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Abstract. Suppose that a sequence of n cards, numbered 1 to n, is
placed face up in random order. Let k be the number on the first card
in the sequence. Then take the first k cards from the sequence, rear-
range that subsequence of k cards in reverse order, and return them to
the original sequence. Repeat this prefix reversal until the number on
the first card in the sequence becomes 1. This is a one-player card game
called Topswops. The computational complexity of Topswops has not
been thoroughly investigated. For example, letting f(n) denote the max-
imum number of prefix reversals for Topswops with n cards, values of
f(n) for n ≥ 20 remain unknown. In general, there is no known efficient
algorithm for finding an initial sequence of n cards that requires exactly
ℓ prefix reversals for any integers n and ℓ. In this paper, we propose a
physical zero-knowledge proof protocol that allows a prover to convince a
verifier that the prover knows an initial sequence of n cards that requires
ℓ prefix reversals without leaking knowledge of that sequence.

Keywords: Zero-knowledge Proof, Card-based Cryptography, Topswops

1 Introduction

Topswops is a one-player card game in which one randomly arranges n cards,
numbered 1 to n. Given such an initial sequence of n cards, the player rearranges
the sequence as follows. After looking at the number written on the first card,
denoted as k, the player rearranges the first k cards into their reverse order while
leaving the remaining n − k cards unchanged. The player repeatedly applies
such prefix reversals to the current sequence until the number on the first card
in the sequence becomes 1. For example, consider the case where n = 5, and
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Table 1. Values for f(n) and g(n).

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

f(n) (OEIS A000375) 0 1 2 4 7 10 16 22 30 38 51 65 80 101 113 139 159 191 221

g(n) (OEIS A123398) 1 1 2 2 2 1 5 2 1 1 1 1 1 4 6 1 2 1 4

let (3, 1, 4, 5, 2) be an initial sequence. In Topswops, the player rearranges the
sequence as

(3, 1, 4, 5, 2) → (4, 1, 3, 5, 2) → (5, 3, 1, 4, 2) → (2, 4, 1, 3, 5) → (4, 2, 1, 3, 5)

→ (3, 1, 2, 4, 5) → (2, 1, 3, 4, 5) → (1, 2, 3, 4, 5),

so the game ends in seven steps (namely, seven prefix reversals). In this example,
the cards are finally sorted in ascending order. Note that the number of steps
depends on an individual initial sequence and that the n cards may not be finally
sorted in ascending order. For instance, if the initial sequence is (2, 1, 3, 5, 4), the
game ends with (1, 2, 3, 5, 4) after one step, with the cards unsorted.

1.1 Open Problems in Topswops

Topswops is said to be invented by J.H. Conway (see the Introduction in [38]
or p. 116 of [17]). The question of what initial sequences produce the maximum
number of steps has been investigated. For example, recall that the initial se-
quence (3, 1, 4, 5, 2) shown above requires exactly seven steps; it is known that
in the case of n = 5, there is no initial sequence that results in more than
seven steps, and hence, seven is the maximum number of steps for Topswops
with five cards. Therefore, letting f(n) denote the maximum number of steps
for Topswops with n cards, we have f(5) = 7.

Generally, the currently known upper bound on f(n) is O(1.62n) [17,19] and
the currently known lower bound is Ω(n2) [38]. Thus, there is an exponential
gap between the (currently known) upper and lower bounds on f(n), and finding
better bounds to reduce that gap is an open problem.

Since there is no known efficient algorithm for finding the values of f(n),
several studies have used brute-force searches to report values for f(n) and the
corresponding initial sequences (e.g., [16, 41]). Specifically, values are known up
to n ≤ 19. Table 1 shows known values for f(n), which are registered as OEIS
A0003753 in The On-Line Encyclopedia of Integer Sequences (OEIS). That table
also shows as g(n) the number of initial sequences requiring f(n) steps, which are
registered as OEIS A1233984. The most recent result was that Kimura et al. [16]
obtained values for f(18), f(19) (and g(18), g(19)) in 2021, using 172 threads on
nine computers over about six days5. Finding values of f(n) and g(n) for n ≥ 20

3 https://oeis.org/A000375
4 https://oeis.org/A123398
5 According to Zimmermann’s Programming Contests (http://azspcs.com/Contest/
Cards/FinalReport, accessed 16 Aug 2022), four initial sequences which require 221

https://oeis.org/A000375
https://oeis.org/A123398
http://azspcs.com/Contest/Cards/FinalReport
http://azspcs.com/Contest/Cards/FinalReport
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has remained an important open problem for many years, along with narrowing
the gap between the upper and lower bounds on f(n), as described above.

