(G7). For example, the following 4 x 4 adjacency matrix is
represented using sequences of cards as follows:

0110 [%][©][O][#]
1011 [©][#][Q][@]
1100] " [O][Q]][#]
0100 &[]

Then, place the sequence of [7~!] that Peggy prepared and a sequence of

the identity permutation [id] consisting of ~ . ~ (in this order) on the
left side of the matrix [A(G1)] vertically, as follows:

id] [ [A(GY)]

[
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Note that the sequence [id] represents the position of each card in the se-
quence [r71].

. Regarding the cards in the same row as a pile, apply a pile-scramble shuffle

to the piles as follows:

[rq 5;4«;]

[r]
['d] [77‘1] [A(G1)]

where r € S5, is a random permutation generated by applying a pile-scramble
shuffle.

Reveal the sequence [r7 1] to obtain the information about r7~—!. Transform
the matrix [PTA(G1)] to [PTA(G1)] by sorting the rows of the matrix in
ascending order according to rm~

[r} [7"7? 1] [PTA(Gl] [PTA(G )]

Turn over the sequence revealed in the previous step. Then, regarding cards
in the same row as a pile, apply a pile-scramble shuffle to the sequences [r]
and [rm~1] as follows:

HyH

“mom

— = [rr] [rrﬂ' ]

where ' € S, is a random permutation generated by applying a pile-
scramble shuffle.

Reveal the sequence [r'r]. Sort the sequence [r'rm~1] in ascending order
according to r'r. This sorting applies the inverse permutation (r'r)~! to
the sequence [r'rm~1], and hence, the sequence [r'r7~1] becomes a sequence

[x=1]:
o

[7’ 7] [T rT ] [ﬂ"l]
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7. Horizontally place the sequence [7~1] above the matrix [PX A(G} )] as follows:

2] 2] ]

8. Regarding the cards in the same column as a pile, apply a pile-scramble
shuffle to the piles:

[Wﬁl} [r”ﬂ-*l]
L[

L | [PRAGY)] Do
where 1/ € S, is a random permutation generated by applying a pile-
scramble shuffle.

9. Reveal the sequence [r"7~1]. Sort the columns of the matrix [PTA(Gy) P,
in ascending order according to r”’7 ! to transform the matrix to [PX A(G1) Py]:

[r"n=1]
Lt

L L [PTA(GY) P |
m[ﬁ (@DE] 4] 7

10. Reveal all the cards of the matrix [PT A(G1)P;]. If they represent the adja-
cency matrix of G2, then Victor accepts; otherwise, Victor rejects.

[PTA(GY)]

)

[PEA(Gl)PT”]

PA(G1)Pr] -

Let m be the number of edges in the given graphs. The total number of
required cards is n? + 2n, because 2m @s and (n? — 2m) @s are used for
representing the adjacency matrix of G, and 2n numbered cards are used for
the sequences of [7~1] and [id]. The number of required shuffles is three, which
is constant regardless of the size of a pair of given graphs.

We present a security proof of this protocol in Section 6.2.

5 Basic Formalization of Card-based ZKP Protocols

In this section, we give a formalization of card-based ZKP protocols to deal with
our proposed protocols more rigorously.

Remember that our two protocols presented in Sections 3 and 4 are non-
interactive: After the prover, Peggy, places a hidden sequence of face-down cards
at the beginning of each of the protocols according to a witness (that only
Peggy knows), the protocol can be executed by anyone publicly; for example,
it suffices that Peggy does every action while the verifier, Victor, watches all
behaviors of Peggy. Note that most of the existing ZKP protocols for pencil
puzzles (e.g. [3,17,22,26,27,29]) are also non-interactive.

Thus, this section begins with clarifying the relationship between a witness
and a hidden sequence of cards.
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5.1 Witness Subsequence

Let L C X* be a language that captures a decision problem (such as the 3-
coloring problem and graph isomorphism problem), where X' is an alphabet. In
our setting, Peggy and Victor are given a problem instance x € L such that only
Peggy knows a witness w of the instance x; w being a witness of x means that,
given a pair (z,w), everyone (including Peggy and Victor) can easily confirm
that © € L (say, it can be computed in polynomial time).

