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Abstract

Yao’s millionaire protocol enables Alice and Bob to know whether or not Bob is
richer than Alice by using a public-key cryptosystem without revealing the ac-
tual amounts of their properties. In this paper, we present simple and practical
implementations of Yao’s millionaire protocol using a physical deck of playing
cards; we straightforwardly implement the idea behind Yao’s millionaire proto-
col so that even non-experts can easily understand their correctness and secrecy.
Our implementations are based partially on the previous card-based scheme pro-
posed by Nakai, Tokushige, Misawa, Iwamoto, and Ohta; their scheme admits
players’ private actions on a sequence of cards called Private Permutation (PP),
implying that a malicious player could make an active attack (for example,
he/she could exchange some of the cards stealthily when doing such a private
action). By contrast, our implementations rely on a familiar shuffling operation
called a random cut, and hence, they can be conducted completely publicly so
as to avoid any active attack. More specifically, we present two card-based im-
plementations of Yao’s millionaire protocol; one uses a two-colored deck of cards
(which consists of black and red cards), and the other uses a standard deck of
playing cards. Furthermore, we also provide card-based protocols that rely on
a logical circuit representing the comparison.
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1. Introduction

Assume that Alice and Bob have a and b dollars, respectively, such that
a,b € {1,2,...,m} for some natural number m. They want to know who is
richer without revealing any information about their values (more than that is
necessary), i.e., they want to determine only whether a <b or not. This is the
famous millionaires’ problem proposed by Yao [2] in 1982, and he designed a
protocol, which we call Yao’s millionaire protocol, to solve the problem based on
a public-key cryptosystem. The fundamental principle behind Yao’s millionaire
protocol could be interpreted as follows. If Alice arranges m symbols consisting
of a number a of #s and a number (m—a) of {s as

a atl a2

1 2 m
AD A OO,

and Bob points at the b-th symbol, then the b-th symbol being < implies a < b,
and the b-th symbol being # implies a > b:

1 2 a at+l a2 b m
1 2 b a atl a2 m

While Yao’s millionaire protocol relies on the public-key cryptosystem to
implement the above principle without leaking actual values a and b, Nakai,
Tokushige, Misawa, Iwamoto, and Ohta [3] considered the use of a deck of
physical cards in 2016. That is, following the fundamental principle above, they
constructed a card-based scheme using cards of two types such as

*[#] - [#[]0]-[9]

whose backs are all identical . Roughly speaking, in their scheme, Alice first
encodes her secret value a with a sequence of face-down cards, and then Bob
“privately” changes the positions of cards according to his secret value b. We
will describe the details in Section 2. Since many people on earth are famil-
iar with playing cards, their card-based scheme is human-friendly and useful.
Its only drawback is that it requires a player’s “private” action, called Private
Permutation (PP) [3], which permits Bob to rearrange the sequence of cards
privately (for example, he is allowed to manipulate the cards behind his back).
Private Permutation is considered to be such a strong assumption that a mali-
cious player may do an active attack. Hereinafter, we refer to their scheme as
the NTMIO protocol with PP; the acronym NTMIO is made of the initial letters
of the names of the authors [3].

Thus, it is preferable to construct a card-based scheme which does not rely
on Private Permutation, in order to avoid possible malicious actions. To this



Table 1: The PP-free millionaire protocols.

Deck #Cards #Shuffles  Section
Our implementation with RC ~ Two-colored 3m+1 1 §3
Using a standard deck Standard 4m 4 §4
The previous circuit-based [3] Two-colored  4[logm]+4  7[logm]—6 §5
Our improved circuit-based Two-colored  4[logm|+2  2[logm]—1 §6

end, in this paper, we present a “PP-free” scheme, which implements the fun-
damental principle behind Yao’s millionaire protocol; instead of using Private
Permutation, we use a familiar shuffling operation called the random cut (RC).
A random cut is a cyclic shuffle, which can be easily implemented by humans
as in the case of usual card games (e.g. [4, 5, 6]). Therefore, our scheme, named
the PP-free protocol with RC, can be conducted completely publicly, and hence,
any malicious action can be detected. As will be seen in Section 3, we straight-
forwardly implement the above principle. Therefore, we believe that even non-
experts can easily understand the correctness and secrecy of our scheme, and
can practically use it in everyday life.

Similarly to the NTMIO protocol with PP, our PP-free protocol with RC
uses a two-colored deck of cards ’&H&‘ . @’@H@‘ . @ Compared with such
a two-colored deck of cards, a standard deck of playing cards is more familiar
with us. Therefore, we extend our protocol so that we can solve the millionaire
problem using a standard deck of playing cards (which is sold in many toy stores
all over the world). We note that simply replacing a two-colored deck with a
standard deck in the PP-free protocol with RC does not work. Note also that
our protocol uses another simple shuffle aside from RC. These results will be
presented in Section 4.

