
Minimizing ESCT Forms for Two-Variable Multiple-Valued

Input Binary Output Functions∗

Takaaki Mizuki Daizo Mikami Hideaki Sone

Tohoku University
tm-paper+minesctweb[atmark]g-mail.tohoku-university.jp

Abstract

As EXOR (Exclusive-OR) expansions of binary output functions, the ESOP (EXOR
Sum of Products) form and its extension, the ESCT (EXOR Sum of Complex Terms)
form, have been studied extensively in the literature. An efficient algorithm for minimiz-
ing ESOP forms is known for two-variable multiple-valued input functions. On the other
hand, no ESCT minimization algorithm is known for such functions. In this paper, we
give an efficient algorithm for minimizing ESCT forms of two-variable multiple-valued
input functions, showing that the number of terms can be reduced by at most one.

1 Introduction

This paper deals with EXOR (Exclusive-OR) expansions of binary output functions, espe-
cially those whose inputs are two-variable and multiple-valued. Namely, this paper addresses
EXOR expansions of functions f : Zm×Zm → {0, 1} with m ≥ 2 and Zm

def= {0, 1, . . . ,m−1}.
Below, we simply call such a function an m-valued input function or just a ‘function.’ For
example, the truth table in Table 1 specifies a 5-valued input function g(a, b).

b
0 1 2 3 4

0 1 1 1 0 0
1 0 1 0 1 0

a 2 0 1 0 0 1
3 1 0 1 0 1
4 1 0 1 1 0

Table 1: A truth table for the 5-valued input function g(a, b).

As an expansion of EXOR, we begin with the ESOP (EXOR Sum of Products) form,
which combines products aV ∧ bW of literals aV , bW by EXORs ⊕.

∗NOTICE: this is the author’s version of a work that was accepted for publication in Discrete Applied
Mathematics. Changes resulting from the publishing process, such as peer review, editing, corrections,
structural formatting, and other quality control mechanisms may not be reflected in this document. Changes
may have been made to this work since it was submitted for publication. A definitive version is subsequently
published in Discrete Applied Mathematics, DOI: 10.1016/j.dam.2013.12.023.

1

1.1 ESOP forms

The following is an ESOP form of the 5-valued input function g given in Table 1 (omitting
the conjunction symbol ∧):

g(a, b) = a{0,3,4}b{0,1,2} ⊕ a{1,3,4}b{1,3} ⊕ a{2}b{1,4} ⊕ a{3}b{3,4}, (1)

where literals aV and bW with V,W ⊆ Zm are defined as

aV = aV (a) def=
{

1 if a ∈ V ;
0 otherwise

(2)

and

bW = bW (b) def=
{

1 if b ∈W ;
0 otherwise.

(3)

For instance, the leading literal a{0,3,4} of the ESOP form in Eq. (1) becomes 1 if a ∈ {0, 3, 4};
and it becomes 0 if a ∈ {1, 2}. One can verify the equality in Eq. (1) (as can also later be
seen in Eq. (11) of Section 2.1).

Note that while the ESOP form in Eq. (1) above has 4 product terms, the following
ESOP form of g has only 3 terms:

g(a, b) = a{0,3,4}b{0,1,2} ⊕ a{1,2,3,4}b{1,3} ⊕ a{2,3}b{3,4}. (4)

Thus, there exists a minimization problem regarding the ESOP form. For example, in this
case of g there is no ESOP form with less than 3 terms (as seen below), and hence the ESOP
form in Eq. (4) is a minimal form of g. Generally, a minimal ESOP form of a function f is
one having the minimum number of terms among all possible ESOP forms representing f .
We denote by τESOP(f) the number of terms in any minimal ESOP form of f . For example,
we can write τESOP(g) = 3 for the function g above.

The problem of minimization of ESOP forms has been investigated in the literature for
many decades (e.g. [1, 6, 8, 9, 10]). For the addressed case of two-variable and multiple-
valued input, a recently developed efficient algorithm [3] showed that the minimum number
τESOP(f) for a function f (which is not identically zero) is equal to the rank of the binary
matrix Mf , denoted by rank(Mf), which corresponds to the truth table of f . In other
words,

τESOP(f) = rank(Mf). (5)

For example, the binary matrix Mg for the function g given in Table 1 is

Mg =

⎛
⎜⎜⎜⎜⎝

1 1 1 0 0
0 1 0 1 0
0 1 0 0 1
1 0 1 0 1
1 0 1 1 0

⎞
⎟⎟⎟⎟⎠ , (6)

and since one can calculate rank(Mg) = 3 (computed in modulo 2), we surely have

τESOP(g) = 3.

