
VOL. E100-A NO. 1
JANUARY 2017

The usage of this PDF file must comply with the IEICE Provisions
on Copyright.
The author(s) can distribute this PDF file for research and
educational (nonprofit) purposes only.
Distribution by anyone other than the author(s) is prohibited.



IEICE TRANS. FUNDAMENTALS, VOL.E100–A, NO.1 JANUARY 2017
3

INVITED PAPER Special Section on Cryptography and Information Security

Computational Model of Card-Based Cryptographic Protocols and
Its Applications

Takaaki MIZUKI†a) and Hiroki SHIZUYA††, Members

SUMMARY Card-based protocols enable us to easily perform crypto-
graphic tasks such as secure multiparty computation using a deck of physical
cards. Since the first card-based protocol appeared in 1989, many protocols
have been designed. A protocol is usually described with a series of some-
what intuitive and verbal descriptions, such as “turn over this card,” “shuffle
these two cards,” “apply a random cut to these five cards,” and so on. On
the other hand, a formal computational model of card-based protocols via
abstract machine was constructed in 2014. By virtue of the formalization,
card-based protocols can be treated more rigorously; for example, it enables
one to discuss the lower bounds on the number of cards required for secure
computations. In this paper, an overview of the computational model with
its applications to designing protocols and a survey of the recent progress
in card-based protocols are presented.
key words: card-based protocols, card games, cryptography without com-
puters, real-life hands-on cryptography, secure multiparty computations

1. Introduction

Card-based protocols allow cryptographic tasks, such as se-
cure multiparty computation, to be performed easily using a
deck of physical cards. Assume two types of several cards
with faces that are either black ( ♣ ) or red ( ♡ ) and identi-
cal backs ( ? ). Using two cards of different colors, one can
easily encode a bit value, for example,

♣ ♡ = 0, ♡ ♣ = 1. (1)

According to the above encoding (1), a player, Alice, can
commit her private bit a ∈ {0, 1} to a pair of face-down cards

? ?︸︷︷︸
a

,

which we call a commitment to bit a. Typically, a card-based
protocol receives a few commitments as its input and applies
a series of actions to produce its output.

Let us start with one of the simplest protocols, the NOT
protocol. Given a commitment to a bit a as input, the NOT
protocol swaps only the two cards constituting the commit-
ment so that a commitment to the negation ā as output is
obtained:
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? ?︸︷︷︸
a

→

⇌︷︸︸︷
? ? → ? ?︸︷︷︸

ā

.

Thus, one can easily negate a commitment while keeping its
value secret.

As another example of protocols, we here introduce
the Mizuki-Sone AND protocol [1], which receives com-
mitments to Alice’s bit a and Bob’s bit b, and generates a
commitment to a ∧ b, as follows.

1. Put a black card and a red card between the two com-
mitments, and turn them over:

? ?︸︷︷︸
a

♣ ♡ ? ?︸︷︷︸
b

→ ? ?︸︷︷︸
a

? ?︸︷︷︸
0

? ?︸︷︷︸
b

.

Note that the two face-down cards in the middle consti-
tute a commitment to 0.

2. Rearrange the sequence of six cards:

? ? ? ? ? ?
Q
QQs��	 ��	

? ? ? ? ? ? .

3. Apply a random bisection cut, which means bisecting
the sequence and shuffling the two portions:[

? ? ? ��� ? ? ?
]
→ ? ? ? ? ? ? .

Therefore, the resulting sequence of six cards is either
the same as the original one or a sequence, the two
halves of which have been switched with a probability
of 1/2.

4. Rearrange the sequence of six cards:

? ? ? ? ? ?
@@R@@R

�
��+

? ? ? ? ? ? .

5. Reveal the first two cards (from the left). Then, a com-
mitment to a ∧ b is obtained as

♣ ♡ ? ?︸︷︷︸
a∧b

? ? or ♡ ♣ ? ? ? ?︸︷︷︸
a∧b

.

This protocol produces a commitment to a ∧ b without leak-
ing any information about a and b. We explain its correctness
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Table 1 Some of the existing card-based protocols.
# of # of Avg. #

colors cards of trials
◦ Committed AND protocols

Crépeau-Kilian [3] 4 10 6
Niemi-Renvall [4] 2 12 2.5

Stiglic [5] 2 8 2
Mizuki-Sone [1] (§1, 2, 4) 2 6 1

Koch-Walzer-Härtel [6] (§5) 2 5 1
Koch-Walzer-Härtel [6] (§5) 2 4 1.8
◦ Committed XOR protocols

Crépeau-Kilian [3] 4 14 6
Mizuki-Uchiike-Sone [7] 2 10 2

Mizuki-Sone [1] 2 4 1
◦ Non-committed AND protocols

den Boer [2] 2 5 1
Mizuki-Kumamoto-Sone [8] 2 4 1

and security in Sect. 4. The protocol, which uses six cards,
is hereinafter referred to as the six-card AND protocol.