For example, given an instance of the graph isomorphism problem, a permu-
tation 7 which transforms one graph into the other graph serves a witness. As
seen in Section 4, Peggy who knows the permutation 7 is supposed to privately
arrange a sequence of face-down cards encoding 7:

[ﬂfl]_
~— ~~ ~

7(1) =w(2) 7(n)

Therefore, in general, Peggy and Victor must agree upon a correspondence be-
tween a witness and a sequence of cards; we call such a sequence of cards a
witness subsequence.

Fixing a language L, for an instance z € L, we denote by W, the set of all
witnesses of z. If Peggy knows a witness w € W, and she is honest, she should
place a witness subsequence correctly (with all cards’ faces down); we call it a
correct witness subsequence. If Peggy does not know any witness, she may place a
‘wrong’ sequence of cards that follows the ‘format’ at least; we say a sequence of
cards is a legal witness subsequence if there exist an instance y € L and a witness
w' € W, such that the sequence corresponds to w'. If Peggy is malicious, she
may place a random sequence of cards; we call any witness sequence which is
not legal an illegal witness subsequence.

Let us consider the case where x ¢ L. If an instance x is clearly outside of L
(say, the numbers of edges of G; and G4 are different), Victor would not agree
with executing any protocol; therefore, for such an instance, we do not have to
construct a protocol. On the other hand, there are instances z ¢ L for which we
have to construct protocols; define LCY*—Las

L = {z ¢ L | Victor cannot determine if 2 € L}.

If Peggy is malicious, she may present an instance x € L to Victor, and place
some subsequence to run a protocol (although there is no witness). We call such
a subsequence an illegal witness subsequence as well.

Qonsequently, we are supposed to construct a protocol for every instance in
LUL.

5.2 Input to Protocol

As seen above, at the beginning of a protocol, Peggy is supposed to prepare
a witness subsequence. In addition to the witness subsequence, we need some
helping cards; for example, our protocol for the graph isomorphism (presented in
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Section 4) uses n? black @ or red @ cards as well as n numbered cards. These
helping cards are placed with their faces up at the beginning of the protocol.

As mentioned, if Peggy is malicious, she may place an illegal witness subse-
quence. To this end, she may prepare some number of cards stealthily and use
them to arrange such an illegal subsequence. Therefore, we have to take into
account such stealthy cards (owned by Peggy). Therefore, in addition to the
witness subsequence and helping cards, we consider stealthy cards: That is, we
assume that every input to a protocol consists of these three parts, and that a
deck D to consider accommodates all these cards.

5.3 Abstract Protocol for ZKP

A card-based protocol itself has been well formalized already [18]. We will slightly
adjust the model of protocols by mainly adding a couple of two states, as follows.

First, we review some terms. Let D be a deck containing all cards as men-
tioned above. We call any element ¢ € D an atomic card, % a face-down card,
and £ a face-up card. Define top() = u, call

top(I") = (top(ax), top(a2), - -+ , top(epy))

a visible sequence of a sequence I' = (ai, g, ..., a|p|), and let Vis? be the set
of all visible sequences from the deck D.

Next, we consider the input to a protocol. As mentioned before, the input
consists of three parts: the witness subsequence, helping cards, and stealthy
cards. Considering all possible input sequences, we use U to denote the set of all
such sequences.

We now consider a state of a protocol. Contrary to the conventional card-
based model, we introduce two additional states gaccept and greject- That is, @
is the set of states including the initial state qo, the accepting state gaccept, and
the rejecting state greject- When a protocol terminates with gaccept, it means that
Victor accepts an input sequence I'; when it terminates with greject, it means
that Victor rejects.

Based on these definitions and terms, a protocol is defined as follows.

Definition 1. A card-based protocol P is a 4-tuple P = (D, U, Q, A) that satis-
fies:

— D is a deck.

— U is an input set.