(Throughout this paper, given an m-valued input function f , the corresponding m × m
binary matrix Mf is defined as above. That is, the (i, j)-entry of Mf for every i and j with
1 ≤ i, j ≤ m is set equal to the value of f(i, j). Refer to [11] for matrix theory terminology.)

2

1.2 ESCT forms

We next visit the ESCT (EXOR Sum of Complex Terms) form, which is an extension of the
ESOP form. While an ESOP form consists of product terms aV bW as seen in the previous
subsection, an ESCT form consists of complex terms aU,V (bW) defined as

aU,V (bW) def=
{

aU if bW = 0;
aV if bW = 1,

where aU , aV and bW are literals defined in Eqs. (2) and (3) above. For example,

g(a, b) = a{2,3},{1,4}(b{1,3})⊕ a∅,{0,2,4}(b{0,1,2}) (7)

is an ESCT form of the function g given in Table 1. The first complex term a{2,3},{1,4}(b{1,3})
becomes 1 only when either (i) b{1,3} = 0 and a ∈ {2, 3} or (ii) b{1,3} = 1 and a ∈ {1, 4}
(the equality in Eq. (7) can be verified later in Section 3.2).

Since a literal a∅ is just a constant 0 (recall the definition of a literal shown in Eq. (2)), the
second term a∅,{0,2,4}(b{0,1,2}) of the ESCT form in Eq. (7) becomes 0 whenever b{0,1,2} = 0
(or b /∈ {0, 1, 2}). On the other hand, it becomes a{0,2,4} if b{0,1,2} = 1 (or b ∈ {0, 1, 2}).
Thus, note that the complex term a∅,{0,2,4}(b{0,1,2}) can be regarded as exactly a product
term a{0,2,4}b{0,1,2}. Generalizing this, for any V,W ⊆ Zm, we have

aV bW = a∅,V (bW), (8)

which means that the complex term is a generalization of the product term, and hence the
ESOP form is a special case of the ESCT form.

Since the ESCT form is a more generic expression than the ESOP form, there is a pos-
sibility that the number of terms can be reduced by using ESCT forms instead of ESOP
forms. This has been one motivation for the existing research on minimization or simpli-
fication of ESCT forms (e.g. [7, 12, 13]). Actually, while τESOP(g) = 3 as seen before, the
ESCT form in Eq. (7) has only 2 terms and hence τESCT(g) ≤ 2, where τESCT(f) for a
function f is defined similarly as τESOP(f), that is, τESCT(f) denotes the number of terms
in any minimal ESCT form of f .

Thus, the definitions of ESOP and ESCT forms immediately imply that τESCT(f) ≤
τESOP(f) for any function f . This raises the question, how much smaller is τESCT(f) than
τESOP(f)?

1.3 Our results

This paper answers the question above, in the form of a polynomial-time algorithm to find
a minimal ESCT form of a given function f . Specifically, we show the following theorem.
Hereafter, �1 denotes an all-one column vector, MT

f denotes the transpose of Mf , and C(MT
f)

denotes the row space of Mf (or the column space of MT
f), namely

C
((

�p1 �p2 · · · �pm

)) def=

{
m⊕

i=1

ri�pi

∣∣∣ ri ∈ {0, 1}, 1 ≤ i ≤ m

}

for column vectors �p1, �p2, . . . , �pm; for example, �1 ∈ C(MT
g) for the matrix Mg given in

Eq. (6) because the third and fifth rows in Mg satisfy(
0 1 0 0 1

)T ⊕ (1 0 1 1 0
)T = �1.

3

Theorem 1. For any (two-variable) m-valued input function f with rank(Mf) ≥ 2,

τESCT(f) =
{

rank(Mf)− 1 if �1 ∈ C(MT
f);

rank(Mf) otherwise.

Thus, the minimum number of complex terms τESCT(f) is equal to rank(Mf) − 1 or
rank(Mf). Note that we ruled out the case of rank(Mf) ≤ 1 in Theorem 1 because any
function with rank(Mf) ≤ 1 is obviously expressed as a single term.

As seen in Eq. (5) of Section 1.1, we already know that τESOP(f) = rank(Mf) [3].
Therefore, our result in Theorem 1 implies that τESCT(f) = τESOP(f) − 1 or τESCT(f) =
τESOP(f). In other words, using the ESCT form instead of the ESOP form can reduce the
number of terms by at most one. For example, since τESOP(g) = 3 and τESCT(g) ≤ 2 for g
in Table 1 as seen in Sections 1.1 and 1.2, we have τESCT(g) = 2 and hence the ESCT form
in Eq. (7) is a minimal one of g.