Similarly to the six-card AND protocol [1] described
above, a protocol producing a commitment to the value of
the AND function is called a committed AND protocol. As
shown in Table 1, several committed AND protocols as well
as committed XOR protocols have been proposed. Further-
more, as seen also in Table 1, non-committed AND protocols
have been developed. In fact, the first card-based protocol
designed by den Boer in 1989 [2] was a non-committed AND
protocol; given two commitments as input, the protocol pro-
duces its output in a format that differs from encoding (1).

In addition to the NOT protocol and the committed
AND/XOR protocols, there are copy protocols [1], [3], [9]
that can make identical copied commitments from a given
commitment. Thus, as easily imagined, combining these
elementary protocols, one can construct a protocol for any
function (see, e.g., [10]). Moreover, efficient protocols have
been developed for specific functions, such as the adder [11],
three-variable functions [12], and the conjunction of multiple
variables [13].

As seen in the above descriptions of the protocols, a pro-
tocol is usually described with a series of somewhat intuitive
illustrations and verbal descriptions, for example, “turn over
this card,” “shuffle these two cards,” “apply a random cut to
these five cards,” and so on. In contrast, a formal compu-
tational model of card-based protocols via abstract machine
was constructed by Mizuki and Shizuya [14] in 2014. By
virtue of the formalization, it has become possible to treat
card-based protocols more rigorously. For example, it en-
ables one to discuss the lower bounds on the number of cards
required for secure computations. In fact, Koch, Walzer, and
Härtel [6] proved that there does not exist a finite-runtime
committed AND protocol using four cards. They also pro-
posed an excellent method, based on the formal computa-
tional model, for describing a protocol by which one can
easily confirm its correctness and security [6]. In this pa-
per, an overview of the computational model of card-based
protocols with its applications to designing protocols and a
survey of the recent progress in card-based cryptography are

presented.
Historically, card games may stem from the cards in-

vented in the 9th century, but card protocols for crypto-
graphic purposes were not known until Peter Winkler’s 1981
article [15]. Fischer, Paterson, and Rackoff [16] extended
the idea presented in [15] to implement a secret bit trans-
mission between two players. Following their results, many
researchers designed secret bit transmission and secret key
exchange schemes using a deck of cards (see, e.g., [17]–
[21]); it should be noted that they do not intend that a real
deck of cards be used, i.e., dealing cards is rather an ab-
stract notion to capture a priori information distributed to
players. In contrast, as mentioned before, card-based proto-
cols are supposed to use a real deck of physical cards, i.e.,
humans can practically execute a card-based protocol with
everyday objects. There are other physically implemented
cryptographic protocols, e.g., those presented in [22]–[26].

The remainder of this paper is organized as follows.
We review the computational model of card-based proto-
cols formalized by Mizuki and Shizuya [14] in Sect. 2 and
mention a framework for committed protocols in Sect. 3. In
Sect. 4, we present the “Koch-Walzer-Härtel diagram [6],”
which enriches descriptions of protocols. We then introduce
the recent AND protocols developed by Koch, Walzer, and
Härtel [6] in Sect. 5 and some lower bounds in Sect. 6. In
Sect. 7, we mention additional recent progress in card-based
cryptography. This paper is concluded in Sect. 8 with possi-
ble directions of future work.

2. Computational Model

As mentioned above, a formal computational model of card-
based protocols was constructed in 2014 [14]. Then, Koch,
Walzer, and Härtel [6] made some improvement to the de-
scriptions of the model in 2015. In this section, according
to these two papers [6], [14], we overview the computational
model by taking the six-card AND protocol [1] shown in
Sect. 1 as an example to exhibit the concepts.

2.1 Notations

Clearly, the most important object for card-based proto-
cols is a deck of cards, for example, a deck of six cards
♣ ♣ ♣ ♡ ♡ ♡ , as used in the six-card AND protocol
[1]. To represent a deck, we use a multiset such as

Dex = [♣, ♣, ♣,♡,♡,♡ ] ,

where “ex” represents “example.” Formally, such a non-
empty finite multisetD is called a deck ifD∩{?} = ∅where
“?” is the “back-side” symbol. We call any element c ∈ D
in a deck D (such as ♣ and ♡) an atomic card.