It should be noted that Nakai et al. [3] proposed a PP-free protocol as well;
they presented a card-based scheme, which follows not the above-mentioned
fundamental principle but a logical circuit representing the comparison a < b.
This PP-free circuit-based protocol relies on a shuffling operation called the
random bisection cut [7] (instead of Private Permutation). In this paper, we
improve upon this existing protocol; we will reduce the number of required
random bisection cuts to around 2/7. We will explain the details in Sections 5
and 6.

Table 1 summarizes the performance of the PP-free protocols.

The remainder of this paper is organized as follows. In Section 2, we in-
troduce the NTMIO protocol with PP [3]. In Section 3, we present our imple-
mentation, the PP-free protocol with RC. We confirm that simply replacing a
two-colored deck with a standard deck in the PP-free protocol with RC can-
not solve the millionaire problem, and then present how to resolve the issue in
Section 4. As for circuit-based protocols, we introduce the previous protocol in
Section 5, and give an improved protocol in Section 6. Moreover, for the circuit-




based protocols, we consider the use of a standard deck of cards in Section 7.
We conclude this paper in Section 8.

An earlier version of this paper was presented and appeared as a conference
paper [1]. The main difference is that we have added Sections 4 and 7 in this
extended version of the paper: While the conference paper deals only with a
two-colored deck of cards, this paper first proposes implementations using a
standard deck of cards.

2. The Previous Scheme: the NTMIO Protocol with PP

In this section, we introduce the NTMIO protocol with PP [3].
Recall the fundamental principle behind Yao’s millionaire protocol; Alice

arranges m symbols:
a atl a2 m

12
LY R RO
Using a pair of physical cards @ and @, let us encode each symbol as follows:

351 - & 18 - .

Thus, Alice can encode her private value a using m pairs of @@7 and put the
cards with their faces down such that Bob does not see the order of the cards.
For such a sequence of m pairs encoding Alice’s secret value a, Bob needs to
point at the b-th pair without leaking any information about his secret value
b; to this end, Bob is permitted to use Private Permutation. Specifically, the
NTMIO protocol with PP proceeds as follows.

1. Alice holding m @s and m @s places a number a of @@s on a table
with their faces down, and then puts (m—a) @@s next to them:
1 2 a a+1 a+2 m
HEHIHBEHBHEIE RN
& O & QO & O O &6 O &

b

while Bob does not see the order of each pair.

2. Bob uses Private Permutation; he takes the sequence of cards and move
them behind his back. Then, he moves the b-th pair to the first without
Alice seeing which pair comes first:

717 Il 2
S EREEFEEE

3. The first pair of cards is revealed.
o If the revealed cards are @E, a<b.

e If the revealed cards are @@, a>b.



This is the existing card-based solution to the millionaires’ problem using
Private Permutation'. Let us stress that Bob needs to use Private Permutation
in Step 2.

The use of Private Permutation is so powerful as to contribute to improving
the efficiency of card-based protocols [3, 10, 11, 12, 13], and also it is used in
other physical secure protocols [14, 15]; however, it might lead to some issues.
To implement Step 2 of this protocol, the following issues are considered. (1)
If Bob were malicious, he could make an active attack; for instance, he could
replace the sequence of cards with another set of cards (prepared by himself
beforehand) behind his back so that he would be able to peep the exact value
of a later; because this attack is done behind his back, Alice does not notice it.
(2) Alice and/or audience watching the execution of the protocol could learn
Bob’s secret value b by observing his tiny shoulder movement. (3) Permuting
some cards behind one’s back might be challenging because one only has to rely
on the sense of hands; the case of b = 1 or b = m might be no problem, but if
b =m/2, Bob might have difficulty in searching the desired pair of cards.

In the next section, we design a simple PP-free protocol.

3. Our Implementation Using a Random Cut

In this section, we present our card-based implementation of Yao’s million-
aire protocol; instead of relying on Private Permutation, we use

o a random cut (RC), which is a well-known and easy-to-perform shuffle,
and

e cards whose backs are , which is a different pattern from .

3.1. How to Proceed
Our PP-free protocol with RC proceeds as follows.

1. Alice holds m @s and (m—1) @s. Depending on her secret value a, she
places a number a of @s on a table with their faces down, and then puts
a number (m—a) of @s next to them. The resulting sequence is Alice’s

iHPUt: 1 2 a atl a2 m
* & & O O v

On the other hand, Bob holds (m—1) cards of & whose backs are |#|and a
card of © whose back is also . Then, he places these m cards with their

11t should be noted that Fagin, Naor, and Winkler proposed a similar idea to solve the
socialist millionaires’ problem [8] where Alice and Bob want to know whether they think the
same person in mind or not (see Solution 11 in [9]). In addition, Nakai et al. [3] presented
another card-based scheme with Private Permutation, which compares a and b bit by bit with
the help of “storage” cards.



faces down on the table such that only the b-th card is ©. The resulting
sequence is Bob’s input:

14 1 ).