1.2 Zero-knowledge Proof Protocol for Topswops

As mentioned above, the computational complexity of Topswops has been in-
sufficiently revealed, and many open problems related to Topswops remain. In
particular, for any positive integers n and ℓ (such that 1 ≤ ℓ ≤ f(n)), there is no
known efficient algorithm for finding an initial sequence of n cards that requires
exactly ℓ steps. Therefore, there are possible situations where it is invaluable
that only a single person knows a particular initial sequence (and its number
of steps) while the others do not know anything about it. Hence, let us try to
apply the concept of zero-knowledge proof [8] to Topswops. In other words, let us
consider a zero-knowledge proof protocol for Topswops whereby a prover P can
convince a verifier V that P knows an initial sequence requiring exactly ℓ steps
without leaking any information about the sequence. The following illustrates
two such situations.

– Suppose that prover P has discovered an initial sequence of 20 cards requiring
250 steps, which is longer than the currently known lower bound f(20) ≥
2496, and wants to publish it as a new achievement. However, if P shows
the initial sequence to a (possibly malicious) third party, that party might
claim it as its own achievement. If, however, a zero-knowledge proof protocol
could be applied to Topswops, P could prove that P discovered the initial
sequence while still keeping it secret. After gaining sufficient recognition, P
could claim the initial sequence by disclosing it without any trouble.

– Suppose that several players want to play a game in which they try to find
an initial sequence of Topswops. The rules of the game state that the winner
is the player who finds an initial sequence with a larger number of steps,
or one with a predetermined number of steps. Assume that the game may
be played many times, with different players and different conditions. If
the initial sequences are disclosed every time to determine a game winner,
those sequences lead to another sequence corresponding to a smaller number
of steps, or it will serve as a clue for finding another sequence having a
larger number of steps, which makes it impossible to fairly or enjoyably play
subsequent games. Using a zero-knowledge proof protocol to determine the
game winner, however, would make it possible to enjoy the game.

1.3 Contribution

We propose a zero-knowledge proof protocol for Topswops. Namely, assuming
that positive integers n and ℓ (such that 1 ≤ ℓ ≤ f(n)) are public, when a prover

steps for n = 19 were discovered in 2011. Hence, it seems that at that time the lower
bounds on f(19) and g(19) were known to be 221 and 4, respectively.

6 At the present moment, of course, it is unknown whether such an initial sequence
exists, i.e., whether f(20) ≥ 250 or f(20) = 249.
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P knows an initial sequence of n cards requiring exactly ℓ steps, P can convince
a verifier V that P knows the initial sequence without disclosing it. Our protocol
is a so-called physical zero-knowledge proof protocol that can be executed using
a physical deck of cards.

1.4 Related Work

In the literature, many physical zero-knowledge proof protocols have been con-
structed using a physical deck of cards, especially those for pencil puzzles such
as Sudoku. Examples include Akari [2], Cryptarithmetic [15], Hashiwokakero
(Bridges) [56], Heyawake [43], Hitori [43,46], Juosan [30], Kakuro [2,31], KenKen [2],
Makaro [3, 59], Masyu [24], Nonogram [4, 48], Norinori [6], Numberlink [52, 53],
Nurikabe [43, 46], Nurimisaki [44], Ripple Effect [54, 55], Shikaku [58], Slither-
link [24,25], Sudoku [49,51,60,61], Suguru [42,45], Takuzu [2,30], and Usowan [47].