When a card is placed on the table, there are two options:
it is either face-up (e.g., ♣ ) or face-down ( ? ). To capture
this property, we use an expression ♣

? or ?
♣ . Formally, c

?
with c ∈ D represents a face-up card (of a deck D), and ?

c
represents a face-down card. We call a face-up or face-down
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card a lying card. Given a lying card c
? or ?

c , we denote its
atomic card by atom( c? ) = atom( ?

c ) = c; further, we denote
what we can see when looking at the lying card on the table
by top( c? ) = c and top( ?

c ) = ?.
Let us remember the input to the six-card AND protocol

[1], namely, a sequence of six cards put on the table:

? ?︸︷︷︸
a

♣ ♡ ? ?︸︷︷︸
b

.

In order to represent such lying cards, we have to consider
four possible sequences because we do not know the values
of a and b:

Γ
00 =

( ?
♣,

?
♡,
♣
?
,
♡
?
,

?
♣,

?
♡
)
,

Γ
01 =

( ?
♣,

?
♡,
♣
?
,
♡
?
,

?
♡,

?
♣
)
,

Γ
10 =

( ?
♡,

?
♣,
♣
?
,
♡
?
,

?
♣,

?
♡
)
,

and

Γ
11 =

( ?
♡,

?
♣,
♣
?
,
♡
?
,

?
♡,

?
♣
)
.

Note that Γ00 corresponds to (a, b) = (0, 0), Γ01 corresponds
to (a, b) = (0, 1), and so on. Thus, the set {Γ00, Γ01, Γ10, Γ11}
is considered to be the input set to the protocol, as seen
again in the next subsection. Formally, we say that a
d-tuple Γ = (α1, α2, . . . , αd) consisting of d lying cards
from a deck D with d = |D| is a sequence from D if
[ atom(α1), atom(α2), . . . , atom(αd) ] = D. We define

SeqD def
= {Γ | Γ is a sequence of D}

for a deck D. That is, SeqD is the set of all (possible)
sequences from a deck D.

Next, we extend the use of top(·) to use for a sequence:
given a sequence Γ = (α1, α2, . . . , αd), we write

top(Γ) = (top(α1), top(α2), . . . , top(αd)),

and we call it the visible sequence of Γ. For instance, for the
above sequence Γ00, the visible sequence is

top(Γ00) = (?, ?, ♣,♡, ?, ?).

We also define the visible sequence set VisD of D as

VisD def
= {top(Γ) | Γ ∈ SeqD }.

2.2 Protocols

In this subsection, we formally define a “protocol.” As seen
below, starting from an initial sequence, a protocol specifies
an action to be applied to a current sequence step by step,
depending on its internal state and the visible sequence.

Recall the actions that the six-card AND protocol [1]

applies to a sequence: turning over the two middle cards (for
which we use the expression “turn”), rearranging the order of
the sequence (“perm”), shuffling the halves of the sequence
(“shuf”), and specifying the output commitment (“result”).
In addition to these four actions, there is one unfamiliar
action, random flip (“rflip”). The detailed explanations of
these five actions are given in the following.

A protocol (having a finite state control and a table on
which a single sequence is put) is formally specified with a
quadruple P = (D,U,Q, A):

• D is a deck;
• U ⊆ SeqD is an input set;
• Q is a state set having an initial state q0 ∈ Q and a final

state qf ∈ Q;
• A : (Q−{qf })×VisD → Q×Action is an action function,

where Action is the set of the following actions:

– (turn,T ) for T ⊆ {1, 2, . . . , |D|};
– (perm, π) for π ∈ S |D | , where Si denotes the sym-

metric group of degree i throughout this paper;
– (shuf,Π, F ) for Π ⊆ S |D | and a probability distri-

bution F on Π;
– (rflip,Φ,G) for Φ ⊆ 2{1,2,..., |D | } and a probability

distribution G on Φ;
– (result, p1, . . . , pℓ ) for p1, p2, . . . , pℓ ∈ {1, 2, . . . ,
|D|}.

The protocol P = (D,U,Q, A) proceeds as the Turing ma-
chine does: starting from the initial state q0 and the initial
sequence Γ0 for some input sequence Γ0 ∈ U, its current state
q and sequence Γ move to the next state q′ and sequence Γ′
according to the output of the action function A. (Note that
the action function A outputs the next state and action de-
pending on the current state q and visible sequence top(Γ).)
Specifically, given a current sequence Γ = (α1, α2, . . . , αd)
with d = |D|, each action in Action transforms the current
sequence Γ into the next sequence Γ′:

• (turn,T ): Γ′ = (β1, β2, . . . , βd) such that

βi =

{
swap(αi) if i ∈ T ;
αi otherwise

for every i, 1 ≤ i ≤ d, where swap( c? ) = ?
c and

swap( ?
c ) = c

? for an atomic card c;
• (perm, π): Γ′ = (απ−1 (1), απ−1 (2), . . . , απ−1 (d));
• (shuf,Π, F ): Γ′ resulting from applying action

(perm, π) to Γ, where π is a permutation drawn from Π
according to the probability distribution F ;

• (rflip,Φ,G): Γ′ resulting from applying action (turn,T )
to Γ, where T is a set drawn from Φ according to the
probability distribution G;

• (result, p1, . . . , pℓ ): this action specifies the positions of
the output, and appears if and only if the first component
of the output of A is the final state qf (and the protocol
terminates).