Although this paper proves that the ESCT form has only slightly fewer terms than the
ESOP form has, one does not need to be too pessimistic for the following reason. The
original motivation for the research [3] on minimizing ESOP forms of two-variable multiple-
valued input functions comes from trying to improve a cryptographic protocol [2]. The
cost (communication complexity) of the cryptographic protocol developed in [2] to securely
compute a function f(a, b) is proportional to τESOP(f). Specifically, in that protocol, Alice
with a secret bit a sends a 2τESOP(f)-bit message to Carol, and Bob with a secret bit b sends
a (τESOP(f) + 1)-bit message to Carol, where Alice and Bob have shared a 3τESOP(f)-bit
random string, so only Carol can learn the value of f(a, b). Sampson et al. [5] carried the
idea behind the protocol further, showing that the ESOP form used in the protocol can
just be replaced with the ESCT form. As a result, one obtains a protocol whose cost is
given by replacing τESOP(f) above with just τESCT(f). Thus, even reducing only one term
contributes to enhancing the efficiency of secure computations, especially when τESOP(f) (=
rank(Mf)) is small. For example, for the function g above (which satisfies τESOP(g) = 3
and τESCT(g) = 2), the former protocol (using the ESOP form) needs communication cost
of 19 (= 6 + 4 + 9) bits in total while the latter protocol (using the ESCT form) needs only
13 (= 4+3+6) bits, and hence a minimal ESCT form can reduce the cost by approximately
32%.

As seen, this paper fixes the number of variables to two although the input size m of
each variable can be any value. Actually, all of the existing efficient exact algorithms for
ESOP/ESCT minimization (e.g. [9, 12, 13]) have limitations in the input size, the number
of variables or the number of terms. Even an efficient exact ESOP minimization algorithm
for n-variable two-valued input functions has not been known (where n takes any number).
Note that one can convert a two-valued minimal ESOP form (with multiple variables) into a
two-variable multiple-valued ESOP form, but it is not necessarily minimal. Take a 4-valued
input function h such that

Mh =

⎛
⎜⎜⎝

0 0 0 0
0 0 1 1
0 0 1 1
0 0 1 1

⎞
⎟⎟⎠ ,

for example. The function h can be written as a 4-variable 2-valued minimal ESOP form
like

h(x1, x2, x3, x4) = x1x3 ⊕ x̄1x2x3,

4

which can be converted into a 2-variable 4-valued ESOP form

h(a, b) = a{2,3}b{2,3} ⊕ a{1}b{2,3}.

However, the ESOP form is not minimal because τESOP(h) = rank(Mh) = 1, and indeed,
h(a, b) = a{1,2,3}b{2,3}.

The remainder of the paper is organized as follows. In Section 2, we introduce a method
to express ESOP in a matrix multiplication form, which enables us to easily describe our
algorithm. In Section 3, we present our efficient algorithm to find a minimal ESCT form of
any function. In Section 4, we prove the correctness of our algorithm. This paper concludes
in Section 5.

2 Minimal ESOP Forms as Full Rank Decompositions

This section gives a new view of how to express ESOP forms. Namely, we demonstrate that
any ESOP form can be regarded as a product of two matrices. This matrix-multiplication-
based expression helps us to intuitively understand the minimization of ESOP forms, and
enables us to easily describe the ESCT minimization algorithm in Section 3.

2.1 ESOP forms as products of matrices

We begin with an example. Consider the following ESOP form of the 5-valued input function
g given in Table 1 (already seen in Eq. (1)):

g(a, b) = a{0,3,4}b{0,1,2} ⊕ a{1,3,4}b{1,3} ⊕ a{2}b{1,4} ⊕ a{3}b{3,4}. (9)

Given such a 5-valued ESOP form having 4 terms, we construct the product of a 5 × 4
matrix and a 4× 5 matrix as follows:

�
� a{0,3,4}⎛

⎜⎜⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
1 1 0 1
1 1 0 0

⎞
⎟⎟⎟⎟⎠
⎛
⎜⎜⎝

1 1 1 0 0
0 1 0 1 0
0 1 0 0 1
0 0 0 1 1

⎞
⎟⎟⎠ ,

← b{0,1,2}

← b{1,3}

�� a{1,3,4}

(10)

which represents the ESOP form above. The first column of the left matrix corresponds to
the left literal a{0,3,4} of the first term in the ESOP form, the first row of the right matrix
corresponds to the right literal b{0,1,2} of the first term, the second column of the left matrix
corresponds to a{1,3,4} of the second term, and so on. (Note that each literal is described
by a bit pattern of length 5.) Multiplying these two matrices, we obtain a truth table of g,
namely, the same matrix as Mg:⎛