Since our protocol uses a physical deck of cards, this study falls into the
research area of card-based cryptography (refer to [20,37,63] for surveys), which
has been rapidly growing recently, e.g., [33, 34]. The recent results on card-
based cryptography include proposing efficient protocols for multi-valued-output
symmetric functions [57,62], analyzing information leakage due to operative er-
rors [35], introducing graph automorphism shuffles [32], designing a secure sort-
ing protocol [10], lowering the numbers of required cards [9] and shuffles [23],
constructing multi-valued protocols with a direction encoding [64], introducing
new encoding schemes for integers [50], exploring half-open-action protocols [29],
and determining the landscape of card-minimal protocols in terms of running
time requirements [21].

2 Preliminaries

In this section, we first explain the notations used in this paper, then describe
how and what physical cards are utilized, and introduce the “pile-scramble shuf-
fle [14]” and the “sort sub-protocol [22],” both of which are used in our protocol
as sub-protocols.

2.1 Notations

Let n denote the Topswops size (the number of cards in an initial sequence), as
in Section 1.

We regard any initial sequence of n cards and its succeeding sequences that
appear in Topswops as permutations on {1, 2, . . . , n}. That is, a permutation
π ∈ Sn, i.e.,

π =

(
1 2 3 · · · n

π(1) π(2) π(3) · · · π(n)

)
,

represents a sequence of n cards

(π(1), π(2), π(3), . . . , π(n)),
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where Sn denotes the symmetric group of degree n.

For the initial sequence corresponding to a permutation π ∈ Sn, denote by
α(π) the number of steps required in Topswops. Using this notation α(π), we
formally define f(n), which is the maximum number of steps for n cards, as

f(n) := max {α(π) | π ∈ Sn} .

Using a permutation, let us represent each prefix reversal operation in Topswops,
which rearranges the first i cards in their reverse order: Define a permutation
swi ∈ Sn for every i, 2 ≤ i ≤ n, as

swi =

(
1 2 3 · · · i− 2 i− 1 i
i i− 1 i− 2 · · · 3 2 1

)
,

which is sometimes referred to as the swap swi. Note that swi is equal to its
inverse permutation sw−1

i . That is, for every i such that 2 ≤ i ≤ n,

swi = sw−1
i (1)

holds.

2.2 Commitment Based on Physical Cards

The goal of this paper is to construct a zero-knowledge proof protocol for
Topswops, which should keep an initial sequence and its subsequent sequences
secret. Therefore, as usual in card-based cryptography, we place cards face down
and perform a series of operations such as shuffling, rearranging, and turning
over cards.

In this paper, we use a deck of physical cards numbered 1 to n, denoted by
1 2 3 · · · n , whose backs are all identical ? . We assume that cards i i · · · i

having the same number i are all indistinguishable. By

?
i
,

we denote a face-down card whose face is i for a number i.

As explained in the previous subsection, an initial sequence of n cards can be
represented by a permutation π ∈ Sn, so a prover P can take n physical cards
1 2 3 · · · n and place them face down according to the initial sequence π:

?
π(1)

?
π(2)

?
π(3)

· · · ?
π(n)

.

It thus seems possible to keep the initial sequence and its succeeding sequences
secret. However, it is difficult to apply a swap swi to such a physical sequence
while keeping the integer i secret, and hence, such a simple representation does
not work.
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We therefore introduce a novel encoding of integers based on swaps swi: an
integer x ∈ {2, 3, . . . , n} is encoded with n cards as

swx(1) swx(2) swx(3)

· · ·
swx(n)

. (2)

In other words, each integer x ∈ {2, 3, . . . , n} is represented by

2 1 3 4 · · · n
= 2

3 2 1 4 · · · n
= 3

...

i i − 2 i − 3 · · · 1 i + 1 · · · n
= i

...

n n − 1 · · · 1
= n.

In addition, x = 1 is represented with n cards of 1 as

1 1 · · · 1
= 1. (3)

We call a sequence of n face-down cards encoding an integer x ∈ {1, 2, . . . , n}
(according to the encoding rules (2) and (3) above) a commitment to x. For
example, a commitment to 1 is a sequence of n face-down cards

?
1
?
1
· · · ?