It should be noted that the rearrangement action is a spe-
cial case of the shuffle action, i.e., (perm, π) can be expressed
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as (shuf, {π}, F ) with PrF (π) = 1. Similarly, the turn action
is a special case of the random flip action. Thus, we could
exclude the rearrangement and turn actions from the model
without loss of generality. However, in our opinion, remov-
ing these elementary actions would lead to a protocol that
is not human-friendly. Furthermore, the random flip action
has not been used in any known protocols, and at present it
is not even known how to implement it.

If the probability distribution F of a shuffle action
(shuf,Π, F ) is uniform, then we omit F and simply write
(shuf,Π). Let us take the random bisection cut[

? ? ? ��� ? ? ?
]
→ ? ? ? ? ? ?

used in the six-card AND protocol [1] as an example. The
shuffle action is expressed as

(shuf, {id, (1 4)(2 5)(3 6)}, id 7→1/2, (1 4)(2 5)(3 6) 7→1/2),

where id denotes the identity permutation and (i1 i2 . . . iℓ )
means a cyclic permutation. Since it is uniformly distributed,
we simply write

(shuf, {id, (1 4)(2 5)(3 6)})

for the random bisection cut above.
As seen above, the formalization of the shuffle action

(shuf,Π, F ) given in [14] is quite general, that is, Π can be
any subset of S |D | and F can be any distribution. In fact,
this yielded strong possibility results: Koch, Walzer, and
Härtel [6] conceived a four-card committed AND protocol
(and so on) by considering unconventional shuffles, as shown
in Sect. 5.

2.3 Formal Description of the Six-Card AND Protocol

We are now ready to formally describe the six-card AND
protocol [1] based on the computational model explained
above.

The deck for the six-card AND protocol is Dex, shown
in Sect. 2.1, and the input set is {Γ00, Γ01, Γ10, Γ11}, shown
also in Sect. 2.1. Therefore, the quadruple is

Pex = (Dex, {Γ00, Γ01, Γ10, Γ11}, {q0, q1, . . . , q5, qf }, Aex)

such that

Aex(q0, (?, ?, ♣,♡, ?, ?)) = (q1, (turn, {3, 4}))
Aex(q1, (?, ?, ?, ?, ?, ?)) = (q2, (perm, (2 4 3)))
Aex(q2, (?, ?, ?, ?, ?, ?)) = (q3, (shuf, {id, (1 4)(2 5)(3 6)}))
Aex(q3, (?, ?, ?, ?, ?, ?)) = (q4, (perm, (2 3 4)))
Aex(q4, (?, ?, ?, ?, ?, ?)) = (q5, (turn, {1, 2}))

Aex(q5, (♣,♡, ?, ?, ?, ?)) = (qf, (result, 3, 4))
Aex(q5, (♡, ♣, ?, ?, ?, ?)) = (qf, (result, 5, 6)).

This Pex is the formal description of the six-card AND
protocol. The following type of pseudo-code makes it easier
to understand it.

Six-card AND protocol
input set:{( ?
♣,

?
♡,
♣
?
,
♡
?
,

?
♣,

?
♡
)
,
( ?
♣,

?
♡,
♣
?
,
♡
?
,

?
♡,

?
♣
)
,( ?

♡,
?
♣,
♣
?
,
♡
?
,

?
♣,

?
♡
)
,
( ?
♡,

?
♣,
♣
?
,
♡
?
,

?
♡,

?
♣
)}

(turn, {3, 4})
(perm, (2 4 3))
(shuf, {id, (1 4)(2 5)(3 6)})
(perm, (2 3 4))
(turn, {1, 2})
if visible seq. = (♣,♡, ?, ?, ?, ?) then

(result, 3, 4)
else if visible seq. = (♡, ♣, ?, ?, ?, ?) then

(result, 5, 6)

3. Framework for Committed Protocols

In this section, we introduce the framework for committed
protocols, based on the formalization given by Koch, Walzer,
and Härtel [6].