— @Q is a set of states containing qo, Gaccepts 0Nd Greject -

A (Q\{Gaccept, Greject }) % Vis? — Q@ x Action is an action function. Here,

Action is a set of all actions consisting of the followings.

o Turning over (turn,T): This action is to turn over cards in the positions

specified by T C {1,2,--- ,|D|}. Thus, this transforms a sequence I’ =
(a1, @z, -+ ,a|p|) as follows:

turnp (1) = (B1, B2, -, Bip))s
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such that for swap(%) :=

u’

5 = {swap(ai) ifieT,

Q; otherwise.

e Permuting (perm, m): This action is applying a permutation © € S|p| to
a sequence of cards and transforms I' = (a1, g, ..., a|p|) as follows:

perm_(I") == (a,r—l(l), Qr—1(2)," 70[7‘_71(‘[)‘)) .

o Shuffling (shuf, II, F): This action is applying a permutation chosen from
a permutation set II C S|p| according to a probability distribution F on
II. This action transforms I' = (a1, az,--- ,a|p|) as follows:

shuf 7, #(I") :== perm _(I),
where w € 1I is drawn according to F.

A protocol P = (D,U,Q, A) runs as an abstract machine: Staring from the
initial state gp with some input I'y € U, the state and the current sequence change
according to the output of the action function. When its state becomes gaccept
OT Greject, the protocol terminates. Considering an execution of the protocol, the
tuple of all sequences (Iy, I, -, 1) appeared from the initial state g to the
final is called a sequence trace. Similarly, (top(Ip),top(I1), - -+ ,top(I})) is called
a wvisible sequence trace.

5.4 Properties of ZKP

Based on the formalization thus far, we formally define a card-based ZKP pro-
tocol (collection) that is non-interactive and has no soundness error, as follows.

Definition 2. Let L be a language, and let © € LU L. We say that a protocol
P, = (D,U,Q, A) is compatible with the instance x if its input set U contains
every possible sequence whose prefiz is a witness subsequence (corresponding to
a witness w € W, ).

Definition 3. Let L be a language. Assume that, for every instance x € L U f/,
we have a protocol P, compatible with x. We call the set of all these protocols a
ZKP protocol collection for L if the following three conditions are met:

Completeness If x € L and an initial sequence Iy € U for the protocol P, con-
tains a correct witness subsequence (corresponding to a witness w € W, ), the
protocol starting with Iy always terminates with the accepting state Gaccept -

Soundness If x € L and an initial sequence Iy for P, does not contain any
correct witness subsequence, the protocol starting with I'y always terminates
with the rejecting state qrejoct. If € f, P, always terminates with qreject -

Zero-knowledge Let x € L, and consider any distribution on input set U of
the protocol P,.. For any run of the protocol, the distribution of input and
that of the visible sequence trace are stochastically independent.

5 All other sequences in U start with illegal witness subsequences.
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6 Proof of ZKP Properties for Our Protocols

In this section, we prove the completeness, soundness, and zero-knowledge of our
proposed protocols based on the formalization presented in Section 5.

6.1 3-coloring Problem

We prove that our ZKP protocol for the 3-coloring problem presented in Section 3
satisfies the three conditions.

Theorem 1 (Completeness) If the input sequence Iy corresponding to ¢ con-
tains a correct witness subsequence, the protocol always terminates with the ac-
cepting state qaccept -

Proof. In Step 2(a), we apply a pile-scramble shuffle horizontally to the three
piles. Let m € S5 be a random permutation generated by this pile-scramble
shuffle. Two sequences that represented ¢(i) and ¢(j) before applying the pile-
scramble shuffle become to represent w¢(i) and w¢(j), i.e., the positions of the red
cards in the two sequences are w¢(i)-th and 7¢(j)-th, respectively. By revealing
the two sequences, we can know whether wo(i) = 7o (j) (ie., ¢(i) = ¢(j)) or
not. Therefore, the protocol always terminates with the accept state gaccept- O

Theorem 2 (Soundness) If the input sequence Iy corresponding to ¢ does not
contain any correct witness subsequence, the protocol always terminates with the
rejecting state qreject -

Proof. We consider the case where a sequence placed in Step 1 does not contain a
correct witness subsequence. In Step 2(a), we make vertical piles by pile-scramble
shuffle. That is, the sequence is placed in such a way that 1 (u) = ¥ (v) satisfied
in Step 1. When the turn operation (turn,T) is performed in Step 2(b), it is
found that @ is in the same column, resulting in the rejecting state. ad

Theorem 3 (Zero-knowledge) For any run of the protocol, the distribution
of input and that of the visible sequence trace are stochastically independent.

