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Abstract. During the last years, many Physical Zero-knowledge Proof
(ZKP) protocols for Nikoli’s puzzles have been designed. In this paper, we
propose two ZKP protocols for the two Nikoli’s puzzles called Nurikabe
and Hitori. These two puzzles have some similarities, since in their rules
at least one condition requires that some cells are connected to each
other, horizontally or vertically. The novelty in this paper is to propose
two techniques that allow us to prove such connectivity without leaking
any information about a solution.
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1 Introduction

Zero-Knowledge Proofs (ZKP) were introduced by Goldwasser et al. [7]. Such
a protocol has two parties: a prover P and a verifier V. The prover P wants
to convince the verifier V' that P knows the solution s of a problem without
revealing any information about s. A ZKP must satisfy the following properties:
Completeness. If P knows s, then P can convince V.

Soundness. If P does not know s, then P cannot convince V.
Zero-Knowledge. V learns nothing about s. Formally, outputs of a simulator
and outputs of the real protocol follow the same probability distribution.

In [5], the authors proved that for any NP-complete problem there exists an
interactive ZKP protocol. A physical ZKP uses only physical algorithms with
day-to-day objects such as cards, envelopes or bags while prohibiting large com-
putations (i.e., no computer allowed). In 2007, the first physical ZKP was intro-
duced for Sudoku [8], which is the most famous Nikoli’s} puzzle. In this paper
we focus on two other Nikoli’s puzzles, Nurikabe and Hitori.

In [10] solving even simple versions of Nurikabe was proven to be NP-complete.
In [9] the authors proved that Hitori is also NP-complete. One might think that
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physical ZKP protocols for Nurikabe and Hitori could be constructed by trans-
forming a known physical ZKP protocol for an NP-complete problem, such as a
lockable-box-based ZKP protocol for 3-Colorability [6]; however, such a transfor-
mation is not practical because the overhead must be included in the transfor-
mation. Besides, the transformed ZKP protocol does not capture the property
of a puzzle.

Contributions: In this paper, we present physical ZKP protocols for Nurikabe
and Hitori using a deck of cards. Our protocols achieve no soundness error. That
is, no malicious P who does not have a solution can convince V' that it has a
solution. Our work is inspired by [12], where P has to convince V of a single
loop property. For Nurikabe and Hitori, we take a similar strategy to [12]. That
is, P first increases the number of black (or white) cells one by one so that the
resulting cells are guaranteed to satisfy the constraint of connectivity; then V'
verifies all the remaining constraints. We note that our protocols in this paper
could not be constructed by simply adapting the existing technique [12].

We emphasize that our proposed protocols can be applied to a situation
where Bob cannot solve by hand a Nurikabe or Hitori puzzle Alice created. In
addition to such really practical applications, we believe that one can add our
protocols (with others such as 3-Colorability one for instance) to introduce the
notion of a ZKP system to non-experts such as high school students.

Related Work: Efficient physical ZKP protocols for Nikoli puzzles have been
proposed: Sudoku [8,19], Akari [2], Takuzu [2, 13], Kakuro [2,14], Kenken [2],
Makaro [3], Norinori [4], Slitherlink [12], Juosan [13], Suguru [16], Ripple Ef-
fect [18], and Numberlink [17]. An important step in this line of research is to
achieve no soundness error.

Nurikabe’s rule: This puzzle is formed by a rectangular grid where some cells
contain numbers (Figure 1). The goal is to color some cells in black as follows:

1. Each numbered cell tells the number of continuous white cells surrounded
by black cells. Such a region is called an island.

2. An island must contain only one numbered cell.

The black cells form a connected figure (called a sea).

4. The sea cannot form a 2 x 2 area.

w

Fig. 1. Initial Nurikabe grid on the left and its solution on the right.
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Fig. 2. Initial Hitori grid on the left and its solution on the right.

Hitori’s rule: This puzzle is a grid where each cell contains a number as in the
example of Figure 2. The goal is to color in black some cells with the following
constraints:

1. Each row and each column must contain only one occurrence of a number.

2. The black cells cannot touch side to side although they can be diagonal.

3. The numbered cells must be connected to each other, horizontally or verti-
cally.

2 Preliminaries

We introduce some notations of cards and shuffles and explain simple physical
sub-protocols used in our constructions.