First, we mention some terms. Consider an execu-
tion where a protocol P terminates; then, the enumeration
(Γ0, Γ1, ..., Γt ) of all sequences from the initial to the final
one (where Γi−1 is transformed into Γi by an action for every
i, 1 ≤ i ≤ t) is called a sequence-trace (of P). Simi-
larly, such (top(Γ0), top(Γ1), ..., top(Γt )) is called a visible
sequence-trace. For example, there are two possible visible
sequence-traces of the six-card AND protocolPex (presented
in Sect. 2.3):

((?, ?, ♣,♡, ?, ?), (?, ?, ?, ?, ?, ?), (?, ?, ?, ?, ?, ?), (?, ?, ?, ?, ?, ?),
(?, ?, ?, ?, ?, ?), (♣,♡, ?, ?, ?, ?), (♣,♡, ?, ?, ?, ?)) (2)

and

((?, ?, ♣,♡, ?, ?), (?, ?, ?, ?, ?, ?), (?, ?, ?, ?, ?, ?), (?, ?, ?, ?, ?, ?),
(?, ?, ?, ?, ?, ?), (♡, ♣, ?, ?, ?, ?), (♡, ♣, ?, ?, ?, ?)). (3)

Next, we show a formal definition of a committed pro-
tocol. To make the treatment general, let us assume that
we have commitments to n bits x1, x2, . . . , xn and want to
produce a commitment to the value of f (x1, x2, . . . , xn) for
a Boolean function f : {0, 1}n → {0, 1}. Without loss of
generality, we obey the encoding scheme (1) (and hence a
deck D is supposed to contain sufficient numbers of ♣ and
♡, as seen in the following Definition 1).

Definition 1: Let f : {0, 1}n → {0, 1} be a Boolean func-
tion. We say that P = (D,U,Q, A) is a committed protocol
for f if the following holds:

• the deckD has at least n atomic cards of ♣ and n atomic
cards of ♡;
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• the input set U consists of 2n sequences

Γ
(x1,x2,...,xn ) = (α1, α2, . . . , α |D |)

(where the superscript (x1, x2, . . . , xn) runs in {0, 1}n)
such that

(α2i−1, α2i) =

(

?
♣,

?
♡
)

if xi = 0;(
?
♡,

?
♣
)

if xi = 1

for every i, 1 ≤ i ≤ n;
• the protocol terminates with a sequence-trace having a

finite average number of sequences;
• for an execution starting with Γ(x1,x2,...,xn ) , it terminates

with an action (result, p1, p2) such that

(βp1, βp2 ) =

(

?
♣,

?
♡
)

if f (x1, x2, . . . , xn) = 0;(
?
♡,

?
♣
)

if f (x1, x2, . . . , xn) = 1,

where (β1, β2, . . . , β |D |) is the final sequence;
• it is secure in the sense of the following Definition 2.

We next consider the security of protocols. Given a pro-
tocol P = (D,U,Q, A), letM be a probability distribution
on the input set U; then, we denote the random variable as-
sociating probability to a visible sequence-trace by V (M,P) .

Definition 2: We say that a protocol P = (D,U,Q, A) is
secure if, for any probability distributionM on the input set
U, M and V (M,P) are independent of each other, where M
(induced byM) is the random variable associating probabil-
ity to a sequence of U.

We see in the next section that Pex is secure, and hence,
is a committed protocol for the AND function (a, b) 7→ a∧b.

4. Koch-Walzer-Härtel Diagram

In 2015, Koch, Walzer, and Härtel [6] proposed an excellent
method to describe a protocol using a type of diagram, which
we call a Koch-Walzer-Härtel diagram. This diagram pro-
vides good understanding of the manner in which a protocol
works correctly and securely.

Figure 1 displays the Koch-Walzer-Härtel diagram of
the six-card AND protocol

Pex = (Dex, {Γ00, Γ01, Γ10, Γ11}, {q0, q1, . . . , q5, qf }, Aex)

presented in Sect. 2.3. In the diagram, there are six boxes,
each of which contains several atomic sequences (such as
♣♡♣♡♣♡ and ♣♣♡♡♣♡) together with polynomials (such as
X00 and 1

2 X00 +
1
2 X10).

Each box is associated to a prefix of the visible
sequence-trace. (Recall the two visible sequence-traces (2)
and (3) shown in Sect. 3.) For instance, the first (topmost)
box in Fig. 1 is associated with the prefix

((?, ?, ♣,♡, ?, ?), (?, ?, ?, ?, ?, ?)),

that is, it occurs immediately after turning over the two mid-
dle cards. The second box is associated with

