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Abstract. We propose a new technique to construct physical Zero-
Knowledge Proof (ZKP) protocols for games that require a single loop
draw feature. This feature appears in Slitherlink, a puzzle by Nikoli. Our
approach is based on the observation that a loop has only one hole and
this property remains stable by some simple transformations. Using this
trick, we can transform a simple big loop, visible to anyone, into the
solution loop by using transformations that do not disclose any informa-
tion about the solution. As a proof of concept, we apply this technique
to construct the first physical ZKP protocol for Slitherlink.
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1 Introduction

Zero-Knowledge Proof (ZKP) systems are powerful cryptographic tools that were
introduced by Goldwasser, Micali, and Rackoff in [10]. It was then shown that for
any NP-complete problem, there exists an interactive ZKP protocol [9]. Later,
one of the first physical ZKP protocols was introduced by Naor et al. in [11] for
a popular puzzle, Sudoku. In the mentioned article, a prover wants to prove to
a verifier that he/she knows the solution of a Sudoku puzzle instance using only
physical objects; to this end, in that paper the authors used only cards. Recently
in [21], better ZKP protocols have been proposed in terms of numbers of cards
used and complexity. They used envelopes and physical tricks to improve the
original protocol.

Nikoli5 is a Japanese company famous for designing puzzles. The list of puz-
zles created by Nikoli contains more than 40 different kinds of puzzles including
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Sudoku. In this paper, we focus on Slitherlink that was introduced in 1989 in
issue the 26th of Nikoli’s Puzzle Times. It is also known as Loop-the-Loop. It
is explained on Nikoli’s web site as follows: “Getting the loop right is absorbing
and addictive. Watch out not to get lost in Slitherlink. It’s amazing to see how
endless patterns can be made using only four numbers (0, 1, 2 and 3)”. Slither-
link was proven to be NP-complete in [23] and other variants in [16]. It means
that applying the technique of [9] to construct a ZKP is possible.

Our aim is to propose a physical ZKP protocol for this game. Slitherlink is
not like other Nikoli’s games since it requires to draw a single loop to solve
the puzzle. This feature of the game is a challenge that was not present in the
previous physical ZKPs for Nikoli’s puzzles [4–6,8, 11,21].

Contributions: We introduce a new technique to construct a ZKP protocol
for a puzzle where constructing a single loop is one of the requirements of the
solution. The difficulty is to avoid leaking any information regarding the solution
to the verifier. For this, we use a topological point of view; more precisely, we use
the notion of homology that defines and categorizes holes in a manifold. The main
idea is that after any continuous transformations, the number of holes always
remains the same. Using this simple idea, we construct transformations that
preserve the number of loops in the solution. First, the verifier checks that the
initial configuration has only a single big loop. Then, by transforming in several
steps this trivial big loop into the solution, the prover convinces step after step
that the solution has only one loop at the end by proving that the transformation
does not break the loop or introduce an extra hole. This construction is applied
to Slitherlink in this article but it can be used for any other puzzles that require
such type of features in their rules.

Related works: Since Naor et al. [11] introduced the first physical ZKP proto-
col for the Sudoku, physical ZKPs for other puzzles (proven to be NP-complete)
have been proposed, e.g., Nonogram [6], Akari, Takuzu, Kakuro, Kenken [4],
Makaro [5], and Norinori [8]. All these ZKPs deal with numbers. For example,
in Sudoku, a prover has to show the verifier that each column, row, and subgrid
contain all the numbers from one to nine.

Physical objects enable us to perform secure computation without relying
on computers: such examples are a PEZ dispenser [2], tamper-evident seals [18],
and a deck of cards [3]. Among them, secure computation with a deck of cards,
called card-based cryptography, has been widely studied. Especially, for secure
computation of logical AND function, the number of required cards have been
reduced in [7, 15, 17, 19, 22], and necessary and sufficient numbers of cards have
been provided in [13,15].

However, these works do not deal with proving the topological feature of
having a single loop in the solution.
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Fig. 1. Example of a standard Slitherlink challenge, and its solution.

Outline: In Section 2, we define the rules of Slitherlink, the formal definition
of ZKP, and the notation used in this paper. In Section 3, we describe our ZKP
protocol for Slitherlink. In Section 4, we show the security proofs of ZKP.