Proof. In Step 2(b), the sequence to be turned over by the operation (turn,T’)
is randomly selected from the following six patterns:

@ ® ®

21| Y 7 Y/E YE Y|y
SOlls) (SSO] [Ofls]s]

@ ® ®

S[Olls]  (S[S]O] (S]]
EE Y Y IE YR Y|y

Let 7 € S3 be a uniformly randomly generated permutation. This sequence
is transformed by (perm,r). Thus, the visible sequence trace of the protocol
is uniformly distributed. Therefore, the distribution of input and the visible
sequence trace are stochastically independent. a
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6.2 Graph Isomorphism Problem

We prove that our ZKP protocol for the graph isomorphism problem presented
in Section 4 satisfies the three conditions.

Theorem 4 (Completeness) If the input sequence I'y corresponding to 7 con-
tains a correct witness subsequence, the protocol always terminates with the ac-
cepting state qaccept -

Proof. As shown in Section 4.1, there exists a permutation matrix P, for the
adjacency matrices A(G1) and A(G2) of two isomorphic graphs G; and Gy as
follows:

A(G2) = P{A(Gy)Pr.

In Step 4, (perm,(rm=1)~1!) is equal to computing PYA(G), and in Step 9,
(perm, (r"7~1)~1) is equal to computing (P A(G1))P;.
Therefore, the protocol always terminates with gaccept in Step 10. O

Theorem 5 (Soundness) If the input sequence Iy corresponding to ¢ does not
contains any correct witness subsequence, the protocol always terminates with the
rejecting state qreject -

Proof. Consider the case where a witness subsequence placed in Step 1 is not
correct but legal. Let 7’ be a permutation corresponding to that witness subse-
quence. The card sequences in Steps 3, 4, 8, and 9 is transformed by (perm, 7’).
As shown in Section 4.1, if the permutation matrix P, corresponding to m is
used, it is transformed into a sequence corresponding to the graph G) instead
of the graph G4 such that

A(Gh) = PLA(GY) Py,

Thus, when (turn, T') is performed in Step 10, the sequence is different from that
of the adjacency matrix in Ga, resulting in the rejecting state. Next, consider
the case where a sequence corresponding to an illegal witness subsequence is
placed. In this case, when (turn,T) is performed in Step 10, it is found that the
sequence does not follow the format of the sequence, resulting in the rejecting
state as well. O

Theorem 6 (Zero-knowledge) For any run of the protocol, the distribution
of input and that of the visible sequence trace are stochastically independent.

Proof. As seen in Section 2.2, pile-scramble shuffles are applied so that ran-
dom permutations r,7’,r" are generated. The sequence in Steps 3, 5, and 8 is
transformed by (perm,r), (perm,r'), and (perm,r"), respectively. Thus, the visible
sequence trace of the protocol is uniformly distributed. Therefore, the distribu-
tion of input and the visible sequence trace are stochastically independent. 0O
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7 Conclusion

In this paper, we proposed physical ZKP protocols using a deck of cards for
the two major graph problems. Our protocols have no soundness error and they
are easy to implement. In particular, it is interesting to note that our ZKP
protocol for the graph isomorphism problem requires only three shuffles. Similar
to the proposed protocol, we believe that we can propose a card-based ZKP
with no soundness error for other graph problems. In addition, we constructed
a rigorous definition of a card-based ZKP protocol that is non-interactive and
with no soundness error.

As future work, we are interested in the subgraph isomorphism problem® and
in analyzing computation classes in more details. Furthermore, formalizing inter-
active card-based ZKP protocols (e.g., [2,5,16,23]) is an important future task.
In addition, investigating the relationship between our model and the standard
definitions of ZKP in details will be expected.
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