♣♡♣♡♣♡ X00
♣♡♣♡♡♣ X01
♡♣♣♡♣♡ X10
♡♣♣♡♡♣ X11

♣♣♡♡♣♡ X00
♣♣♡♡♡♣ X01
♡♣♡♣♣♡ X10
♡♣♡♣♡♣ X11

♣♣♡♡♣♡ 1
2 X00 +

1
2 X10

♡♣♡♣♣♡ 1
2 X00 +

1
2 X10

♣♣♡♡♡♣ 1
2 X01

♡♡♣♣♣♡ 1
2 X01

♡♣♡♣♡♣ 1
2 X11

♣♡♣♡♣♡ 1
2 X11

♣♡♣♡♣♡ 1
2 X00 +

1
2 X10

♡♣♣♡♣♡ 1
2 X00 +

1
2 X10

♣♡♣♡♡♣ 1
2 X01

♡♣♡♣♣♡ 1
2 X01

♡♣♣♡♡♣ 1
2 X11

♣♡♡♣♣♡ 1
2 X11

♡♣♣♡♣♡ X00 + X10
♡♣♡♣♣♡ X01
♡♣♣♡♡♣ X11
⇒ (result, 5, 6)

♣♡♣♡♣♡ X00 + X10
♣♡♣♡♡♣ X01
♣♡♡♣♣♡ X11
⇒ (result, 3, 4)

(perm, (2 4 3))

(shuf, {id, (1 4)(2 5)(3 6) })

(perm, (2 3 4))

(turn, {1, 2}) revealed ♡♣(turn, {1, 2}) revealed ♣♡

Fig. 1 Koch-Walzer-Härtel diagram of the six-card AND protocol.

((?, ?, ♣,♡, ?, ?), (?, ?, ?, ?, ?, ?), (?, ?, ?, ?, ?, ?)),

that is, it occurs immediately after applying action
(perm, (2 4 3)). The two bottommost boxes are associated
with the visible sequence-traces (2) and (3) themselves.

The variable X00 (X01, X10, X11) represents the proba-
bility that the input sequence Γ00 (Γ01, Γ10, Γ11, respectively)
occurs.

Each polynomial next to an atomic sequence inside a
box represents the conditional probability that the atomic se-
quence occurs, given the prefix of the visible sequence. Let
us take the third box in Fig. 1 as an example. The topmost
polynomial 1

2 X00 +
1
2 X10 inside the box represents the prob-

ability that the current atomic sequence is ♣♣♡♡♣♡, given
the prefix of the visible sequence

((?, ?, ♣,♡, ?, ?), (?, ?, ?, ?, ?, ?),
(?, ?, ?, ?, ?, ?), (?, ?, ?, ?, ?, ?)).

In fact, considering the two actions (perm, (2 4 3)) and
(shuf, {id, (1 4)(2 5)(3 6)}), one can confirm that the atomic
sequence ♣♣♡♡♣♡ comes from the input sequence Γ00 or Γ10
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with a probability of 1/2. One can also easily confirm that
other polynomials (and those in other boxes) are compatible
with the corresponding atomic sequences.

From the observation thus far, one can imagine the
manner in which the Koch-Walzer-Härtel diagram of a given
protocol can be derived (see [6] for the details).

Just by looking at the Koch-Walzer-Härtel diagram of a
protocol, we can easily check that it works correctly. Indeed,
the last boxes in the diagram (i.e., Fig. 1) of the six-card AND
protocol immediately show that the actions (result, 3, 4) and
(result, 5, 6) correctly specify the location of a commitment
to the AND value.

Furthermore, the security of the six-card AND protocol
can be confirmed through the Koch-Walzer-Härtel diagram.
When summing up all polynomials in any of the six boxes,
we always have X00 + X01 + X10 + X11, that is, the coef-
ficient of every variable is 1. This implies that the input
sequence and the visible sequence-trace are stochastically
independent, and hence, Pex is secure. In general, if, for
each box of the Koch-Walzer-Härtel diagram of a protocol,
the coefficient of every variable is 1 when summing up all
polynomials in the box, then the protocol is secure; see [6]
for the details.

Thus, we can formally say that Pex is a committed
protocol for the AND function.

5. Koch-Walzer-Härtel AND Protocols

We elaborated on the six-card AND protocol in the previ-
ous sections. Recall that it is a committed AND protocol,
proposed in 2009, using six cards. Recently, in 2015, Koch,
Walzer, and Härtel [6] improved on the result in terms of the
number of required cards, i.e., they constructed a four-card
committed AND protocol and a five-card committed AND
protocol. While the former needs to take an average num-
ber of trials, the latter always terminates within a bounded
number of actions (i.e., with a sequence-trace of bounded
length). See Table 1 again.

Their four-card AND protocol is as follows.