1
,

and a commitment to x such that x ≥ 2 is

?
swx(1)

?
swx(2)

· · · ?
swx(n)

.

Without distinguishing between the case x = 1 and the case x > 1, a com-
mitment to x is denoted by

? ? · · · ?︸ ︷︷ ︸
x

or ?︸︷︷︸
x

.

2.3 Pile-scramble Shuffle

A pile-scramble shuffle [14] is a shuffling operation by which several piles of cards
of the same size are shuffled.

As an example, suppose we have n commitments and a sequence of n face-
down cards corresponding to a permutation π ∈ Sn as follows:

1

?
2

? · · · n

?
?

π(1)
?

π(2)
· · · ?

π(n)

, (4)
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where numbers above the commitments represent indexes for convenience. Con-
sidering each commitment and the card below it as a single pile, apply a pile-
scramble shuffle to the n piles. The transition is[

? ? · · · ?
? ? · · · ?

]
→

r−1(1)

?
r−1(2)

? · · ·
r−1(n)

?
?

π(r−1(1))
?

π(r−1(2))
· · · ?

π(r−1(n))

, (5)

where r ∈ Sn is a uniformly distributed random permutation generated by the
pile-scramble shuffle.

To implement a pile-scramble shuffle, we fix each pile of cards and shuffle the
piles [14].

2.4 Sort Sub-protocol

Recall arrangement (4) above, where we have a sequence of n commitments and
a sequence of cards corresponding to a permutation π ∈ Sn. Suppose that, after
applying a pile-scramble shuffle to them as in transition (5), we turn over all
n cards on the second row. Each number 1 to n should appear. We then sort
the piles (keeping the order within each pile unchanged) so that the revealed
numbers are in ascending order. We then obtain the sequence of piles

π−1(1)

?
π−1(2)

? · · ·
π−1(n)

?
1 2 · · · n

(because, for example, if π(r−1(i)) = 1, then r−1(i) = π−1(1) and the com-
mitment at position π−1(1) moves to the first). We have thus rearranged the
sequence of n commitments according to the permutation π ∈ Sn while keeping
π secret.

This technique has been commonly used in constructions of zero-knowledge
proof protocols for pencil puzzles since the introduction of a zero-knowledge proof
protocol for Sudoku [61] that made full use of card-based cryptography. Koch
and Walzer [22] formulated this technique and named it the sort sub-protocol.
Note that the idea of applying a pile-scramble shuffle to two sequences of cards
corresponding to some permutations originally comes from [13], followed by [11].

3 Proposed Protocol

In this section, we propose a zero-knowledge proof protocol for Topswops. Let
positive integers n and ℓ (such that 1 ≤ ℓ ≤ f(n)) be public information. Suppose
that a prover P knows σ ∈ Sn such that α(σ) = ℓ, i.e., an initial sequence σ of
n cards requiring exactly ℓ steps. P wants to convince a verifier V that P knows
an initial sequence requiring ℓ steps without revealing any information about the
initial sequence σ. We will construct a card-based protocol to achieve this.

First, Section 3.1 describes the idea behind the proposed protocol, then Sec-
tion 3.2 presents a copy protocol we use as a sub-protocol. Finally, Section 3.3
presents our protocol.



8 Y. Komano and T. Mizuki

3.1 Idea

This subsection describes the idea behind the proposed protocol using the initial
n = 5 sequence (3, 1, 4, 5, 2) (which has seven steps) as a working example.

First, prover P , who knows the initial sequence, secretly creates a sequence
of commitments corresponding to (3, 1, 4, 5, 2):

?︸︷︷︸
3

?︸︷︷︸
1

?︸︷︷︸
4

?︸︷︷︸
5

?︸︷︷︸
2

. (6)

Recall that each commitment follows the encoding (2) and (3) defined in Sec-
tion 2.2. For example, the first commitment

?︸︷︷︸
3

,

i.e., the commitment to 3, is
?
3
?
2
?
1
?
4
?
5
,

which is a permutation corresponding to the swap sw3.
Suppose that we can somehow copy this commitment to 3. We then place

the five copied face-down cards below the sequence of commitments as

?︸︷︷︸
3

?︸︷︷︸
1

?︸︷︷︸
4

?︸︷︷︸
5

?︸︷︷︸
2

?
3

?
2

?
1

?
4

?
5

.