2 Preliminaries

Rules of Slitherlink

Slitherlink is one of the most famous pencil puzzles published in the puzzle
magazine Nikoli. The puzzle instance consists of lattice-like dots where some
squares contain numbers between 0 and 3. The goal of the puzzle is to draw
lines that satisfy the following rules [1]:

1. Connect vertical/horizontal adjacent dots with lines to make a single loop.
2. Each number indicates the number of lines that should surround its square,

while empty squares may be surrounded with any number of lines.
3. The loop never crosses itself and never branches off.

Figure 1 shows an example of a Slitherlink puzzle and its solution; one can easily
verify that all conditions are satisfied.

Zero-Knowledge Proof

A Zero-Knowledge Proof (ZKP) is a secure two-party protocol between a prover
P and a verifier V . Formally, they both have an instance of I of a problem and
only P knows the solution w. The prover P wants to convince V that he/she
knows w without revealing any information about w. Such a proof is called a
zero-knowledge proof, if it satisfies the following three properties.
Completeness. If P knows w, then P can convince V .
Extractability. If P does not know w, then P cannot convince V .
Zero-Knowledge. V cannot obtain any information about w. Assuming a

probabilistic polynomial time algorithm M(I) not containing w if outputs
of the protocol and M(I) follow the same probability distribution, the zero-
knowledge property is satisfied.
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Notations

We use the following physical cards: ♣ ♣ · · · ♥ ♥ ; the black ♣ and red ♥
cards are called binary cards. The backs of all cards are identical and denoted
by ? . In our construction, binary cards are used to encode the existence of a
line while number cards are used for rearranging the positions of cards, as shown
later.

Encoding: We encode Boolean values with two binary cards as follows: ♣ ♥ = 0
and ♥ ♣ = 1. Two face-down cards encoding 0 and 1 are called a 0-commitment
and a 1-commitment, which are denoted by 0 and 1 , respectively.

In our protocol, a 0-commitment placed on a gap between two adjacent dots
means that there is no line on the gap, and a 1-commitment means that there is
a line on the gap. With this encoding, we can represent a loop that is made of
several lines. Note that given an x-commitment for x ∈ {0, 1}, swapping the two
cards consisting the commitment results in an x-commitment; thus, negation
can be easily done.

Shuffle: Given a sequence of m face-down cards (c1, c2, . . . , cm), a shuffle re-
sults in a sequence

(
cr−1(1), cr−1(2), . . . , cr−1(m)

)
, where r ∈ Sm is a uniformly

distributed random permutation and Sm denotes the symmetric group of degree
m.

Pile-Shifting Shuffle: The goal of this operation, which is also called Pile-Shifting
Scramble [20], is to cyclically shuffle piles of cards. That is, given m piles,
each of which consists of the same number of face-down cards, denoted by
(pile1, pile2, . . . , pilem), applying a Pile-Shifting Shuffle results in (piles+1, piles+2,
. . . , piles+m):

?︸︷︷︸
pile1

?︸︷︷︸
pile2

· · · ?︸︷︷︸
pilem

→ ?︸︷︷︸
piles+1

?︸︷︷︸
piles+2

· · · ?︸︷︷︸
piles+m

,

where s is uniformly and randomly chosen from Z/mZ. To implement Pile-
Shifting Shuffle, we use physical cases that can store a pile of cards, such as
boxes and envelopes; a player (or players) cyclically shuffle them by hand until
nobody traces the offset. It can be done by physical object as the one created
for the physical ZKP for Sudoku in [21].