Koch-Walzer-Härtel four-card AND protocol
input set:{( ?
♣,

?
♡,

?
♣,

?
♡
)
,
( ?
♣,

?
♡,

?
♡,

?
♣
)
,
( ?
♡,

?
♣,

?
♣,

?
♡
)
,
( ?
♡,

?
♣,

?
♡,

?
♣
)}

(shuf, {id, (1 3)(2 4)})
(shuf, {id, (2 3)})
(turn, {2})
if visible seq. = (?, ♣, ?, ?) then

(turn, {2})
(shuf, {id, (1 3)})

1 (shuf, {id, (1 2)(3 4)}, id 7→1/3, (1 2)(3 4) 7→2/3)
(turn, {4})
if visible seq. = (?, ?, ?, ♣) then

(result, 1, 2)
else if visible seq. = (?, ?, ?,♡) then

(turn, {4})

(shuf, {id, (1 3)})
(perm, (1 3 4 2))
goto 2

else if visible seq. = (?,♡, ?, ?) then
(turn, {2})
(shuf, {id, (3 4)})

2 (shuf, {id, (1 3)(2 4)}, id 7→1/3, (1 3)(2 4) 7→2/3)
(turn, {1})
if visible seq. = (♡, ?, ?, ?) then

(result, 2, 4)
else if visible seq. = (♣, ?, ?, ?) then

(turn, {1})
(shuf, {id, (3 4)})
(perm, (1 2 4 3))
goto 1

It can be seen in the Koch-Walzer-Härtel diagram of
the protocol depicted in [6] (although we omit it in this
paper) that one can confirm that the protocol above is surely
a committed protocol for the AND function. Notice that the
protocol has a loop, and the expected number of times the
loop is repeated is calculated as 9/5 = 1.8 (see [6] for the
details).

Since we need at least four cards for input commitments
to a and b, this four-card AND protocol is optimal in terms
of the number of required cards.

The protocol uses somewhat unusual shuffle actions:

(shuf, {id, (1 2)(3 4)}, id 7→1/3, (1 2)(3 4) 7→2/3)

and

(shuf, {id, (1 3)(2 4)}, id 7→1/3, (1 3)(2 4) 7→2/3).

That is, the probability distributions are non-uniform. When
the protocol was designed, finding a feasible implementation
of such a non-uniform shuffle action (by humans) was an
open problem [6] (although a solution was proposed more
recently in 2016 [27]; see Sect. 7.1).

Koch, Walzer, and Härtel [6] also provided a five-card
committed AND protocol that always terminates before a
bounded number of actions are executed. The protocol uses
one additional card ♡ in addition to the four cards for the
input commitments, as follows.

Koch-Walzer-Härtel five-card AND protocol
input set:{( ?
♣,

?
♡,

?
♣,

?
♡,
♡
?
)
,
( ?
♣,

?
♡,

?
♡,

?
♣,
♡
?
)
,( ?

♡,
?
♣,

?
♣,

?
♡,
♡
?
)
,
( ?
♡,

?
♣,

?
♡,

?
♣,
♡
?
)}

(turn, {5})
(shuf, {id, (1 3)(2 4)})
(shuf, {id, (2 3)})
(turn, {2})
if visible seq. = (?, ♣, ?, ?, ?) then
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(turn, {2})
(shuf, {id, (1 3)})

⋆ (perm, (1 5 2 4))
(shuf, {id, (5 4 3 2 1)}, id 7→2/3, (5 4 3 2 1) 7→1/3)
(turn, {5})
if visible seq. = (?, ?, ?, ?, ♣) then

(result, 4, 3)
else if visible seq. = (?, ?, ?, ?,♡) then

(result, 3, 1)
else if visible seq. = (?,♡, ?, ?, ?) then

(turn, {2})
(shuf, {id, (3 4)})
(shuf, {id, (1 3)(2 4)}, id 7→1/3, (1 3)(2 4) 7→2/3)
(turn, {1})
if visible seq. = (♡, ?, ?, ?, ?) then

(result, 2, 4)
else if visible seq. = (♣, ?, ?, ?, ?) then

(turn, {1})
(shuf, {id, (3 4)})
(perm, (1 2 4 3))
goto ⋆

This protocol also uses non-uniform shuffle actions:

(shuf, {id, (5 4 3 2 1)}, id 7→2/3, (5 4 3 2 1) 7→1/3)

and

(shuf, {id, (1 3)(2 4)}, id 7→1/3, (1 3)(2 4) 7→2/3).

Note that, while the latter shuffle, which already ap-
pears in the four-card protocol above, is “closed” (because
((1 3)(2 4))2 = id), the former shuffle is not. These two
unconventional shuffle actions can also be implemented by
humans [27]; see Sect. 7.1.