Considering each commitment and the card below as a single pile, we then
apply a pile-scramble shuffle. After that, as in the sort sub-protocol described
in Section 2.4, we turn over the five cards in the second row and sort the piles
so that the five cards are rearranged in ascending order. We thus obtain the
following:

?︸︷︷︸
4

?︸︷︷︸
1

?︸︷︷︸
3

?︸︷︷︸
5

?︸︷︷︸
2

1 2 3 4 5

.

The order of the first three commitments is reversed in the resulting sequence of
commitments, which means that the swap sw3 was applied to the initial sequence
without leaking any information about sw3.

The first commitment in the current sequence is a commitment to 4, which
corresponds to the swap sw4. Hence, similar to sw3 above, if we can copy and
place it below the commitments and apply the sort sub-protocol, the swap sw4 is
applied while the integer corresponding to the first commitment remains secret.
If we repeat such operations seven times, the first commitment in the sequence
should be a commitment to 1. By turning over the first commitment, we can
finally confirm that the prover P placed a correct initial sequence.

This is the idea behind our protocol. However, the above procedure cannot
guarantee that the sequence of commitments (6) secretly set by P correctly
satisfies the encoding rules. Thus, the proposed protocol, shown in Section 3.3,
requires another step to ensure that the sequence is correctly rearranged.
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3.2 Copy Protocol

As mentioned in Section 3.1, our main protocol requires a copied commitment.
The following describes how to make two identical commitments from a single
commitment while its value is kept secret.

Given a commitment to x such that 2 ≤ x ≤ n,

? ? · · · ?︸ ︷︷ ︸
x

= ?
swx(1)

?
swx(2)

· · · ?
swx(n)

,

along with two sets of 1 through n as additional cards, our copy protocol proceeds
as follows.

Protocol 1 (Copy protocol)

1. Commitments and additional cards are placed as follows:

1 2 · · · n

1 2 · · · n

?
swx(1)

?
swx(2)

· · · ?
swx(n)

.

2. Turn over the cards in the first and second rows and apply a pile-scramble
shuffle:  ? ? · · · ?

? ? · · · ?

? ? · · · ?

 .

Then, a uniformly distributed random permutation r ∈ Sn corresponding to
this pile-scramble shuffle occurs, and the resulting cards can be represented
as

?
r−1(1)

?
r−1(2)

· · · ?
r−1(n)

?
r−1(1)

?
r−1(2)

· · · ?
r−1(n)

?
swx(r−1(1))

?
swx(r−1(2))

· · · ?
swx(r−1(n))

.

3. Turn over all the cards in the third row. If cards 1 through n appear without
omission, sort the piles so that the revealed numbered cards are in ascending
order, resulting in the following:

?
sw−1

x (1)

?
sw−1

x (2)

· · · ?
sw−1

x (n)

?
sw−1

x (1)

?
sw−1

x (2)

· · · ?
sw−1

x (n)

1 2 · · · n

.

Since sw−1
x = swx from Equation (1), the first and second rows are commit-

ments to x and we have copied commitments

? ? · · · ?︸ ︷︷ ︸
x

? ? · · · ?︸ ︷︷ ︸
x

.



10 Y. Komano and T. Mizuki

In the last step, the n cards in the third row are turned over, but no in-
formation about x is leaked because these cards were uniformly randomized by
the random permutation r in Step 2. Note also that if an input sequence is a
commitment to 1, or if it is not a valid commitment, this protocol detects that
state when the cards are turned over in Step 3.

A copy protocol for a permutation was first proposed in [61], but that protocol
requires two pile-scramble shuffles. Our proposed copy protocol is simpler with
only one pile-scramble shuffle, because by Equation (1), the permutation swi to
be copied is equal to its reverse permutation.