Pile-Scramble Shuffle: Pile-Scramble Shuffle is a well-known shuffle operation
which was first used in [12]. As mentioned above, let us denote m piles by
(pile1, pile2, . . . , pilem). For such a sequence of piles, applying a Pile-Scramble
Shuffle results in (piler−1(1), piler−1(2), . . . , piler−1(m)), where r ∈ Sm is a uni-
formly distributed random permutation. A Pile-Scramble Shuffle uses similar
material as Pile-Shifting Shuffle but its operation is similar to Shuffle.
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Chosen Pile Cut: It was proposed in [14]. Chosen Pile Cut enables a prover to
choose a pile pilei from m piles (pile1, pile2, . . . , pilem) without revealing i to a
verifier. The Chosen Pile Cut proceeds as follows, given m piles along with m
additional cards:

1. The prover P holds m − 1 ♣ s and one ♥ . Then, P places m cards with
their faces down below the piles such that only the i-th card is ♥ :

?︸︷︷︸
pile1

?︸︷︷︸
pile2

. . . ?︸︷︷︸
pilei−1

?︸︷︷︸
pilei

?︸︷︷︸
pilei+1

. . . ?︸︷︷︸
pilem

?
♣

?
♣

. . . ?
♣

?
♥

?
♣

. . . ?
♣

2. Regarding the cards in the same row as a pile, apply Pile-Shifting Shuffle to
the piles (denoted by 〈 · | . . . |· 〉):

〈 ?︸︷︷︸
pile1

?

∣∣∣∣∣∣∣∣
?︸︷︷︸

pile2

?

∣∣∣∣∣∣∣∣ . . .

∣∣∣∣∣∣∣∣
?︸︷︷︸

pilem

?

〉
→

?︸︷︷︸
piles+1

?︸︷︷︸
piles+2

. . . ?︸︷︷︸
piles+m

? ? . . . ? ,

where s is generated uniformly at random from Z/mZ by this shuffle action.
3. Reveal all the cards in the second row. Then, one ♥ appears, and the pile

above the revealed ♥ is pilei, and hence, we can obtain the desired pilei.

Owing to the Pile-Shifting Shuffle in Step 2, revealing cards leaks no information
about i and thus, Chosen Pile Cut leaks no information about i, the index of
the chosen pile.

3 Zero-Knowledge Proof for Slitherlink

In this section, we construct our physical zero-knowledge proof protocol for Slith-
erlink. The outline of our protocol is as follows.

Input Phase: The verifier V puts a 1-commitment (i.e., two face-down cards
encoding 1) on every gap on the boundary of the puzzle board and 0-
commitments on all the remaining gaps. In other words, V creates a single
big loop whose size is the same as the board.

Topology-Preserving Computation Phase: The prover P transforms the
shape of the loop according to the solution. After this phase, V is convinced
that the placement of 1-commitments satisfies Rules 1 and 3 of Slitherlink
without the disclosure of any information about the shape.

Verification Phase: V verifies that the placement of 1-commitments satisfies
Rule 2 of Slitherlink.

We introduce some subprotocols in Section 3.1 before presenting our protocol in
Section 3.2.
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3.1 Subprotocols

Chosen Pile Protocol: This is an extended version of the Chosen Pile Cut [14]
explained in Section 2. Given m piles with 2m additional cards, this protocol
enables P to choose the i-th pile and regenerate the original sequence of m piles.

1. Using m− 1 ♣ s and one ♥ , the prover P places m cards with their faces
down below the given piles such that only the i-th card is ♥ :

?︸︷︷︸
pile1

?︸︷︷︸
pile2

. . . ?︸︷︷︸
pilei−1

?︸︷︷︸
pilei

?︸︷︷︸
pilei+1

. . . ?︸︷︷︸
pilem

?
♣

?
♣

. . . ?
♣

?
♥

?
♣

. . . ?
♣

We further put m cards below the cards such that only the first card is ♥ :

?︸︷︷︸
pile1

?︸︷︷︸
pile2

. . . ?︸︷︷︸
pilei−1

?︸︷︷︸
pilei

?︸︷︷︸
pilei+1

. . . ?︸︷︷︸
pilem

?
♣

?
♣

. . . ?
♣

?
♥

?
♣

. . . ?
♣

?
♥

?
♣

. . . ?
♣

?
♣

?
♣

. . . ?
♣

2. Considering the cards in the same row as a pile, apply a Pile-Shifting Shuffle
to the sequence of piles:

〈 ?︸︷︷︸
pile1

?

?

∣∣∣∣∣∣∣∣∣∣
?︸︷︷︸

pile2

?

?

∣∣∣∣∣∣∣∣∣∣
. . .

∣∣∣∣∣∣∣∣∣∣
?︸︷︷︸

pilem

?

?