⎜⎜⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
1 1 0 1
1 1 0 0

⎞
⎟⎟⎟⎟⎠
⎛
⎜⎜⎝

1 1 1 0 0
0 1 0 1 0
0 1 0 0 1
0 0 0 1 1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

1 1 1 0 0
0 1 0 1 0
0 1 0 0 1
1 0 1 0 1
1 0 1 1 0

⎞
⎟⎟⎟⎟⎠ (= Mg). (11)

5

Generally, given an ESOP form
⊕t

�=1 aV�bW� of an m-valued input function f , we have
the corresponding product of an m× t matrix and a t×m matrix:⎛

⎜⎜⎜⎝
aV1(0) aV2(0) . . . aVt(0)
aV1(1) aV2(1) . . . aVt(1)

...
...

. . .
...

aV1(m) aV2(m) . . . aVt(m)

⎞
⎟⎟⎟⎠×

⎛
⎜⎜⎜⎝

bW1(0) bW1(1) . . . bW1(m)
bW2(0) bW2(1) . . . bW2(m)

...
...

. . .
...

bWt(0) bWt(1) . . . bWt(m)

⎞
⎟⎟⎟⎠ ,

which is equal to the matrix Mf . The equality can be easily verified: the (i, j)-entry of the
resulting matrix from multiplying these two matrices is

aV1(i)bW1(j) ⊕ aV2(i)bW2(j)⊕ · · · ⊕ aVt(i)bWt(j),

which equals the value of f(i, j) because of the ESOP form f(a, b) =
⊕t

�=1 aV�bW� .
Thus, Eq. (11) ensures that the function g has the ESOP form seen in Eq. (1) (or

Eq. (9)). For another example, the following equation guarantees that the function g also
has the ESOP form (of three terms) seen in Eq. (4) of Section 1.1:⎛

⎜⎜⎜⎜⎝
1 0 0
0 1 0
0 1 1
1 1 1
1 1 0

⎞
⎟⎟⎟⎟⎠
⎛
⎝ 1 1 1 0 0

0 1 0 1 0
0 0 0 1 1

⎞
⎠ =

⎛
⎜⎜⎜⎜⎝

1 1 1 0 0
0 1 0 1 0
0 1 0 0 1
1 0 1 0 1
1 0 1 1 0

⎞
⎟⎟⎟⎟⎠ . (12)

Note that there has been a matrix-based expression of ESOP forms before, in which
two block matrices are aligned side by side [3]. This paper carries the idea further (just in
representation), showing that a simple product of matrices can entirely exhibit an ESOP
form, as seen in this subsection.

2.2 Appearance of minimal ESOP forms

We now consider how a minimal ESOP form appears in the matrix-multiplication-based
expression.

As shown in the previous subsection, given an m-valued input function f , if there are an
m×t matrix A and a t×m matrix B such that Mf = AB, then there correspondingly exists
an ESOP form consisting of exactly t product terms. Therefore, the number t of columns
in A (or, equivalently, rows in B) directly specifies the number of terms in the ESOP form.
Hence, minimizing ESOP forms can be regarded as minimizing the number t of columns
in such an A. That is, finding a matrix product Mf = AB with the minimum number of
columns in A is equivalent to minimizing ESOP forms of f . Such a matrix product is known
as a “full rank decomposition” (also called a “full rank factorization”) in matrix theory (e.g.
[4]).

Specifically, given an m×m matrix Z with rank(Z) ≥ 1, Z = XY is called a full rank
decomposition if X is an m × rank(Z) matrix and Y is a rank(Z) ×m matrix. It should
be noted that in this case rank(X) = rank(Y) = rank(Z), and that one could not have X
with less than rank(Z) columns. For example, since rank(Mg) = 3 for Mg given in Eq. (6)
of Section 1.1, Eq. (11) in Section 2.1 is not a full rank decomposition, while Eq. (12) is a
full rank decomposition. Thus, a full rank decomposition corresponds to a minimal ESOP
form. This also conforms to the correctness of the known result τESOP(f) = rank(Mf) [3].

A full rank decomposition of a given binary matrix Z can be efficiently found, say by
the use of the following Fact 2.

6

Fact 2. Let Z be an m×m binary matrix such that

Z =

⎛
⎜⎜⎜⎝

x11 . . . x1i . . . x1j . . . x1t

x21 . . . x2i . . . x2j . . . x2t
...