. Take every card from Alice’s input sequence and Bob’s input sequence
from the left alternately one by one, and put it to the right of the previous
card:

AR - .

We further add two cards to the sequence:

il 2 [

these two cards are put for handling the case of a = b = m. Note that
recalling the fundamental principle behind Yao’s millionaire protocol, the
left card of Bob’s O-card determines whether a < b or not:

21 A - 2 Bl — oo
2l A G - Bl o oo

Note, furthermore, that when a > b, the (b+1)-st pair determines whether
a=bor a>b: if the (b+1)-st pair is @@ then a=0; if it is @@ then
a > b. Of course, we cannot open Bob’s cards now; hence, we add a
randomization in the next step.

. Apply a random cut to the sequence of (2m+2) cards, which means shuf-
fling the card sequence cyclically (we denote this operation by <->):

<[z]#][2]#] - [2]#]> -

The random cut can be securely implemented by the shuffle operation
called the “Hindu cut” [6]; the shuffle may be repeated by Alice and Bob,
or even other people until they are all satisfied with the result. Note that
the random cut can be done completely publicly [6], and hence, each player
can notice any illegal action if any.

. Reveal all the cards whose backs are (namely, the m cards placed by
Bob and the additional card); then, one card of © appears. Reveal the
card on its left.

e If the revealed card is @, a<b.

e If the revealed card is @, we have a > b. To see whether equality
holds or not, open the card to the right of Bob’s O-card (apart from
cyclic rotation). If the opened card is @, a=b. If it is @, a>b.




This is our PP-free protocol with RC. It uses (3m+1) cards in total and uses
one shuffle. In Step 1, Alice places a @s; if Alice has only a @s at first, the
value a might be leaked from the number of cards that Alice holds. Therefore,
Alice needs to have m @s at first (the number of @ is similar). Since we apply
a random cut in Step 3, revealing Bob’s cards in Step 4 does not expose where
Bob placed the Q-card. If a=b, Alice and Bob will learn the exact value; note
that their values are not leaked to any other people watching the execution of
the protocol.

As for the use of a different back , we were inspired by the technique
called the “Chosen Cut” that Koch and Walzer proposed [5]. If the back-side
symbol of the cards is vertically asymmetric, we do not need cards of different
backs like : It suffices that Bob puts his cards upside down as follows:

2sllz]s) - [2]s)

Our protocol can be executed completely publicly. Any malicious action will
be noticed. Moreover, we can automatically confirm that Bob put his input in
a correct format when we reveal all Bob’s cards in Step 4. We can even be
convinced that Alice put her input in a correct format by applying the idea
in [16] with some additional cards.

3.2. A Pseudocode

In this subsection, we present a more formal description of our protocol, that
is, we show a pseudocode that follows the computational model of card-based
protocols, which was formalized in [17, 18, 19].

First, let us describe an input card sequence. Remember that, for example,
if a = b =1, then Alice and Bob will arrange their inputs with two additional
cards as:

m cards m cards
TRV S U i SR A
&7@7 7@7@7*7 7*7@7*
Generally, for a,b € {1,2,...,m}, we define
1 a1 a atl m mtl m+b—1 m+b mtb+Hl 2m 2m+l 2mA2
F(a’b):(17"'7171717"'717ﬁ""? ﬁ7ﬁ, ﬁ7"'777 1’ 7)'
) & &0 (VAR ) L IV ) & 07 &

Next, we need to define the following operations applied to a card sequence
I'=(a1,a2,...,0q):

e (turn,T) for T C {1,2,...,d}, i.e., turning over cards is denoted by a set
T such that every card whose position in T is turned over;

2Koch and Walzer [5] showed that one can securely “choose” a permutation from a specific
set using helping cards with a different color.



o (perm,m) for m € Sy, where S; denotes the symmetric group of degree i,
i.e., a rearranging operation is denoted by permutation 7;

o (shuf,II, F) for II C S; and a probability distribution F on II, i.e., a
shuffling operation is denoted by a permutation set II and a probability
distribution F on II. If F is uniform, we simply write it as (shuf,II);

o (result,e) for some expression e. This indicates that the protocol termi-
nates with the output e.

Based on the above formalization, a pseudocode of our PP-free protocol with
RC is shown as follows, where “visible seq.” denotes what we can look at for a
card sequence on the table, and we define

w1 2 3 - m m+1l m+2 .- 2m 2m+1 2m+2
1 3 5 -+ 2m-—1 2 4 <o+ 2m 2m+1 2m+42
which corresponds to the action for taking cards alternately in Step 2 of the
protocol, and

RComiz & {(123 -+ 2m+2)7 | 1< j < 2m+2},

where (123 --- 2m—+2) is a cyclic permutation, meaning that 1 — 2, 2 +— 3,
and so on.