Card: A deck of cards used in our protocols consists of clubs [d] ] - - -, hearts
[Q]9]-- -, and number cards .-+, whose backs are identical [ 7 |. We encode

three colors with the order of two cards as follows:

black < [&][Q], white - [Q]&], red « [O]D]. (1)

We call such a face-down two cards corresponding to a color according to
the above encoding rule a commitment to the respective color. We also use the
terms, a black commitment, a white commitment, and a red commitment.

Pile-shifting shuffle [15,20]: This shuffling action means to cyclically shuffle piles
of cards. More formally, given m piles, each of which consists of the same number
of face-down cards, denoted by (p1,p2,...,Pm), applying a pile-shifting shuffle
(denoted by < -|---|- >) results in (Pst1, Psi2, - - -, Pstm):

< >H
= =<~

~ | =~ =
pP1 P2 Pm Pstl Ps2 DPstm

where s is uniformly and randomly chosen from Z/mZ. Implementing a pile-
shifting shuffle is simple: We use physical cases that can store a pile of cards,
such as boxes and envelopes; a player (or players) cyclically shuffle them by hand
until nobody traces the offset.



Chosen pile protocol [4]: This is an extended version of the “chosen pile cut”
proposed in [11]. Given m piles (p1,Pp2,...,Pm) with 2m additional cards, the
chosen pile protocol enables a prover P to choose the i-th pile p; and replace
back the sequence of m piles to their original order.
1. Using m — 1[&]s and one [O], P places m face-down cards (denoted row 2)
below the given piles such that only the ¢-th card is @ We further put m
cards (denoted row &) below the cards such that only the first card is [Q]:

+ row 2

2. Considering the cards in the same column as a pile, apply a pile-shifting
shuffle to the sequence of piles.

3. Reveal all the cards in the row 2. Then, one @ appears, and the pile above
the revealed [Q] is the 4-th pile (and hence, P can obtain p;). When this
protocol is invoked, certain operations are applied to the chosen pile. Then,
the chosen pile is placed back to the i-th position in the sequence.

4. Remove the revealed cards, i.e., the cards in the row 2. (Note, therefore, that
we do not use the card @ revealed in Step 3.) Then, apply a pile-shifting
shuffle.

5. Reveal all the cards in the row 3. Then, one @ appears, and the pile above
the revealed @ is p1. Therefore, by shifting the sequence of piles (such that
p1 becomes the first pile in the sequence), we can obtain a sequence of piles
whose order is the same as the original one without revealing any information
about the order of input sequence.

Input-preserving five-card trick [13]: Given two commitments to a,b € {0,1}
based on the encoding: [&[Q]= 0 and [O]&]= 1, this sub-protocol [1,13] starts
by adding extra cards and rearranging the commitment to a so that we have the
negation @, as follows: [7]7] [2]7] - [2]7] [0][2]7] [1]2]3]4]5]-

_— = == ==

a b a b
The sub-protocol proceeds as follows to reveal only the value of a A b as well

as restore commitments to a and b:
1. Rearrange the sequence of cards and then turn over the face-up cards as:
IOl 2] ]2]3]4]5] — [2]2]@]2]?] — [2]z]2]?]?]-

1]12]3]|4]|5 i d d il s
2. Regarding cards in the same column as a pile, apply a pile-shifting shuffle
to the sequence: < ' : > -

-~

3. Reveal all the cards in the first row, if the resulting sequence is:
(a) [ R][OTD[D] (up to cyclic shifts), then we have a Ab = 1.
(b) [O]&]P] ][] (up to cyclic shifts), then we have a A b = 0.

4. After turning over all the face-up cards, apply a pile-shifting shuffle.

5. Reveal all the cards in the second row, i.e., all the number cards. Then,
rearrange the sequence of piles so that the revealed number cards are in
ascending order again to restore commitments to a and b.