〉
→

?︸︷︷︸
piles+1

?︸︷︷︸
piles+2

. . . ?︸︷︷︸
piles+m

? ? . . . ?

? ? . . . ?
,

where s is generated uniformly at random from Z/mZ.
3. Reveal all the cards in the second row. Then, one ♥ appears, and the pile

above the revealed ♥ is the i-th pile (and hence, P can obtain pilei). When
this protocol is invoked, certain operations are applied to the chosen pile.
Then, the chosen pile is placed back to the i-th position in the sequence.

4. Remove the revealed cards, i.e., the cards in the second row. Then, apply a
Pile-Shifting Shuffle:〈 ?︸︷︷︸

piles+1

?

∣∣∣∣∣∣∣∣
?︸︷︷︸

piles+2

?

∣∣∣∣∣∣∣∣ . . .

∣∣∣∣∣∣∣∣
?︸︷︷︸

piles+m

?

〉
→

?︸︷︷︸
piles′+s+1

?︸︷︷︸
piles′+s+2

. . . ?︸︷︷︸
piles′+s+m

? ? . . . ? ,

where s′ is generated uniformly at random from Z/mZ.
5. Reveal all the cards in the second row. Then, one ♥ appears, and the pile

above the revealed ♥ is pile1. Therefore, by shifting the sequence of piles,
we can obtain a sequence of piles whose order is the same as the original one
without revealing any information about the order of input sequence.
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Fig. 2. Three transformations.

Verifying-Degree Protocol: This protocol can verify that the “degree” of a
target vertex (dot) is not four. Here, degree means the number of 1-commitments
placed around a target vertex. Thus, the prover P wants to prove that there is
at least one 0-commitment around the target vertex (when only P knows what
the four commitments around the target are).

The Verifying-Degree Protocol proceeds as follows.

1. Given four commitments that are placed around the target vertex, these can
be regarded as a sequence of 4 commitments:

·
? ?

· ? ? · ? ? ·
? ?
·

→ ? ? ? ?

2. By using Chosen Pile Protocol, P chooses one of the 0-commitments. Open
the chosen pile to show that it is 0. Now, V is convinced that the degree
of the target vertex is not four. Then, V turns over all the opened cards.
Because only a 0-commitment is always opened, no information about the
four commitments is disclosed.

3. V performs the remaining steps in the Chosen Pile Protocol. Then, all the
cards are placed back to their original positions.

Topology-Preserving Computation: This protocol changes a given loop into
another loop by one of the three transformations given in Figure 2. Each trans-
formation changes the lines surrounding a square, represented by dash line in
Figure 2.

Remember that a line is expressed by a commitment (i.e., two face-down
binary cards) in our protocol. Therefore, for example, a (2,2)-transformation
means

· 1 ·
1 0
· 0 ·

→
· 0 ·
0 1
· 1 ·

This can be implemented by swapping two cards of each commitment. (Remem-
ber that swapping the two cards performs negation of a commitment.) A (3,1)-
transformation and a (1,3)-transformation can also be implemented by swapping
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two cards of each commitment:

· 1 ·
0 1
· 1 ·

→
· 0 ·
1 0
· 0 ·

· 0 ·
0 0
· 1 ·

→
· 1 ·
1 1
· 0 ·

Now, P wants to apply one of the three transformations while the applied
transformation is hidden from V . Furthermore, P needs to show that the com-
mitments around a target square are “transformable.” Note that the three trans-
formations are applicable to four commitments around a square if and only if
there exists a 0-commitment facing a 1-commitment.

Topology-Preserving Computation proceeds as follows.

1. Pick four commitments around a target square:

? ? ? ?

2. P chooses a 0-commitment facing a 1-commitment using Chosen Pile Pro-
tocol.

3. V reveals the chosen commitment and the commitment that is two piles
away from it:

↓ ↓
? ? ? ?

♥ ♣ ♣ ♣
? ? ? ?

Then, V checks that the two commitments are a 0-commitment and a 1-
commitment to be convinced that any transformation can be applied.

4. After turning over all the opened cards, V performs the remaining steps
in the Chosen Pile Protocol to place all the cards back to their original
positions.

5. Swap the two cards of each of the four commitments. (Remember that this
results in negating all the four commitments, and hence, a transformation is
applied.)