. . .
...

. . .
...

. . .
...

xm1 . . . xmi . . . xmj . . . xmt

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y11 y12 . . . y1m
...

...
. . .

...
yi1 yi2 . . . yim
...

...
. . .

...
yj1 yj2 . . . yjm
...

...
. . .

...
yt1 yt2 . . . ytm

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

for some t (≤ m). Then, it holds that

Z =

⎛
⎜⎜⎜⎝

x11 . . . x1j . . . x1i . . . x1t

x21 . . . x2j . . . x2i . . . x2t
...

. . .
...

. . .
...

. . .
...

xm1 . . . xmj . . . xmi . . . xmt

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y11 y12 . . . y1m
...

...
. . .

...
yj1 yj2 . . . yjm
...

...
. . .

...
yi1 yi2 . . . yim
...

...
. . .

...
yt1 yt2 . . . ytm

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

Z =

⎛
⎜⎜⎜⎝

x11 . . . x1i ⊕ x1j . . . x1j . . . x1t

x21 . . . x2i ⊕ x2j . . . x2j . . . x2t
...

. . .
...

. . .
...

. . .
...

xm1 . . . xmi ⊕ xmj . . . xmj . . . xmt

⎞
⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y11 y12 . . . y1m
...

...
. . .

...
yi1 yi2 . . . yim
...

...
. . .

...
yi1 ⊕ yj1 yi2 ⊕ yj2 . . . yim ⊕ yjm

...
...

. . .
...

yt1 yt2 . . . ytm

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Thus, given Z = XY , one can transform the matrix product XY into another one without
changing the original matrix Z: (i) one can exchange the ith and jth columns in X as long
as the ith and jth rows in Y are also exchanged, and (ii) one can add the jth column to
the ith one in X as long as the ith row in Y is added to the jth one.

Note that for a binary matrix the two equations in Fact 2 can be regarded as elementary
column or row operations. Therefore, based on Fact 2, a known algorithm, say the Gaussian
elimination algorithm, immediately yields a full rank decomposition. More specifically, given
an m×m binary matrix Z, starting with Z = IZ where I is an identity matrix, we transform
the right matrix of the product into a matrix in row echelon form using Fact 2 as elementary
row operations. Then, we have

Z = X ′
(∗

O

)}
rank(Z)}
m− rank(Z)

7

for some X ′, that is, Z is written as a product of X ′ and a matrix whose last m− rank(Z)
rows are all-zero. After removing the all-zero rows in the right matrix and the corresponding
columns, namely the last m− rank(Z) columns, in the left matrix X ′, we obtain a full rank
decomposition.

Take the matrix Mg in Eq. (6) as an example again. Starting with IMg, the following
is a possible transformation of the right matrix into an echelon one:⎛

⎜⎜⎜⎜⎝
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

1 1 1 0 0
0 1 0 1 0
0 1 0 0 1
1 0 1 0 1
1 0 1 1 0

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
1 0 0 1 0
1 0 0 0 1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

1 1 1 0 0
0 1 0 1 0
0 1 0 0 1
0 1 0 0 1
0 1 0 1 0

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0
0 1 0 0 0
0 1 1 0 0
1 1 0 1 0
1 1 0 0 1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

1 1 1 0 0
0 1 0 1 0
0 0 0 1 1
0 0 0 1 1
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0
0 1 0 0 0
0 1 1 0 0
1 1 1 1 0
1 1 0 0 1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

1 1 1 0 0
0 1 0 1 0
0 0 0 1 1
0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠ .

Remove the fourth and fifth all-zero rows in the right matrix and the corresponding fourth
and fifth columns in the left matrix, then we surely have a full rank decomposition in
Eq. (12).

Note that the transformation in Fact 2 never changes the row space of the right matrix,
i.e., the space filled by all linear combinations of the rows there, because the transformation
is just either to exchange two rows, or to add one row to another row. Therefore, any
full rank decomposition Mf = AB for a function f satisfies C(Mf

T) = C(BT) (where XT

denotes the transpose of a matrix X, and C(XT) denotes the row space of a binary matrix
X). It also holds that C(Mf) = C(A).

3 Our Algorithm for Minimizing ESCT Forms

In this section, we give an efficient algorithm for minimizing ESCT forms. As mentioned
in Section 1.3, using the ESCT form instead of the ESOP form can reduce the number
of terms by at most one. That is, given a function f , our algorithm produces its ESCT
form consisting of rank(Mf)− 1 or rank(Mf) terms. (Remember that the number of terms
τESOP(f) in a minimal ESOP form equals rank(Mf)).