The PP-free protocol with RC

input set: {I‘(a’b) |1<a,b< m}

(perm, )

(shuf, RCayn42)

if visible seq. = (#,7,#,7,...,#,7) then
(perm, (2m+2 2m+1---1))

(turn, {2,4,...,2m+2})

1st (r=1)-st r-th (r+l)-st (m1)-st
AN AN A A~
let r s.t. visible seq. = (?,é,..., 7, 2,0, 2.& ,..., 7, & )
(turn, {2r—1})
r-th
~ =N
if visible seq. = (7, &, ..., 0,0, ..., 7 &) then (result,“a < ")
-th
——

else if visible seq. = (7, &,..., &, 0, ... 7 &) then
(turn, {2r+1 (mod 2m+2)})

r-th (rl)-st
~ N
if visible seq. = (7, &b, ..., %, O, O/ ,...,7 &) then (result,“a =1”)

else if visible seq. = (7, &, ..., &, 0, &, & ,...,7 &) then (result, “a > b”)



(a) Arrange Alice’s input and Bob’s in- (b) Apply a random cut to the sequence.
put; the upside-down cards are put by
Bob.

(¢) Bob’s sequence (of upside-down (d) The left card of the red card is re-
cards) is revealed and then one red card vealed; we have a < b because the re-
appears. vealed card is red.

Figure 1: An implementation of our PP-free protocol with RC when m = 4.

8.8. Example of Real Fxecution

Our protocol is quite simple and easy-to-implement. For example, two col-
leagues, Alice and Bob, in a company are easily able to compare their bonuses
by using our protocol, where Alice’s bonus is 10* dollars and Bob’s bonus is
10° dollars. The protocol falls into real world cryptography; Fig. 1 shows a real
execution of our protocol for m = 4, i.e., 10%,10° € {$10, $100, $1000, $10000},
requiring only 13 cards.? Card-based protocols are far more practical than might
be imagined.

4. A Millionaire Protocol Using a Standard Deck

Remember that our implementation with RC explained in Section 3 uses a
deck of black and red cards. As mentioned in Section 1, it would be great if
we can perform the same task using a standard deck of playing cards instead of
using a two-colored deck.

3Remember that the protocol requires 3m + 1 (=13) cards to allow Alice to input a such
that 1 < a < m (although there are only 10 cards on the table in Fig. 1).



In this section, we first show that simply replacing the two-colored deck with
a standard deck of cards does not work. That is, such a straight-forward protocol
leaks information about Bob’s input, as shown in Section 4.1. In Section 4.2, we
construct a subprotocol as a new technique that prevents Alice from knowing
Bob’s input b. Based on this, we present the full description of our protocol
using a standard deck of playing cards in Section 4.3.

4.1. Toward Using a Standard Deck of Cards

Let us first define a total order that captures a standard deck of playing cards.
A standard deck of playing cards is a 52-card deck consisting of numbered cards
e such that no two cards have the same number. The back sides are

all identical . For convenience, in the sequel, we often regard an odd-number

card as a black card @ and an even-number card as a red card @

Let us execute our implementation with RC using the above standard deck
instead of a two-colored deck of cards @@ . @ @@ . @ Assume that
m = 4. Because Alice requires four black cards and three red cards to represent
her input, she has ’ 1 H 3 H 5 H 7 ‘ and ’ 2 H 4 H 6 ‘ Bob has @ and as three
black cards and one red card. Remembering Step 2 in which the (m + 1)-st
additional pair of cards is put, we let Alice hold |10|and Bob hold . Consider,
for instance, the case where @ = 4 and b = 2. Alice and Bob place the following
sequences of cards:

HHE
5 3 7 1 10
0
a-th
HHHEN
15 8 9 11 13
)

b-th

where Alice’s black cards and red card (10| are randomly chosen and

placed, and Bob’s sequence is arranged by shifting @ Note that
Alice can memorize the order of numbers in her input. Thus, after Steps 1

and 2, we have

!‘gHl:;Hg\!gHgHg\!zHﬁ\!;Hg\.

They apply a random cut in Step 3 and then reveal Bob’s cards in Step 4. For
instance, assume that the resulting sequence in Step 4 becomes the following
sequence. (We here fix Bob’s upside down cards for convenience.)

]
mEEHA]

Remember that corresponds to the red card. In this case, the position of
placed by Bob in Step 1 is hidden due to the random cut. Therefore, replacing

10



Bob’s sequence of cards with standard cards does not cause a problem. However,
a security issue occurs when Alice’s card is revealed. In this example, they reveal
the fourth card of Alice’s input:

A0
MEEEIE

At this time, Alice gets to know that b = 2. That is, because Alice remembers
that she placed | 3 |at the second position in Step 1, she learns that Bob put the
red card at the second position, which implies that b = 2. Therefore, if we
execute our protocol presented in Section 3 using a standard deck of cards, the
value of b would be leaked when Alice’s card is revealed in Step 4. That is, this
straight-forward implementation is not secure, and we need a new technique.