3 ZKP Protocol for Nurikabe

We propose a ZKP protocol for Nurikabe, which is composed of three phases:
the setup phase, the sea formation phase, and the verification phase. The full
security proof is provided in (HAL), we only give here a sketch in Section 3.4.
Consider a puzzle instance of a p X ¢ grid containing m numbered cells such
that the ith numbered cell (in any order) has a number z; for every i, 1 <
i < m. Remember that an island of a Nurikabe puzzle must contain exactly one
numbered cell, and the number of white cells inside the island is indicated by the
number written on the numbered cell. Thus, the number of (filled) black cells in
the solution, denoted by Ny, is the difference between the number of total cells

m
and the white cells (including the numbered cells), so N, = pg — Z ;.

i=1
Thus, this number N, can be regarded as public information, and indeed, we
use the number NV, explicitly in our protocol.
Before going into the details of our protocol, let us define a neighbour cell
and show a sub-protocol called the 4-neighbour protocol that is important for
constructing our ZKP protocols.

Neighbour cell: Consider a target cell ¢; on a grid. A cell is a neighbour of ¢; if
it is next to ¢;, on the left, the right, the top, or the bottom but not in diagonal.

4-neighbour protocol: Given pg commitments placed on a p x ¢ grid, a prover
P wants to reveal a target commitment and another one that lies next to the
target commitment. Here, a verifier V' is convinced that the second commitment
is a neighbour of the first one (without knowing which one) as well as V' con-
firms the colors of both the commitments. To handle the case where the target
commitment is at the edge of the grid, we add red commitments (as “dummy”
commitments) around the grid to prevent P from choosing a commitment that
is not a neighbour. Thus, the size of the new grid is (p + 2) X (¢ + 2).

This protocol uses the chosen pile protocol (Section 2) twice. P first uses the
chosen pile protocol to reveal a target commitment. Since a pile-shifting shuffle
is a cyclic reordering, the distance between commitments are kept (up to a given
modulo). That is, for a target commitment (not at the edge), the possible four
neighbours are at distance 1 for the left or right one, and p + 2 for the bottom
or top one. Therefore, V and P can determine the positions of all the four
neighbours. Among these, P chooses one commitment by using the chosen pile
protocol again, and reveals it. This convinces V that the second commitment
is indeed a neighbour. The rest of the protocol is to end the second and first
chosen pile protocols.

3.1 Setup Phase

The verifier V' and the prover P place a white commitment on each cell of a given
p x ¢ grid and place red commitments (as “dummy” commitments) around the
grid so that we have (p + 2)(¢ + 2) commitments on the board.



3.2 Sea Formation Phase

In this phase, P forms a sea on the board, i.e., P replaces a white commitment
with a black commitment one by one according to the solution which only P
knows, while hiding any information about the solution to V.

Let N, be the number of black cells in the solution. This phase proceeds as
follows.

1. P uses the chosen pile protocol to choose one white commitment which P
wants to replace.

(a) V reveals the chosen commitment; if it corresponds to white, V' swaps
the two cards constituting it so that the two cards become a black com-
mitment. Otherwise, V' aborts.

(b) P and V end the chosen pile protocol to return the commitments to
their original positions.

2. Repeat the following steps exactly N, — 1 times:

(a) P chooses one black commitment as a target and one white commitment
among its neighbours using the 4-neighbour protocol; the neighbour is
chosen such that P wants to make it black.

[]
[l ]
[]

(b) V reveals the target commitment. If it corresponds to black, V' continues;
otherwise V aborts.

(¢) V reveals the neighbour commitment (chosen by P). If it corresponds
to white, V' swaps the two cards constituting it to make it be a black
commitment; otherwise V aborts.

(d) P and V end the 4-neighbour protocol.

3. P and V replace every red commitment (i.e., dummy commitment) with a
black commitment.

After this process, V is convinced that all the black commitments form a con-
nected sea (rule 3).

3.3 Verification Phase

V first verifies that the current commitments placed on the grid (after the sea
formation phase) satisfy the rule 4 (forbidden 2 x 2 area). Then, V' verifies the
rules 1 and 2, relating to the white commitments (island constraints).

Sea rule: Forbidden area. The prover P wants to convince V' that any 2 x 2 area
contains at least one white cell. Note that all 2 x 2 areas are determined given
an initial grid. Indeed, for a given p x ¢ grid, there are (p — 1)(¢ — 1) possible
squares.

Thus, P and V consider each 2 x 2 area of commitments one by one (in any
order) and will repeat the following for each possible square:



1. P chooses a white commitment on this square via the chosen-pile protocol
applied to the four commitments.

2. V reveals the commitment marked by P. If the revealed commitment corre-
sponds to white, then V is convinced that the square is not formed by only
black commitments. Otherwise, V' aborts.

