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Abstract

Proving to someone else the knowledge of a secret without revealing any of its information
is an interesting feature in cryptography. The best solution to solve this problem is a
Zero-Knowledge Proof (ZKP) protocol.

Nurimisaki is a Nikoli puzzle. The goal of this game is to draw a kind of abstract paint-
ing (“Nuri”) that represents a sea with some capes (“Misaki”) of an island (represented
by white cells). For this, the player has to fulfill cells of a grid in black (representing
the sea) in order to draw some capes while respecting some simple rules. One of the
specificity of the rules of this game is that every “Misaki” cell can only have one white
neighbour.

Kurodoko is also a Nikoli puzzle where some cells need to be blackened in order to
ensure that each numbered cell is surrounded by the same number of white cells in the
four directions (north, east, south, and west).

Both of these puzzles, Nurimisaki and Kurodoko, share a common connectivity con-
straint. Using a deck of cards, we propose a physical ZKP protocol for each of the two
puzzles above. Our protocols prove that a player knows a solution of (1) a Nurimisaki
grid, or (2) a Kurodoko grid, without revealing any information about the solution.

Keywords: Zero-knowledge proof, Pencil Puzzle, Card-based cryptography,
Nurimisaki, Kurodoko

1. Introduction

The democratization of computers and network systems has fuelled the virtualization
of interactions and processes such as communication, payments, and elections. Proving
the knowledge of some secret without revealing any bit of information from that secret
is crucial in our today’s society. This issue can be applied to numerous contexts.
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For instance, a client would like to connect to a server via a password without revealing
the password. Another example is database management, where an entity could ask if a
piece of information is in a database without asking for factual data. A third example
can be given in the electronic voting system where voters want to be sure that ballots are
correctly mixed (without revealing how the mix was done). Finally, crypto-currencies,
such as Bitcoin, Monero, or Zcash, are eager to include a mechanism to enforce knowledge
of some secrets without revealing it (e.g., for anomymous transactions).

A cryptographic tool exists for all the previous examples, called a Zero-Knowledge
Proof (ZKP) protocol. It enables a prover P to convince a verifier V' that P knows
a secret s without revealing anything other than it. A ZKP protocol must satisfy the
following three properties:

— Completeness: If P knows s then the protocol ends without aborting (meaning
that V' is convinced that P has s);

— Soundness: If P does not have s then V' will detect it;

— Zero-Knowledge: The information given during the protocol leads to V' learning
nothing about s.

In practice, ZKP protocols are typically executed by computers. However, we present
here two protocols using physical objects like playing cards and envelopes. This line of
research has been growing a lot in recent years and our aim is to extend this field.

The first physical ZKP protocol [1] for a Sudoku grid was constructed using a deck of
cards. Since this novel protocol was devised, several teams in the world have proposed
physical ZKP protocols using a deck of cards for pencil puzzles, such as Sudoku [2, 3],
Akari [4], Takuzu [4], Kakuro [4, 5], KenKen [4], Makaro [6], Norinori [7], Slither-
link [8], Suguru [9, 10], Nurikabe [11], Ripple Effect [12], Numberlink [13], Bridges [14],
Cryptarithmetic [15], Shikaku [16], Usowan [17], and Nonogram [18, 19].

In this paper, we propose ZKP protocols for two other Nikoli’s puzzle, Nurimisaki
and Kurodoko. Why shall we propose a new card-based ZKP protocol for another Nikoli
puzzle? For us, it is similar to the question: Why shall we prove that a puzzle is NP-
complete? People want to know if a puzzle is NP-complete in order to know if the puzzle
is difficult or not for a computer to solve it. Card-based ZKP protocols are quite similar;
once a puzzle is shown to be NP-complete, a natural question is: Can we design an
efficient physical ZKP protocol? This is an intellectual challenge on those puzzles.

Moreover, each puzzle has different rules and specificity, which force us to imagine
new physical ZKP techniques. For instance, consider Nurimisaki, which we will deal with
in this paper; then, its rules combine for the first time some connectivity, neighbourhood
restriction, and straight line with counting, as seen later. A previous work [20] (in
Japanese, unpublished) proposed a card-based ZKP protocol for Nurimisaki. Yet, the
protocol is not optimal since it prepares another grid to verify the rules. Moreover,
elaborate but complex techniques are used (e.g., using another grid to represent the in-
spanning-tree of P’s solution). In contrast, our protocol has a more direct approach with
closer interaction to the real game. As for Kurodoko, we will also construct a card-based
ZKP protocol with a direct approach. Note that no previous work on ZKP protocols for
Kurodoko has been proposed.