4.2. Subprotocol

As seen in Section 4.1, simply replacing the deck with a standard deck of
playing cards does not work (namely, the value of b would be leaked to Alice).
Let us confirm again the reason why the simple replacement described in Sec-
tion 4.1 makes Alice know Bob’s input b. That occurs when Alice’s b-th card is
opened in Step 4 (because Alice memorizes the order of her cards). Therefore,
we construct a subprotocol that hides the order of Alice’s cards from her while
guaranteeing the “format” of Alice’s input, i.e., placing odd-number cards at ev-
ery position from the first to the a-th and even-number cards from the (a4 1)-st
to the last. If we execute such a subprotocol in advance, b is hidden from Alice
even if they reveal the b-th card in Alice’s input sequence because Alice does
not know where the revealed card was in the input.

The subprotocol proceeds as follows:

1. Alice and Bob shuffle m odd-number cards (corresponding to black) and
then place them on the table with their faces down. Similarly, they shuffle
m even-number cards (corresponding to red) and then place them:

—_— — —

odd (black) even (red)
2. Alice takes m + 1 odd-number cards and m — 1 even-number cards from
the deck. Then, she places a sequence of cards consisting of odd-number

cards at positions from the (m — a + 1)-st to the (2m — a + 1)-st (in any
order) and even-number cards at the remaining positions (in any order)

11



below the sequence of cards placed in Step 1 with their faces down:

1 m  m+l 2m
............ ............
odd even
1 m—a m—at+l 2m—a+l 2m—at2 2m
even odd even

Note that the subsequence just above the (m+1) odd-number cards placed
now becomes an encode of the value of a. We call the sequence placed by
Alice the sequence in the second row.

3. Considering the two cards in the same row as a pile, apply a Pile-shifting
Shuffle to the sequence of piles:

1 2 2m
1 2 co. | 2m ’
This cyclically shuffles a sequence of piles. To implement this shuffle,
we use a physical case that can store a pile of cards, such as boxes and
envelopes [20]; one cyclically shuffles them by hand until nobody can trace
the offset.*
4. Reveal the sequence in the second row. The subsequence of m + 1 cards

above the revealed odd-number cards represents a. The revealed 2m cards
can be reused.

Thus, we can obtain a sequence of m+1 cards representing a € {1,2,...,m}
by executing the above subprotocol:

odd (black) even (red)

Note that, by virtue of the shuffle in Step 1, neither Alice nor Bob can know
the order of the obtained sequence of the number cards encoding Alice’s value
a in Step 4. Because they apply the Pile-Shifting Shuffle in Step 3, revealing
the sequence in the second row does not leak any information about the value
of a. More specifically, we show that no information about Alice’s input a is
leaked during the execution of the subprotocol, as follows. In Steps 1, 2, and
3, a is not leaked because players just place cards with their faces down and

4This operation is the same as Bob puts his cards upside down and then they apply a
random cut (as described in Section 3.1). If the back-side symbol of the standard deck of
cards is vertically asymmetric, using a random cut is more efficient because an additional tool
is not required.

12



publicly apply shuffle operations. In Step 4, the sequence of cards in the second
row placed in Step 2 is revealed. Then, odd-number cards appear from the
(m —a+1+4r)-th to the (2m —a+ 1+ r)-th (apart from cyclic rotation) where
r € {0,1,...,2m — 1} is a random value generated by the Pile-Shifting Shuffle
in Step 3. Therefore, a is not leaked by revealing the sequence of cards in the
second row.

The total number of shuffles required for the subprotocol is three because
two shuffles in Step 1 and one shuffle in Step 3 are applied. The number of
required cards is 4m.

4.3. Description

We are now ready to present our protocol using a standard deck of playing
cards; our implementation is obtained by combining the subprotocol explained
in Section 4.2 with the PP-free protocol with RC explained in Section 3.

The protocol proceeds as follows:

1. Execute the subprotocol explained in Section 4.2 to obtain Alice’s input

sequence of cards:
1 a atl m

1
—_— —
odd even

The revealed 2m cards in the subprotocol can be reused; Bob takes them
and then places m+1 cards (namely, Bob’s input sequence) below Alice’s,
such that only the b-th card has an even number and the remaining m
odd-number cards starting at the (b 4 1)-st position (apart from cyclic
rotation) are sorted in ascending order (or in any order):

1 a_ atl mtl
...... ......
odd even
1 b1 b by mAl

odd  €ven odd
2. Apply the Pile-Shifting Shuffle:

1 2 m+l

1 2 | ... | mit
3. Reveal Bob’s cards. Then, one even-number card appears. Reveal the
card just above the even-number card.
e We have a < b if the revealed card is even.

e We have a > b if the revealed card is odd. To see whether equality
holds or not, open the card to the right of the revealed card. If the
opened card is even, we have a = b. If it is odd, we have a < b.