O] 4]

— Chosen pile protocol —

HEH)

Island rules. P wants to convince V that the white cells respect the constraints.
There are two verifications to make. Only one numbered cell for a given re-
gion and all white commitments are connected inside the region. Those two
constraints are verified in the following protocol:

Let n > 2 be the number written on a given numbered cell .t

1. V reveals the commitment on the numbered cell. If it corresponds to white,
V replaces it with a red commitment; otherwise V' aborts.
2. Repeat the following steps exactly n — 1 times.
(a) P uses the 4-neighbour protocol to choose a red commitment as a target
and one white commitment among its neighbours.
(b) V reveals the target commitment. If it corresponds to red, V' continues;
otherwise V' aborts.
(¢) V reveals the neighbour commitment (chosen by P). If it corresponds to
white, V replaces it with a red commitment; otherwise V' aborts.
(d) P and V end the 4-neighbour protocol to return the commitments to
their original positions.

Now, V is convinced that the size of the island consisting of white cells is greater
than or equal to n. To show that it is equal to n, it suffices to prove that there
exists no white cell around them, as follows.

3. V replaces the commitment on the numbered cell with a black commitment.
4. Repeat the following steps exactly n — 1 times.

(a) P uses the chosen pile protocol to choose a red commitment.

(b) V reveals the chosen commitment. If it corresponds to red, V' continues;
otherwise V aborts.

(¢) Remember that P wants to show that any of four neighbour commit-
ments is not white. Recall also the encoding (1), i.e., note that the right
card of a black or red commitment is a heart @ V' reveals the right card
of each of the four neighbours. If all of them are hearts (which means
that all the commitments do not correspond to white), V' replaces the
chosen commitment with a black commitment; otherwise V' aborts.

HY
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§ For a numbered cell where 1 is written, V simply reveals the commitment on it and
its four neighbours to confirm that the island is surrounded by the sea.



(d) P and V end the chosen pile protocol to return the commitments to
their original positions.

By applying the above steps to all the numbered cells, V' is convinced that
the placement of the commitments satisfies all the constraints, i.e., P has the
solution.

3.4 Security Proofs

We give the following theorems to show that our protocol respects the security
properties. All the proofs of our theorems are given in (HAL), we only give here
a proof sketch.

Theorem 1 (Completeness). If P knows a solution of a Nurikabe grid, then
it can convince V.

Proof (sketch). We suppose that P knows the solution s of the grid and runs the
setup phase. P is able to perform the proofs for the sea formation since all the
black cells are connected. P is also able to end the verification phase. Basically,
since s is a solution, all the rules are verified.

Theorem 2 (Soundness). If P does not provide a solution of the p x ¢ Nurik-
abe grid G, it is not able to convince V.

Proof (sketch). We suppose that P does not know the solution s and the proof
is about showing that V will always detect it. Notice that the commitments of
P form a connected figure (otherwise the protocol is ended without any verifica-
tion). There are two cases to consider for the verification; (1) the forbidden area,
if all the commitment are black on a 2 x 2 square then V will detect it since P
cannot choose a white commitment, and (2) the island rules, where two invalid
shapes can occur, when a region is completely covered with another region and,
a part of a region is covered with another one. In both cases, we show that V'
will detect it using the protocol.

Theorem 3 (Zero-knowledge). V learns nothing about P’s solution of the
gwen grid G.

Proof (sketch). We use the same technique as in [8]; zero-knowledge is induced
by a description of an efficient simulator which simulates interaction between
a cheating verifier and a real prover. However, the simulator does not have a
solution but it can swap cards for different ones during shuffles. The aim of
the proof is to describe the behaviour of this simulator. Basically, the simulator
creates a random connected figure of size N, and during the verification, it swaps
the cards to verify the rules.



4 ZKP Protocol for Hitori

We present a ZKP protocol for Hitori. The full security proof is provided in
(HAL); we only give here a sketch presented in Section 4.4. Similar to our pro-
tocol for Nurikabe presented in Section 3, we let P choose a commitment which
P wants to make white so that V' is convinced that the resulting numbered cells
are connected each other. However, we note that for Hitori the size of numbered
cells could be information about the solution. That is, we cannot simply use the
sea formation phase shown in Section 3.2. Therefore, we construct a sub-protocol
called the still-black protocol as follows.