3.3 Our Protocol

We are now ready to describe our protocol, which is a so-called non-interactive
physical zero-knowledge proof protocol that requires no knowledge of the prover
after the prover places an input card sequence (see [28] for details).

According to an initial sequence σ such that α(σ) = ℓ, the prover P places
n face-down cards on the table without anyone seeing the order as

?
σ−1(1)

?
σ−1(2)

?
σ−1(3)

· · · ?
σ−1(n)

. (7)

The input to our protocol is this sequence (7) along with additional 2n cards of
1 and n cards from each of 2 to n . (The protocol may be executed by a prover
or a verifier, or even by a third party7.)

Protocol 2 (Physical zero-knowledge proof protocol for Topswops)

1. Using 2n−1 cards of 1 and n−1 cards of each from 2 to n from the additional
cards, make a commitment to each of 1 through n and place them above the
input sequence (7) as follows:

?︸︷︷︸
1

?︸︷︷︸
2

· · · ?︸︷︷︸
n

?
σ−1(1)

?
σ−1(2)

· · · ?
σ−1(n)

.

2. Apply a pile-scramble shuffle: ?︸︷︷︸
1

?︸︷︷︸
2

· · · ?︸︷︷︸
n

?
σ−1(1)

?
σ−1(2)

· · · ?
σ−1(n)

 .

7 More precisely, it is specified as a card-based protocol formulated in the standard
model of card-based cryptography [36, 37]. (Note that there are other models, e.g.,
[26, 27,39,40].)
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3. In the manner of the sort sub-protocol described in Section 2.4, turn over
and sort the cards in the bottom row so that the cards in the bottom row are
in ascending order:

?︸︷︷︸
σ(1)

?︸︷︷︸
σ(2)

· · · ?︸︷︷︸
σ(n)

1 2 · · · n

.

(If any card from 1 to n does not appear in the bottom row, the protocol
halts.)

4. We have two cards each from 1 to n (i.e., the cards revealed in Step 3 and
the remaining additional cards not used in Step 1). Using these as addi-
tional cards, copy the first commitment, σ(1), by executing the copy protocol
described in Section 3.2 and place it below the sequence of commitments.
Hereinafter, we use x for σ(1) in subscripts for simplicity:

?︸︷︷︸
σ(1)

?︸︷︷︸
σ(2)

· · · ?︸︷︷︸
σ(n)

?
swx(1)

?
swx(2)

· · · ?
swx(n)

.

(If an illegal card appears during the copy protocol, the protocol halts.)
5. Apply a pile-scramble shuffle, turn over the cards in the bottom row, and sort

the cards in the bottom row in ascending order:
?︸︷︷︸
σ(1)

?︸︷︷︸
σ(2)

· · · ?︸︷︷︸
σ(n)

?
swx(1)

?
swx(2)

· · · ?
swx(n)


↓

?︸︷︷︸
σ(sw−1

x (1))

?︸︷︷︸
σ(sw−1

x (2))

· · · ?︸︷︷︸
σ(sw−1

x (n))

1 2 · · · n

.

After this operation, the first row is a sequence of commitments where the
order of the first x commitments is reversed, i.e., the swap swx operation
has been applied to the original sequence of commitments. (If any card from
1 to n does not appear, the protocol aborts.)

6. Repeat Steps 4 and 5 in the same manner ℓ times in total.
7. Turn over the first commitment ? and return ‘accept’ if 1 1 · · · 1 appears.

Otherwise, return ‘reject.’

4 Security and Performance

This section describes security and performance of the protocol proposed in the
previous section.
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4.1 Security

In this subsection, we prove that our protocol is a zero-knowledge proof protocol.
In other words, we show that our protocol satisfies requirements for complete-
ness, soundness, and zero knowledge.

Completeness: Suppose that a prover P correctly sets as input a sequence of
n cards encoding an initial sequence σ ∈ Sn such that α(σ) = ℓ. Then, as can be
seen from the construction of the protocol, the sequence is not rejected at any
step, but accepted at the final step.