13



Thus, we can solve the millionaire problem by executing the above protocol.
In Steps 1 and 2, information about Alice’s input a and Bob’s input b is not
leaked because they just execute the subprotocol, which is shown to be secure
in Section 4.2, and publicly apply a shuffle operation. In Step 3, Bob’s input
sequence is revealed at first. Then, one even-number card appears in the (b+r)-
th position (apart from cyclic rotation) where r € {0,1,...,m} is a random
value generated by the Pile-Shifting Shuffle in Step 2. Therefore, the value of
b is not leaked by revealing Bob’s input sequence. Then, the card just above
the revealed even-number card, i.e., the b-th card in Alice’s input sequence is
revealed. This revealed card does not leak b because nobody knows where the
revealed card was placed in the input due to the subprotocol. Therefore, the
value of b is not leaked by revealing the b-th card in Alice’s input sequence.
Opening the (b4 1)-st card of Alice’s input sequence is similar.

4.4. The Efficiency

The total number of shuffles required for our implementation using a stan-
dard deck is four because three shuffles in the subprotocol and one shuffle in
Step 2 are applied. The number of required cards is 4m because they reuse
cards to execute the protocol after executing the subprotocol with 4m cards.’
See Table 1 again.

5. The Existing Circuit-Based Protocol

Hereinafter, we deal with another approach for solving the millionaires’ prob-
lem: We introduce the existing circuit-based protocol [3] in this section, and then
we will improve upon it in the next section.

Consider the following encoding;:

#[0] =0, [V &] = 1. (1)

Then, Alice and Bob can place sequences of cards corresponding to the binary
representations of @ = (an,...,a1)2 and b = (b,,...,b1)s, respectively, where
n={[logym]:

HEH R HEH

An ay by, by

Such a pair of face-down cards

5Note that the computational model of card-based protocols [18] assumes that all inputs
are given at the beginning. If we follow this assumption, i.e., Bob should put input cards at
the beginning of the protocol, the number of required cards is 5m.

14



corresponding to a bit z € {0,1} is called a commitment to x. Given the
above card sequence along with some additional cards, the existing circuit-based
protocol given by Nakai et al. [3] determines whether a < b or not:

wwww’ﬂ’@”&”@‘%% 7

an ay bn b1 bool(a<b)

where bool (a < b) represents

0 if a>0b,
bool (a < b) & -
1 if a<b.

Their protocol proceeds based on the following logical circuit.

The circuit-based protocol [3]

input : @ = (an,...,a1)2,0 = (bp,...,b1)2;
fi=a1Nbi;

for(i: 2ton){

) fi=(@i Nb)V((a@i Vbi)Afi-1) ;

output : f,, (= bool (a < b)) .

To implement this circuit, one requires AND (OR) and COPY protocols; Nakai
et al. [3] used the six-card AND protocol [7] (shown in Appendix A), producing
a commitment to z A y from the input commitments to = and y:

EEREER - - EE

x Y

and the six-card COPY protocol [7] (shown in Appendix B), producing two
commitments to z from an input commitment to x:

2Lz #[O]#[9] -~ [z]z]7]7).

T

Let us count the number of required cards for implementing the circuit.
First, two additional cards @@ are required to compute f; = a; A by using the
AND protocol [7]. Note that we have four reusable cards @@@@ directly
after computing fi (see Appendix A for details). Then, because six additional
cards ’&H&H&H@H@H@‘ are required to duplicate the commitments to as and by
in order to compute fa =(az Abz)V ((az V b2)Af1), another two cards @@ are
required. Consequently, four additional cards @@@@ are necessary before
computing fi, and hence, the total number of required cards is 4[logm]+4.
(Note that directly after computing f;, 2 < j < n— 1, we have enough reusable
cards to compute fj41, i.e., four additional cards are sufficient to implement the
circuit.)
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Next, let us count the number of required shuffles. Note that each of the
AND [7] and COPY [7] protocols uses one shuffle and we have two reusable cards
after the protocol terminates; furthermore, we can obtain two more reusable
cards after using the AND protocol [7] if we apply one more shuffle (as seen
in Appendices A and B). First, one shuffle is required to compute f1, and one
more shuffle is required to produce four reusable cards. Then, the circuit-based
protocol uses the COPY protocol [7] twice and the AND (OR) protocol [7] four
times to compute f;, 2 < ¢ < n. Moreover, one more shuffle is required to
produce reusable cards enough to compute f;+1. That is, seven shuffles are
required to compute f;, 2 < 7 < n — 1, and six shuflles are required to compute
fn. Consequently, the total number of required shuffles is 7[log m|—6.