Still-black protocol: Given a black commitment, P can choose either changing
it (i.e., swapping the two cards constituting the commitment) or not without V'
noticing it, as follows.

1. V reveals the given commitment to confirm that it is surely a black commit-
ment.

2. If P wants to change the commitment, P places face-down club-to-heart
below it; otherwise heart-to-club: — or[7][7].
& O O &
3. Regarding cards in the same column as a pile, V applies a pile-shifting shuffle
to the sequence of piles.
4. V reveals all the cards in the second row. If the revealed card on the right is
a heart @, V swaps the two cards in the first row; otherwise V' does nothing.

4.1 Setup Phase

Put a black commitment on each cell of the p x ¢ grid and red commitments
around the grid.

4.2 Connectivity Phase

This phase follows the same steps as the ones in the sea formation phase shown
in Section 3.2 (where a white commitment is regarded as a black one and vice
versa) except for Step 2¢; instead of swapping the two cards, V and P use the
still-black protocol so that P can choose either swapping the two cards or not.
(Remember that P cannot change a white commitment into black.) Note that
the steps are repeated exactly pg — 1 times.

After the above process, V is convinced that the resulting commitments
represent a connected (white) figure (rule 3) and information about the number
of the white commitments is hidden from V.



4.3 Verification phase

One occurrence for each row/column. Here, V checks if each row and column
contains only one occurrence of a number. The idea is that for a given row or
column it suffices to look at only numbered cells that appear k > 1 times and
confirm that the k& commitments on the numbered cells correspond to either k
blacks or k — 1 blacks. For a given row or column, this verification proceeds as
follows.

1. V looks for numbered cells that appear more than once; take such a number
which appears exactly & > 1 times. Then, V picks the corresponding k
commitments.

2. P uses the chosen pile protocol to choose a white commitment among the
k commitments if it exists; otherwise P uses the one to choose any commit-
ment.

3. V reveals the kK — 1 commitments that are not chosen by P. If all of them
correspond to black (this means that the & commitments correspond to k or
k — 1 blacks), V continues; otherwise V' aborts.

4. V and P end the chosen pile protocol to return the k¥ commitments to their
original places.

5. V and P repeat the above steps for all numbers that appear twice or more.

Lonely black. V checks that black cells are isolated from each other. Let a white
commitment correspond to bit 0 and a black to 1. For each pair of adjacent
commitments, V applies the input-preserving five-card trick (Section 2) to the
two commitments. If the output is 0, V' continues; otherwise V aborts.

4.4 Security Proofs

Theorem 4 (Completeness). If P knows a solution of a Hitori grid, then it
can convince V.

Proof (sketch). Suppose that P knows the solution; thus P can perform the
connectivity and verification phases without aborting. There are two cases to
consider, when P wants to change the black commitment and when P wants a
black commitments to be still black.

Theorem 5 (Soundness). If P does not provide a solution of the p x q Hitori
grid G, then it is not able to convince V.

Proof (sketch). Suppose that P does not know the solution. The proof consists
in showing that V will detect it using the protocol. Without loss of generality,
suppose that P gives correct commitments (i.e., white cells are connected) with-
out corresponding to the solution, we show that V' detects that the uniqueness
and the lonely black constraints are not respected.

Theorem 6 (Zero-knowledge). V learns nothing about P’s solution of the
given grid G.

Proof (sketch). The same technique as for Nurikabe is used, namely the presence
of a simulator that does not know the solution but can swap cards randomly.

10



5 Conclusion

We proposed two ZKP protocols for Nurikabe and Hitori. These two Nikoli’s
puzzles require that some cells of the solution are continuous without any pre-
cision on the number of cells in Hitori and without an exact number of cells
in Nurikabe. We designed two methods and encoding for solving this continuity
challenge and also respecting the other rules of the puzzles.

In the future, we aim at solving more challenging puzzles with other rules that
also involve a kind of continuity property. For instance, in the puzzles Shikaku
and Shakashaka, the goal is to draw rectangles of a certain size, which does not
seem easy.
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