6. V applies a Verifying-Degree Protocol to each of the four dots of the target
square. Then, V is convinced that no dots of degree four have been obtained
as the result of transformation. This guarantees that the loop was not split
and thus, it remains a single loop.

3.2 Our Construction

As mentioned at the beginning of this section, the main idea behind our protocol
is that the verifier V first creates a big loop and then the prover P transforms the
loop into the solution loop one by one. Let us consider a puzzle instance shown
in Figure 3 as an example. Our protocol transforms the loop as illustrated in
Figure 4.

We are now ready to present the full description of our zero-knowledge proof
protocol for Slitherlink.
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Fig. 3. Small example of Slitherlink challenge, and its solution.
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Fig. 4. Transformation process.

Input Phase: The verifier V puts a 1-commitment on every gap on the bound-
ary of the puzzle board and 0-commitments on all the other gaps. This placement
corresponds to the single loop with the same size as the board. The following is
an example of the placement of (2× 2)-square puzzle board:

· 1 · 1 ·
1 0 1
· 0 · 0 ·
1 0 1
· 1 · 1 ·

P will apply Topology-Preserving Computation to these commitments to trans-
form the shape of the loop into the solution. Here, P needs to hide the target
square. Therefore, we make a sequence of piles from the placed cards, pick the
four target commitments using the Chosen Pile Protocol, and apply Topology-
Preserving Computation. To properly pick the four commitments, a sequence of
piles is formed, as follows.

We first expand the puzzle board by adding dots around the original board.
(For explanation, the expanded dots are denoted by �.)

� � � � �

� · 1 · 1 · �
1 0 1

� · 0 · 0 · �
1 0 1

� · 1 · 1 · �

� � � � �

Note that the expanded area is unrelated to the actual puzzle board. V puts
dummy commitments on the gaps at the expanded area other than the right
and the bottom ends. Each dummy commitment consists of two black cards
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♣ ♣ to prevent the loop from spreading over the expanded area. We denote the
dummy commitment by ♣ .

� ♣ � ♣ � ♣ � ♣ �
♣ ♣ ♣ ♣
� ♣ · 1 · 1 · ♣ �
♣ 1 0 1
� ♣ · 0 · 0 · ♣ �
♣ 1 0 1
� ♣ · 1 · 1 · ♣ �
♣ ♣ ♣ ♣
� � � � �

Next, V makes a sequence of 4-card piles as follows. For each square, V first
makes a pile from the commitments placed on the left and the top (the com-
mitment on the gap between each vertically consecutive dots is placed on the
commitment on its upper right.)

� ♣ ♣ � ♣ ♣ � ♣ ♣ � ♣ ♣ �

� ♣ ♣ · 1 1 · 0 1 · 1 ♣ �

� ♣ ♣ · 1 0 · 0 0 · 1 ♣ �

� ♣ ♣ · ♣ 1 · ♣ 1 · ♣ ♣ �

� � � � �

Then, pick 4-card piles from top to bottom:

♣ ♣ ♣ ♣ ♣ ♣ . . . ♣ 1 ♣ 1 ♣ ♣

to make a sequence of piles:

? ? ? . . . ? ? ?

Topology-preserving computation phase: In this phase, P applies trans-
formations (explained in Section 3.1) to stepwise change the big loop to the
solution loop. Let n be the size of the puzzle instance, namely the number of
squares on the puzzle board. Then, note that P can make the solution loop by
at most n transformations.

1. P applies the following exactly n−1 times such that either the resulting loop
is already the solution, or one more transformation will end up the solution.
(This is possible because successive two transformations (of the same) to the
same square keep the loop unchanged.)
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(a) P applies the Chosen Pile Protocol to the sequence of 4-card piles: P
picks a 4-card pile composed of left and top edges of the square that
P wants to transform. The other edges can be picked by counting the
distance from the chosen pile6.

(b) P applies the Topology-Preserving Computation to the four picked com-
mitments.

(c) V performs the remaining steps in the Chosen Pile Protocol to place the
cards back to their original positions.