It should be noted that, as seen above, this existing circuit-based protocol
produces a commitment to bool (a < b) (while our implementations with RC
presented in Sections 3 and 4 reveal the value of it to the players at the end of
the protocols). Therefore, one can reuse the commitment in a larger protocol.

6. Our Improved Circuit-Based Protocol

In this section, we improve upon the circuit-based protocol introduced in
Section 5, i.e., we present an improved circuit-based protocol that uses a less
number of shuffles and cards. We first show the idea behind our improved
circuit-based protocol in Section 6.1, and then show the procedure of our im-
proved circuit-based protocol in Section 6.2.

6.1. The Idea

We borrow the idea behind the storage protocol [3]; it uses Private Permu-
tation and regards f; shown in Section 5 as:

fier if a; =b;,
fi= (2)
bi if a; 75 bi.

That is, the storage protocol is supposed to choose f;_1 or b; depending on
whether a; = b; or not. More specifically,

o fi—1 is equal to bool ((a;j—1,...,a1) < (bi—1,...,b1));

e a; =b; implies f; = f;_1;

e a; =0 and b; = 1 imply (a;,...,a1)<(b;,...,b1), and hence f; =1 =b;
while a; = 1 and b; = 0 imply (a;,...,a1)>(b;,...,b1), and hence f; =
0=0;.

Such a choice can be made without Private Permutation; if we can let a six-card
sequence be either

2lzjzlzfzlz) o (202) 2]z 2]

a;i®b;  fi—1 b; a;ob; b fi—1
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then, we can obtain a commitment to f; by revealing the first two cards as
follows:

#[Of 2] 2] 7]7] or [O#]2]2]2]2].
— ——
fi fi
The above flow can be accomplished by using the procedure of the six-card AND
protocol [7] shown in Appendix A.
Moreover, we can easily obtain commitments to a; ® b; and b; by using the

six-card COPY protocol [7] shown in Appendix B. That is, from the following
sequence where r is a uniform random bit:

it is determined whether r = b; or r = b; by revealing the first two cards, and
then we obtain commitments to a; @ b; and b; as:

O] o CIR )

a;®b;  b; a;®b;  bi

Note that revealing the first two cards leaks no information about b; because r
is a random bit.

As described above, by using the procedure of the COPY and AND proto-
cols [7], we can obtain a commitment to f; according to Eq. (2) without revealing
the values of a;, b;, and f;_1. It should be noted that f; in Eq. (2) is the three-
input majority function of a;, b;, and f;_1 . An efficient card-based protocol for
the three-input majority function was proposed by Nishida et al. [21] in 2013,
which was based on the same idea mentioned above.

6.2. The Description of Our Protocol

Based on the idea presented in Section 6.1, we construct an improved circuit-
based protocol. Given the input card sequence

HEHERHHEEH

QAn ai by by
and two additional cards, our protocol proceeds as follows.
1. Compute fi; = a1 A by by using the six-card AND protocol [7]:

CIzERIE - - - ()
f1

a b1

Now, two reusable cards remain.
2. Repeat the following computation from i = 2 to i = n.
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(a) Obtain commitments to a; ¢ b; and b; from the commitments to
a; and b; by using the six-card COPY protocol [7] (and the NOT
computation):

el - el

b, ai 0 a;®b; b

(b) Obtain a commitment to f; from the commitments to a; & b;, b;, and
fi—1 by using the six-card AND protocol:

BHEHBEERBEE!

3. Then, a commitment to f,, = bool (a < b) can be obtained:

——
bool(a<b)

Due to the use of two additional cards, this protocol uses (4[log m]+2) cards
in total. The number of required shuffles is 2[logm|—1 in total, because this
protocol repeats each procedure of the AND protocol and the COPY protocol
from i = 2 to ¢ = n after AND computation for f;, as shown in Table 1.

This improved circuit-based protocol is a combination of the existing infor-
mation theoretically secure card-based protocols, and hence, it is guaranteed to
be secure.

7. Circuit-based Protocols with a Standard Deck

In this section, let us run the circuit-based protocols presented in Sections 5
and 6 with a standard deck of cards. To achieve this, we consider the use of the
existing elementary protocols with a standard deck of cards, namely the AND
and COPY protocols listed in Table 2.

First, combine these elementary protocols with the (NTMIO) circuit-based
protocol [3] presented in Section 6. Table 3 shows the numbers of required cards
and shuffles; they can be counted in a similar way to Section 5.

Next, let us run our improved circuit-based protocol explained in Section 6
with a standard deck of cards. Because Step 2(b) of our protocol uses not
a normal AND computation but a special choice of cards, we cannot use the
elementary AND protocols straightforwardly. Fortunately, we found that the
choice can be made by the (extended) existing AND protocol [22] easily. The
extended protocol requires four additional cards and five shuffles. Therefore,
the resulting circuit-based protocol uses (4[logm]+4) cards and (6[logm]—2)
shuffles in total.