We first exhibit a simplification rule to reduce the number of terms in Section 3.1. We
then present the general idea behind our ESCT minimization algorithm in Section 3.2, and
a complete description of the algorithm in Section 3.3.

8

3.1 A simplification rule

As mentioned before, the ESCT form is a generalization of the ESOP form, and hence the
former is a more generic expression than the latter. Actually, for example, an ESOP form
a{1,2,3,4}b{1,3} ⊕ a{2,3} consisting of a product term and a literal can be converted into a
single complex term:

a{1,2,3,4}b{1,3} ⊕ a{2,3} = a{2,3},{1,4}(b{1,3}).

More generally, we have the following Lemma 3.

Lemma 3. For any product term aV bW and any literal aV ′
, it holds that

aV bW ⊕ aV ′
= aV ′,V ⊕V ′

(bW).

Proof. If bW = 0, then aV bW ⊕ aV ′
= aV ′

and aV ′,V ⊕V ′
(bW) = aV ′

. If bW = 1, then
aV bW ⊕ aV ′

= aV ⊕ aV ′
and aV ′,V ⊕V ′

(bW) = aV ⊕V ′
= aV ⊕ aV ′

.

Our algorithm utilizes this transformation rule to reduce the number of terms.

3.2 The idea behind our algorithm

To apply Lemma 3 to an ESOP form, it must contain a term consisting of a single literal
aV ′

(for some V ′). For example, for a minimal ESOP form

g(a, b) = a{0,2,4}b{0,1,2} ⊕ a{1,2,3,4}b{1,3} ⊕ a{2,3} (13)

of the function g given in Table 1, the simplification rule in Lemma 3 together with Eq. (8)
(which says that any ESOP form can be expressed as an ESCT form) converts the ESOP
form into the following ESCT form, already seen in Eq. (7) though the order of the terms
is different:

g(a, b) = a∅,{0,2,4}(b{0,1,2})⊕ a{2,3},{1,4}(b{1,3}). (14)

Based on this idea, in our algorithm we first find a minimal ESOP form of a given
function f , and then, if possible, transform it so that a single literal appears. Finally, we
convert the minimal ESOP form into an ESCT form using Eq. (8) and Lemma 3.

Again taking the function g as an example, and recalling that rank(Mg) = 3, its full
rank decomposition was seen in Eq. (12). Note that for the full rank decomposition (12),
adding the first row in the right matrix to the third row yields an all-one row, that is, we
can obtain another full rank decomposition⎛

⎜⎜⎜⎜⎝
1 1 1 0 0
0 1 0 1 0
0 1 0 0 1
1 0 1 0 1
1 0 1 1 0

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

1 0 0
0 1 0
1 1 1
0 1 1
1 1 0

⎞
⎟⎟⎟⎟⎠
⎛
⎝ 1 1 1 0 0

0 1 0 1 0
1 1 1 1 1

⎞
⎠ , (15)

whose third row in the right matrix is all ones. This all-one row together with the third
column in the left matrix represents a single literal a{2,3} in the minimal ESOP form because
b{0,1,2,3,4} is just a constant 1. Therefore, the full rank decomposition in Eq. (15) corresponds
to the minimal ESOP form seen in Eq. (13). Now, we need only to convert it into the ESCT
form, the number of whose terms is rank(Mg)− 1 = 2, as demonstrated in Eq. (14) above.

9

Hence, when a full rank decomposition Mf = AB satisfies �1 ∈ C(BT), we have an
ESCT form consisting of rank(Mf) − 1 terms (where �1 denotes an all-one column vector).
To determine whether �1 ∈ C(BT) or not, it suffices to solve the linear equation BT�x = �1.
This can be efficiently done using known algorithms, say the Gaussian elimination algorithm.
When�1 ∈ C(BT), one can also efficiently transform Mf = AB into a full rank decomposition
Mf = A′B′ such that the last row in B′ is all ones.

3.3 The description of our algorithm

We are now ready to present a complete description of our algorithm. Given an m-valued
input function f with rank(Mf) ≥ 2, our algorithm proceeds as follows.

1. Find a full rank decomposition Mf = AB.

2. Determine whether �1 ∈ C(BT).

3. Case 1: �1 /∈ C(BT).
Let

⊕t
�=1 aV�bW� be the minimal ESOP form corresponding to the full rank

decomposition Mf = AB. Using Eq. (8), convert the ESOP form into an ESCT
form

t⊕
�=1

a∅,V�(bW�),

and output it. Note that the number of its terms is t = rank(Mf).