6. Lower Bounds

By virtue of the formal computational model presented in
Sect. 2, it is now possible to discuss impossibility results or
lower bounds on the number of required cards.

The first impossibility result that was shown in [14]
is that it is impossible to make two identical copied face-
down cards from an unknown face-down card (with perfect
secrecy).

Next, Koch, Walzer, and Härtel [6] proved that there
is no finite-runtime committed AND protocol using four
cards. In their proof, after they supposed a four-card finite-
runtime committed AND protocol, they carefully analyzed
and characterized possible atomic sequences in a box in the
Koch-Walzer-Härtel diagram of such a protocol to derive a
contradiction. Therefore, this non-existence result immedi-
ately implies that their five-card AND protocol presented in
Sect. 5 is the best possible (remember that it uses five cards
and is of finite-runtime).

It will be appreciated if other lower bounds are found.

7. Recent Progress

In this section, we introduce other recent progress in card-
based cryptography.

7.1 Implementation of Non-Uniform Shuffle

As seen in Sect. 5, the Koch-Walzer-Härtel AND protocols
[6] developed in 2015 utilize non-uniform shuffle actions.

In 2016, Nishimura et al. [27] presented a secure im-
plementation of a non-uniform shuffle. To implement the
shuffle, they utilized physical cases that can store piles of
cards, such as boxes and envelopes. Therefore, humans are
able to perform the non-uniform shuffle using these everyday
objects.

7.2 Random Permutation without Fixed Points

Card-based protocols can perform not only secure multiparty
computation but also other cryptographic tasks. In fact, in
1993, Crépeau and Kilian [3] proposed a card-based pro-
tocol that generates a random permutation having no fixed
point. Such a random permutation is preferable when n
players want to exchange gifts, because they can avoid the
undesirable situation where a player must buy a present for
himself/herself. Crépeau and Kilian’s protocol [3] requires
2n2 cards of four colors. The permutation is produced as
a sequence of face-down cards and each of n players can
receive his/her portion that privately tells him/her for whom
he/she is going to buy a present.

Recently in 2015, Ishikawa, Chida, and Mizuki [28]
improved on the result, i.e., they designed a new protocol to
solve the “no fixed point” problem, showing that n2 cards
of two colors are sufficient. They also proposed a protocol
using O(n log n) cards of two colors.

7.3 Use of Polarizing Cards and Polygon Cards

Shinagawa et al. [29] considered using a different type
of card, i.e., they proposed protocols based on polarizing
plates. Roughly speaking, one can encode a bit value by
using two polarizing plates, depending on whether light can
pass through the superimposed plates or not.

Shinagawa et al. [30] also considered the use of regular
polygon cards. This allows efficient protocols to be con-
structed for secure computations of multi-valued input and
output functions, because, roughly speaking, one can encode
such an i-valued input using a regular i-sided polygon card
according to its angle when it is put on the table.

8. Conclusion

In this paper, we reviewed the computational model of card-
based protocols with its applications to designing protocols
and recent progress. As considering a non-uniform shuffle
has contributed to reducing the number of required cards, the
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general computational model interestingly yields not only
impossibility results but also broad feasibility results.

To conclude this paper, it is worth noting that many
issues remain to be addressed in the future, as follows.

• Past research activities have been devoted mainly to
reducing the number of cards used in a protocol. How-
ever, also of interest is the number of actions executed
in a protocol. It is not yet known whether there is a
trade-off between the number of cards and number of
actions. The two numbers may correspond to the space
complexity and time complexity, respectively. Proto-
cols having fewer actions might be necessary for some
applications.

• As mentioned in Sect. 2.2, one can consider any com-
plicated shuffle action based on a mathematical theory.
However, humans might not be able to execute such
complicated shuffles in practice. A more exact char-
acterization of shuffle actions that humans can easily
implement is desirable (cf. [6]).

• The construction of more formal computational models
for polarizing cards and regular polygon cards (intro-
duced in Sect. 7.3) is one intriguing direction of future
work.

• Card-based cryptography is useful for educational pur-
poses; indeed, it has attracted many computer science
students (e.g., [31]). We have confirmed that non-
specialists such as high school students can easily per-
form card-based protocols using a real deck of cards; for
example, without experiencing a problem, 21 students
in our course were able to execute the six-card AND
protocol 20 times to determine whether they were all
keen to go for lunch together or not (avoiding an em-
barrassing situation). Suggestions for other attractive
applications would be welcome.

• When executing a card-based protocol in daily life, there
might be a “hardware” issue; for example, some cards
may have scuff marks on their faces. Since only Mizuki
and Shizuya [32] have attempted to resolve this issue,
further research would be beneficial.
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