SMore specifically, the extended protocol proceeds in a similar way to the existing AND
protocol [22] except for producing “opaque” commitments to f;—1 and b;; refer to the pa-
per [22] for details.
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Table 2: The existing elementary protocols with a standard deck of cards. Note that the
number of required shuffles for each of the AND protocol proposed by Niemi and Renvall [23]
and the one proposed by Koch, Schrempp, and Kirsten [24] is an expected value.

Function #Cards #Shuffles

Niemi-Renvall [23] AND 5 9.5
Mizuki [22] AND 8 4
Koch—Schrempp—Kirsten [24] AND 4 6
Mizuki [22] COPY 6 1

Table 3: The NTMIO circuit-based protocol with a standard deck of cards using the existing
elementary protocols [22, 23, 24].

#Cards #Shuffes
NTMIO with Niemi-Renvall [23] 4[logm]+4 40[logm]—30.5
NTMIO with Mizuki [22] 4[logm]+6  18[logm]|—14

NTMIO with Koch-Schrempp—Kirsten [24] 4[logm]+4  26[logm]—20

8. Conclusion

In this paper, we proposed three card-based protocols to solve the million-
aires’ problem without using Private Permutation. See Table 1 again for the
performance of the PP-free millionaire protocols. In particular, the PP-free
protocol with RC proposed in Section 3 uses only one random cut, and its cor-
rectness and secrecy are clear. Therefore, we believe that even non-experts such
as high school students can easily understand and use it practically. Note that a
random cut can be easily and securely implemented by using the Hindu cut [6].
When preparing a two-colored deck of cards is hard, our protocol presented in
Section 4 will be benefical because it can be executed with a standard deck of
cards, which is sold almost all over the world.

Moreover, we can use our protocols in didactic contexts in order to invite
young people and students to cryptography; they would be an ideal tool to
exhibit the concept of secure multiparty computations, as often pointed out,
e.g., [25, 26].

Regarding the number of required cards, one might think of the use of the
existing four-card AND [17], the five-card AND [27], and the five-card COPY
protocols [28] in the previous circuit-based protocol because the number of re-
quired cards should be reduced. However, the numbers of required shuffies
for the four-card and five-card AND protocols are eight and seven on average,
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respectively. Moreover, the five-card COPY protocol requires ideal cases for
execution. Therefore, for practicality, we considered only the six-card AND
protocol [7] and the six-card COPY protocol [7].
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Appendix A. The Six-Card AND Protocol

In 2009, Mizuki and Sone [7] invented the following six-card AND protocol,
which securely outputs a commitment to z Ay from the commitments to x and
y (and two additional cards).

1. Place input commitments and additional cards of black and red, and then
turn over the two cards in the center:

SO - P

HEE B
3|3 53 2 |

3. Apply a random bisection cut, which means bisecting the sequence and
switching the two halves randomly:

2. Rearrange the sequence:

EEEEEE) - EEEEEE

After applying this shuffling operation, the six-card sequence results in
either the same sequence as the original one or a sequence whose left and
right halves are switched; each case occurs with a probability of 1/2.

4. Rearrange the sequence:
|
| |3 (3

After this rearranging operation, the six-card sequence will be as follows:

2lzfzlz)zle] or (202]2] 2] 2]2).

T 0 Y z Y 0

5. Reveal the first two cards. Then, a commitment to z A y can be obtained
as:

O] zlz]7]7] or [V #]7]7]7]7).

Note that we can reuse the two revealed two cards, and moreover, the other
two cards not being a commitment to z A y can be reused by revealing
them after shuffling.
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As mentioned above, we can obtain a commitment to « A y (keeping its value
secret). It is well known that in the literature [6], a random bisection cut can
be implemented by humans securely so that nobody knows the resulting card
sequence.

An OR protocol can be obtained in a similar way.

Appendix B. The Six-Card COPY Protocol

The following six-card COPY protocol proposed by Mizuki and Sone [7]
produces two commitments to x from a commitment to z and four additional
cards.

1. Place an input commitment and black and red additional cards, and then
turn over the additional cards:

FEJACsE - e

x xr
2. Rearrange the sequence:

Tl 2] [elefelelee.

3. Apply a random bisection cut:

4. Rearrange the sequence:

HanpanENnnanaal

5. Reveal the first two cards. Then, two commitments to x can be obtained
as follows (two revealed cards can be reused in the next protocol):

SN~ N~

*[00z]z 2 ]z] or O] 2] 2] 2] 7).

In the latter case, we can easily get two commitments to x (from commit-
ments to z) by using the NOT protocol (swapping the two cards of each
commitment).
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