Soundness: Assume that an input sequence of n cards is not the encoding of
an initial sequence requiring exactly ℓ steps. There are three cases to consider;
we will show that the protocol eventually rejects each.
(i) If the input sequence is not encoded for any initial sequence, it is detected
and rejected because not every card from 1 to n appears when the cards are
turned up in Step 3.
(ii) Assume an initial sequence requiring exactly j (< ℓ) steps. When Steps 4
and 5 of our protocol are executed j times, the first commitment will be a
commitment to 1, and Step 4 of iteration (j+1) will duplicate the commitment
to 1, and hence, our protocol rejects the sequence because n cards of 1 appear
in the final step of the copy protocol.
(iii) If an initial sequence requires j (> ℓ) steps, the first commitment in the last
step is rejected because it is something other than a commitment to 1.

Zero knowledge: Suppose that the sequence set by prover P corresponds to
σ ∈ Sn such that α(σ) = ℓ. During the protocol (except for the final step),
no information about σ is leaked because the order of revealed cards 1 to n

is always randomized by a pile-scramble shuffle, which is applied immediately
before the cards are turned over. In addition, the commitment to 1 opened in
the final step is public information (from the definition of Topswops). Thus, the
proposed protocol is information-theoretically secure.

4.2 Performance

This subsection counts the number of cards and the number of shuffles required
in our protocol.

Regarding the number of cards, we use 1 to n for the input card sequence,
as described at the beginning of Section 3.3, with additional 2n cards of 1 and
n cards each of 2 to n . Thus, 2n+ 1 cards of 1 and n+ 1 cards of each of 2 to
n are required, which add up to n2 + 2n.

Our protocol uses only pile-scramble shuffles as a shuffle operation. We there-
fore count the number of pile-scramble shuffles. In our protocol, Step 2 is ex-
ecuted once, and Steps 4 and 5 are repeated ℓ times. These steps include one
pile-scramble shuffle, so our protocol requires 2ℓ + 1 pile-scramble shuffles in
total.
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5 Conclusion

We proposed a physical zero-knowledge proof protocol for Topswops. The main
idea is that the permutation corresponding to “the operation of reversing the first
i cards” encodes a positive integer i, which enables us to efficiently and secretly
perform prefix reversals in Topswops. The proposed protocol uses n2 +2n cards
and 2ℓ+1 shuffles, where n is the size of Topswops and ℓ is the number of steps.

In the “game of discovering initial sequences requiring a predefined number
of steps” described in Section 1.2, we can expect to make practical use of our
protocol when n is not so large. However, in the other example of claiming dis-
covery of an initial sequence for n = 20 requiring 250 steps, like that described in
Section 1.2, implementing our protocol would require 440 cards and 501 shuffles,
which might not be practical to implement. Therefore, we address the following
problem as another situation that may be practically useful.

The pancake problem [18] is another game similar to Topswops. Given an
initial sequence (π(1), π(2), . . . , π(n)), the goal in this game is to sort the se-
quence in ascending order by repeating swap operations swi. Related to this
game, the problem of finding a sequence of the minimum number of swap oper-
ations needed to complete the sort is proved to be NP-hard [1]. Also, we denote
as h(n) the maximum number of such fewest swap operations among all initial
sequences of n cards. Then, the best currently known lower and upper bounds8

are 15
14n ≤ h(n) [12] and h(n) ≤ 18

11n [5], respectively.
We expect that the idea of our protocol can be applied to the pancake prob-

lem. As mentioned above, the upper bound of h(n) is linearly suppressed by n,
so we expect the required number of shuffles not to be excessively large as n
increases. We also expect to find more value in keeping a sequence of swap op-
erations secret, since the problem of finding a sequence of the minimum number
of swap operations has been proven to be an NP-hard problem. This direction
is a future work.
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44. Léo Robert, Pascal Lafourcade, Daiki Miyahara, and Takaaki Mizuki. Card-based
ZKP protocol for nurimisaki. In Stabilization, Safety, and Security of Distributed
Systems, LNCS, Cham, 2022. Springer. to appear.
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