Figure 1: Nurimisaki example (left) with its solution (right).

Before giving our contributions, let us define the rules of the Nurimisaki and Kurodoko
puzzles. Notice that both of these puzzles share a common rule, i.e., some cells must be
connected.

Nurimisaki Rules. Figure 1 shows a puzzle instance of Nurimisaki'. The goal is to color
in black some cells on the grid, under the following rules:

1. White cells are connected.

2. A cell with a circle is called a Misaki. A Misaki has only one cell of its neighbours
(vertically or horizontally) remaining white and the rest black.

3. The number written in a Misaki cell indicates the number of white cells in straight
line from the Misaki. If there is no number, any number of white cells is allowed.

4. Any white cell without a circle cannot be a Misaki.

5. A 2 x 2 square cannot be composed of only black or white cells.

Kurodoko rules. The goal of this puzzle, as illustrated in Fig. 22, is to fill some cells in
black, with the following rules:

1. White cells are connected.
2. Black cells cannot touch vertically nor horizontally.
3. Cells with number remain white.

4. The number on a cell indicates the number of white cells from the numbered cell
to the edge of the grid or a black cell (in the four directions).

Nurimisaki puzzle was recently proven NP-complete in [21] and Kurodoko in [22];
hence, it is a natural question to construct physical ZKP protocols for these fun puzzles.
Although Goldwasser et al. [23] proved that any NP-complete problem has its corre-
sponding interactive ZKP protocol, simple physical ZKP protocols are always sollicited
as mentioned above.

IExample taken from: https://www.nikoli.co.jp/en/puzzles/nurimisaki/
2Example taken from: https://www.nikoli.co.jp/en/puzzles/kurodoko/
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Figure 2: Kurodoko example (left) with its solution (right).

Contributions. For each of Nurimisaki and Kurodoko, we propose a physical ZKP pro-
tocol that only uses cards and envelopes. We rely on some classical existing card-based
sub-protocols in order to be able to construct our ZKP protocols.

The main difficulty in Nurimisaki that seems to be simple, is that the existing tech-
niques proposed in the literature for few years cannot be applied directly. The main trick
is to find an encoding that allows us to apply several sub-protocols in the right order to
obtain a secure ZKP protocol.

For Kurodoko, the problem lies on how to count some commitments on heteroge-
neous sequences. This will be solved with a new sub-protocol used in such a way that
enumeration is correct.

Overall, we propose original ways to combine several techniques to design our ZKP
protocols with a reasonable amount of cards and manipulations.

Note that this work is an extended version of a previously published conference pa-
per [24] where only the Nurimisaki protocol was proposed. That is, Sects. 5 and 6 are
totally new materials.

Outline. In Sect. 2, we introduce our encoding scheme using cards in order to represent
a gird of the game and a solution. We also give some sub-protocols that are used in
our construction. In Sect. 3, we give our ZKP protocol for Nurimisaki, and the security
proofs in Sect. 4. Then, a Kurodoko protocol is proposed in Sect. 5 along with security
proofs in Sect. 6 before concluding in Sect. 7.

2. Preliminaries
We explain the notations and sub-protocols used in our constructions.

Cards and Encoding. The cards we use in our protocols consist of clubs @@ -+, hearts
@ -+, and numbered cards -- -, whose backs are identical . We encode three
colors {black, white, red} with the order of two cards as follows:

@@ — black, @@ — white, @@ — red. (1)

We call a pair of face-down cards corresponding to a color according to the
above encoding rule a commitment to the respective color. We also use the terms, a
black commitment, a white commitment, and a red commitment. We sometimes regard
black and white commitments as bit values, based on the following encoding scheme:

O] &] — 0,4@@—> 1. (2)



For a bit « € {0, 1}, if a pair of face-down cards satisfies the encoding (2), we say that it
is a commitment to x, denoted by .
~—

We also define two other encoding [25, 12]:

— d-scheme: for x € Z/pZ, there are p cards composed of p — 1 Us and one &,
where the & is located at position (z + 1) from the left. For example, 2 in Z/47 is

represented as @@@@

— O-scheme: it is the same encoding as above but the © and & are reversed. For

instance, 2 in Z/4Z is represented as @@@@

2.1. Pile-shifting Shuffle
This shuffling action from [25, 26], means to cyclically shuffle piles of cards. More
formally, given m piles, each of which consists of the same number of face-down cards,

denoted by (p1, Pa; - - -, Py ), aPPlying a pile-shifting shuffle (denoted by (-|| - - ||-)) results
in (PeyrsPstos -+ > Papm):
< Hia | e > (I |
N~~~ SN~~~
P1 P2 Pm Ps+1 ps+2 Psim

where s is uniformly and randomly chosen from Z/mZ. Implementing a pile-shifting
shuffle is simple: we use physical cases that can store a pile of cards, such as boxes and
envelopes; a player (or players) cyclically shuffles them manually until everyone (i.e., the
prover P and the verifier V') loses track of the offset.