2. P applies one more transformation or does not change the solution loop so
that V does not learn which action occurs, as follows.
(a) Similarly to Step 1 (a) above, P picks four commitments around the

target square.
(b) By using the method explained in Topology-Preserving Computation,

V confirms that any transformation is applicable.
(c) V arranges the four commitments vertically and makes a pile from each

column:
? ?
? ?
? ?
? ?

→ ? ?

Note that swapping two piles results in inverted value of each commit-
ment. Thus, it is equivalent to applying a transformation.

(d) Using the Chosen Pile Cut, if P wants to transform the target square,
then P chooses the right pile; otherwise, the left pile is chosen.

(e) Rearrange the cards vertically such that the chosen pile is placed at left:

?︸︷︷︸
Chosen pile

?
→

? ?
? ?
? ?
? ?

(f) V makes four commitments from each row, performs the remaining steps
in the Chosen Pile Protocol, and places each commitment back to their
original position.

3. Finally, all cards are placed on the puzzle board and the cards at the dummy
area are removed.

Verification phase: V is now convinced that the placement of 1-commitments
is a single loop (Rule 1) and it never branches off (Rule 3). Therefore, V only
needs to verify that the placement satisfies Rule 2 of Slitherlink.

Now, V verifies that the number on each square is equal to the number of
lines surrounding it. The verification proceeds as follows, where we virtually

6 In the above example, the bottom edge corresponds to the pile which is 4 piles away
from the chosen pile. Note that the distance between any two piles never changes
because only Pile-Shifting Shuffle is applied.
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assume that the board is colored like a checkered pattern so that all squares
in the first row are alternation of blue and yellow, those in the second row are
alternation of yellow and blue, and so on.

1. V picks all left cards (if the square is virtually blue) or all right cards (if the
square is yellow) of four commitments around a square on which a number
is written:

? ? ? ? .

2. P shuffles the four cards.
3. V reveals the four cards.

– If V picked all the left cards of four commitments in Step 1, V checks
that the number of red cards ♥ is equal to the number on the square.

– If V picked all the right cards of four commitments in Step 1, V checks
that the number of black cards ♣ is equal to the number on the square.

4. Apply Steps 1 to 3 to all other numbered squares. (Note that a commitment
is related to at most one blue numbered square and one yellow numbered
square.)

Our protocol uses 6(p + 2)(q + 2) + 8 cards in total, where we have a p × q
board.

4 Security Proofs for Our Construction

In this section, we show that our construction satisfies the completeness, ex-
tractability, and zero-knowledge properties.

Completeness: In the input phase, V is convinced that 1-commitments are
placed in a single loop because V does the operations by himself/herself, and
hence, V is convinced that the placement satisfies Rules 1 and 3 of Slitherlink.
As explained in Section 3.1, the transformations are applied to only applica-
ble squares. Thus, every transformation is performed while preserving Rules 1
and 3. By verifying that the placement satisfies Rule 2 in verification phase, V
is convinced that P knows the solution. Therefore, if P has a solution for the
puzzle then P can always convince V .

Remember that P uses only (3,1)-, (1,3)-, and (2,2)-transformations in the
Topology-Preserving Computation to transform a single loop into the shape of
the solution. We now prove that this is possible in Theorem 1.

Theorem 1. Let n be the number of squares in the puzzle instance (namely, the
big loop), and let k be the number of squares inside its solution loop. By applying
a transformation to the loop exactly n−k times, the big loop can be transformed
into the solution loop.

To prove Theorem 1, we first show Lemmas 1 and 2.

Lemma 1. The resulting placement of 1-commitments after the Topology-Preserving
Computation always represents a single loop.
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Proof. Remember Steps 2 and 6 in the Topology-Preserving Computation: Due
to Step 2, the target square is guaranteed to be none of the following two ones
(up to rotations).

That is, one of (2,2)-, (3,1)-, and (1,3)-transformations is always applied to the
target square.

Due to the execution of the Verifying-Degree Protocol in Step 6, the following
two transformations that make a loop split cannot occur.

Therefore, it remains a single loop. ut

Lemma 2. For any single loop, there is always a (3,1)-, (1,3)-, or (2,2)-transformation
that increases the number of squares inside the loop by exactly one.