Case 2: �1 ∈ C(BT).
Transform the full rank decomposition Mf = AB into Mf = A′B′ such that the
last row in B′ is all ones. Let

(
t−2⊕
�=1

aV�bW�)⊕ aVt−1bWt−1 ⊕ aVt

be the minimal ESOP form corresponding to Mf = A′B′. Using Eq. (8) and
Lemma 3, convert the ESOP form into an ESCT form(

t−2⊕
�=1

a∅,V�(bW�)

)
⊕ aVt,Vt−1⊕Vt(bWt−1),

and output it. Note that the number of its terms is t− 1 = rank(Mf)− 1.

Note that �1 ∈ C(BT) in step 2 of the algorithm if and only if �1 ∈ C(MT
f) because

the row space never changes as mentioned in Section 2.2. Therefore, our algorithm above
implies the following Lemma 4.

Lemma 4. For any (two-variable) m-valued input function f with rank(Mf) ≥ 2,

τESCT(f) ≤
{

rank(Mf)− 1 if �1 ∈ C(MT
f);

rank(Mf) otherwise.

In the next section, we show that there is no ESCT form with fewer terms than that in
an ESCT form produced by our algorithm.

10

4 Correctness of Our Algorithm

In this section, we show that our algorithm always produces a minimal ESCT form. That
is, we prove the following lower bound lemma.

Lemma 5. For any (two-variable) m-valued input function f with rank(Mf) ≥ 2,

τESCT(f) ≥
{

rank(Mf)− 1 if �1 ∈ C(MT
f);

rank(Mf) otherwise.

To prove Lemma 5, we use the following Lemma 6.

Lemma 6. For any complex term aU,V (bW) and any literal aV ′
, it holds that

aU,V (bW)⊕ aV ′
= a∅,U⊕V (bW)⊕ aU⊕V ′

.

Proof. If bW = 0, then aU,V (bW) ⊕ aV ′
= aU ⊕ aV ′

and a∅,U⊕V (bW) ⊕ aU⊕V ′
= aU⊕V ′

=
aU ⊕ aV ′

, as desired. The proof for bW = 1 is similar.

We are now ready to give a proof of Lemma 5.

Proof of Lemma 5. Let f be an m-valued input function with rank(Mf) ≥ 2, and let

f(a, b) = aU1,V1(bW1)⊕ aU2,V2(bW2)⊕ · · · ⊕ aUt,Vt(bWt)

be an arbitrary minimal ESCT form of f ; note that τESCT(f) = t. Then, add a constant
a∅(= 0) to the ESCT form above:

f(a, b) = aU1,V1(bW1)⊕ aU2,V2(bW2)⊕ · · · ⊕ aUt,Vt(bWt)⊕ a∅.

Using Lemma 6, we have

f(a, b) = a∅,U1⊕V1(bW1)⊕ a∅,U2⊕V2(bW2)⊕ · · · ⊕ a∅,Ut⊕Vt(bWt)⊕ aU

where U = U1⊕U2⊕ · · ·⊕Ut. Remembering Eq. (8), convert the complex terms above into
product terms:

f(a, b) = aU1⊕V1bW1 ⊕ aU2⊕V2bW2 ⊕ · · · ⊕ aUt⊕VtbWt ⊕ aU . (16)

Since the right side of Eq. (16) is an ESOP form consisting of t + 1 product terms, we have

τESOP(f) ≤ t + 1.

Therefore, since τESOP(f) = rank(Mf) (by Eq. (5)) and t = τESCT(f), we have

τESCT(f) ≥ rank(Mf)− 1.

Thus, to complete the proof it suffices to show that if �1 /∈ C(MT
f), then τESCT(f) ≥

rank(Mf).

11

Assume that �1 /∈ C(MT
f). Express the ESOP form in Eq. (16) as a product of an

m× (t + 1) matrix and a (t + 1)×m matrix:

Mf =

⎛
⎜⎝

aU1⊕V1(0) . . . aUt⊕Vt(0) aU (0)
...

. . .
...

...
aU1⊕V1(m) . . . aUt⊕Vt(m) aU (m)

⎞
⎟⎠

×

⎛
⎜⎜⎜⎝

bW1(0) . . . bW1(m)
...

. . .
...

bWt(0) . . . bWt(m)
1 . . . 1

⎞
⎟⎟⎟⎠ .

(17)

Remember that any full rank decomposition Mf = AB satisfies C(Mf
T) = C(BT). Since

�1 /∈ C(MT
f), Eq. (17) is not a full rank decomposition. Therefore, we have rank(Mf) < t+1

and hence rank(Mf) ≤ t. Since t = τESCT(f), we have τESCT(f) ≥ rank(Mf).

5 Conclusions

For a two-variable multiple-valued input function f , the number of terms in any minimal
ESOP form τESOP(f) was already known, while the number of terms in any minimal ESCT
form τESCT(f) has not been previously reported. To solve the open question, determining
how much smaller τESCT(f) is than τESOP(f), this paper gave an efficient algorithm to find a
minimal ESCT form of a given two-variable m-valued input function f . That is, we proved
Lemmas 4 and 5, both of which together constitute Theorem 1, which claims that

τESCT(f) =
{

rank(Mf)− 1 if �1 ∈ C(MT
f);

rank(Mf) otherwise.

Therefore, since τESOP(f) = rank(Mf) [3], using the ESCT form instead of the ESOP form
can reduce the number of terms by at most one.

The complexity of our algorithm is dominated by finding a full rank decomposition
(in step 1) and solving a linear equation (in step 2). Therefore, if we use the Gaussian
elimination algorithm in steps 1 and 2, then our algorithm runs in O(m3) time.

This paper together with the previous research [3] presents the properties of the ESOP
and ESCT forms of two-variable functions. It is an interesting open problem to find the
exact number of terms in minimal ESOP and ESCT forms of multiple-valued input functions
having three or more variables.

Acknowledgments

We thank Mr. Naoki Katagami for his valuable comments on the expression in Theorem 1.
We thank the associate editor and the anonymous referees whose comments helped us
improve the presentation of the paper. This work was supported by JSPS KAKENHI
Grant Number 23700007.

References

[1] T. Hirayama, Y. Nishitani, and T. Sato, “A faster algorithm of minimizing AND-EXOR
expressions,” IEICE Trans. Fundamentals, vol. E85-A, no. 12, pp. 2708–2714, 2002.

12

[2] T. Mizuki, T. Otagiri, and H. Sone, “An application of ESOP expressions to secure
computations,” Journal of Circuits, Systems, and Computers, vol. 16, no. 2, pp. 191–
198, 2007.

[3] T. Mizuki, H. Tsubata, and T. Nishizeki, “Minimizing AND-EXOR expressions for two-
variable multiple-valued input binary output functions,” Journal of Multiple-Valued
Logic and Soft Computing, vol. 16, pp. 197–208, 2010.

[4] S. Puntanen, G. P. H. Styan, and J. Isotalo, “Matrix Tricks for Linear Statistical
Models: Our Personal Top Twenty,” Springer-Verlag, Berlin Heidelberg, 2011.

[5] M. Sampson, D. Voudouris, and G. Papakonstantinou, “Using simple disjoint decompo-
sition to perform secure computations,” Journal of Circuits, Systems, and Computers,
vol. 19, no. 7, pp. 1559–1569, 2010.

[6] T. Sasao, “Switching Theory for Logic Synthesis,” Kluwer Academic Publishers,
Boston, MA, 1999.

[7] N. Song and M. Perkowski, “Minimization of exclusive sums of multi-valued complex
terms for logic cell arrays,” 28th IEEE International Symposium on Multiple-Valued
Logic, pp. 32–37, 1998.

[8] N. Song and M. A. Perkowski, “Minimization of exclusive sum-of-products expressions
for multiple-valued input, incompletely specified functions,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 15, no. 4, pp. 385–
395, 1996.

[9] S. Stergiou and G. Papakonstantinou, “Exact minimization of ESOP expressions with
less than eight product terms,” Journal of Circuits, Systems and Computers, vol. 13,
no. 1, pp. 1–15, 2004.

[10] S. Stergiou, D. Voudouris, and G. Papakonstantinou, “Multiple-value exclusive-or sum-
of-products minimization algorithms,” IEICE Trans. Fundamentals, vol. E87-A, no. 5,
pp. 1226–1234, 2004.

[11] G. Strang, “Introduction to Linear Algebra, Fourth Edition,” Wellesley-Cambridge
Press, Wellesley, 2009.

[12] D. Voudouris, S. Stergiou, and G. Papakonstantinou, “Minimization of reversible wave
cascades,” IEICE Trans. Fundamentals, vol. E88-A, no. 4, pp. 1015–1023, 2005.

[13] D. Voudouris, M. Sampson, and G. Papakonstantinou, “Exact ESCT minimization for
functions of up to six input variables,” Integration, the VLSI Journal, vol. 41, no. 1,
pp. 87–105, 2008.

13