Proof. Consider a single loop; let ` be the number of squares inside the loop. To
prove this lemma, we show that there always exists a square on the board such
that a (3,1)-, (1,3)-, or (2,2)-transformation can be applied to the square such
that ` increases. Note that the loop remains single after the application of the
transformation by Lemma 1.

If ` ≤ 2, a (1,3)-transformation increases the number of squares by one. Thus,
one may assume that ` ≥ 3. Then, any square outside the loop can be classified
in one of the following five types (up to rotations):

If none of (a), (b), and (c) exists, all squares outside the loop are either (d) or
(e), and hence, it would not be a sigle loop. Therefore, at least one square of
type (a), (b), or (c) must exist outside the loop.

Applying a (3,1)-, (1,3)-, or (2,2)-transformation to such an external square
results in increasing ` by one. ut

By these lemmas, Theorem 1 can be proved.

Proof of Theorem 1. By Lemmas 1 and 2, we can always increase the number of
squares inside the solution loop by a transformation. Therefore, we can repeat the
transformation so that the solution loop becomes the big loop. This means that,
conversely, the big loop can be transformed into the solution loop by applying
(3,1)-, (1,3)-, or (2,2)-transformation exactly n− k times. ut
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Extractability: Only the person who knows the solution can transform the loop
so that the shape satisfies Rule 2. Therefore, V can detect any illegal prover in
Verification Phase. Thus, if the prover does not know the solution for a puzzle,
then V will be never convinced, irrespective of P ’s behavior.

More formally, to prove the extractability, we are required to show that any
shape that does not satisfy Rule 1, 2, or 3 is always rejected during the protocol.

Theorem 2. If the prover does not know the solution for the Slitherlink puzzle,
then the verifier always rejects regardless of the prover’s behavior.

To prove Theorem 2, we show that the resulting loop after the Topology-Preserving
Computation always satisfies Rules 1 and 3 (as in Lemma 1) and any single
loop that does not satisfy Rule 2 is always rejected in Verification Phase (as in
Lemma 3). Therefore, any single loop except for the solution is always rejected.

Lemma 3. Any (single) loop that does not satisfy Rule 2 is always rejected in
Verification Phase.

Proof. Consider any (single) loop that does not satisfy Rule 2, i.e., there are
four commitments surrounding a numbered square such that the number of
1-commitments among them is not equal to the number. Due to Step 3 in Veri-
fication Phase, all the left (or right) cards of four commitments are turned over
(after shuffling them), and hence, the number of 1-commitments is revealed. This
means that the verifier can always reject any (single) loop that does not satisfy
Rule 2. ut

Proof of Theorem 2. By Lemma 1, the resulting loop after the Topology-Preserving
Computation is always single, i.e., it satisfies Rules 1 and 3. By Lemma 3, if it
does not satisfy Rule 2, the verifier always rejects it in Verification Phase. That
is, any loop except for the solution cannot go through Verification Phase. ut

Zero-Knowledge: In our construction, all the opened cards have been shuf-
fled before being opened. Therefore, all distributions of opened cards can be
simulated by a simulator M(I) who does not know the solution. For example,
at Step 3 in Verification Phase, the Pile-Scramble Shuffle have been applied to
opened commitments; thus, this is indistinguishable from a simulation putting
randomly 1-commitments such that the number of them is equal to the number
of the square.

5 Conclusion

In this study, we introduced a new technique that can transform a single loop
encoded with physical objects into a new geometrical figure while preserving the
single loop. Furthermore, by using this secure computation, we constructed the
first physical zero-knowledge proof protocol for Slitherlink.
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As we mentioned in Section 1, our construction can be used for other puzzles
that require a feature of drawing a single loop. For example, Masyu published
by Nikoli has the same rule as Slitherlink, i.e., we should draw a single loop that
never crosses itself and never branches off. Therefore, we can easily construct a
physical ZKP protocol for Masyu by executing Topology-Preserving Computa-
tion (and then verifying the other rules).

Because physical ZKP protocols should be executed by humans’ hands, we
usually consider the size of puzzle instance to be bounded by a constant. This
differs from conventional ZKP protocols (relying on computers). Note that people
enjoying a pencil puzzle will not use a computer to solve it, and hence, physical
ZKP protocols are useful and effective for ordinally people.
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