2.2. Input-preserving Five-card Trick

Given two commitments to a,b € {0,1} based on the encoding rule (2), this sub-
protocol [27, 28] reveals only the value of a V b as well as restores commitments to a and

—avb 7))

1. Add helping cards and swap the two cards of the commitment to b so that we have
the negation b, as follows:

27 B ~ (22 @ (2] e aTa)

a b a b

2. Rearrange the sequence of cards and turn over the face-up cards as:

L@z 2O sl ]s[a] - [2]2[O)2]?] = [z]2]?]?]?]
O] %]s]s  [2]2]7]?]?]

3. Regarding cards in the same column as a pile, apply a pile-shifting shuffle to the

sequence:
ﬂﬂﬂﬂﬂ
I T EEEEE




4. Reveal all the cards in the first row.

(a) If it is @@@@@ (up to cyclic shifts), then a vV b = 0.
(b) If it is [O] &V &]P] (up to cyclic shifts), then a V b= 1.

5. After turning over all the face-up cards, apply a pile-shifting shuffle.

6. Reveal all the cards in the second row; then, the revealed cards should include
exactly one @

7. Shift the sequence of piles so that the revealed @ is the leftmost card and swap
the two cards of the commitment to b to restore commitments to a and b.

Note that we can also compute an AND operation using De Morgan’s laws: a A b =

aVb.

2.8. Mizuki—Sone Copy Protocol

Given a commitment to a € {0, 1} along with four cards @@@@, the Mizuki-Sone
copy protocol [29] outputs two commitments to a:

) BV - ).

a a a

1. Turn all cards face-down and set the commitments as follows:
——
a
0
——

0

2. Apply a pile-shifting shuffle as follows: < > — ﬂ

3. Reveal the two above cards to obtain either a or @ as follows:

*[0]  [O]&
HEEHE

2.4. How to Form a White Polyomino

We introduce the generic method of [11] to address the connectivity constraint. Given
a grid where all cells are black, it enables a prover P to make white connected cells, i.e.,
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a white-polyomino (i.e., a shape composed of any number of connected white cells),
without revealing anything to a verifier V. We first describe two crucial sub-protocols:
the chosen pile protocol and the 4-neighbor protocol.

Chosen pile protocol [7]. The chosen pile protocol allows P to choose a pile of cards
without V knowing which one it is. This pile can be manipulated and all the commitments
are replaced to their initial order afterward.

This protocol is an extended version of the “chosen pile cut” proposed in [30]. Given m
piles (p1, Pas - - -, Pyy,) With 2m additional cards, the chosen pile protocol enables a prover
P to choose the i-th pile p, (without revealing the index i) and revert the sequence of m
piles to their original order after applying other operations to p;.

1. Using m — 1 @s and one @, P places m face-down cards encoding 7 — 1 in the
O-scheme (denoted by row 2) below the given piles, i.e., only the i-th card is @
We further put m cards encoding 0 in the O-scheme (denoted by row 3):

= =<~ = =<~ =~ =~

P P2 P;_1 P; Pit1 Pm
e e < row 2
.. — row 3
@ & & L) L) L)

2. Considering the cards in the same column as a pile, apply a pile-shifting shuffle to
the sequence of piles.

3. Reveal all the cards in row 2. Then, exactly one @ appears, and the pile above
the revealed @ is the 4-th pile (and hence, P can obtain p;). After this step is
invoked, other operations are applied to the chosen pile. Then, the chosen pile is
placed back to the i-th position in the sequence.

4. Remove the revealed cards, i.e., the cards in row 2. (Note, therefore, that we do
not use the card @ revealed in Step 3.) Then, apply a pile-shifting shuffle.

5. Reveal all the cards in row 8. Then, one @ appears, and the pile above the revealed
@ is p;. Therefore, by shifting the sequence of piles (such that p; becomes the
leftmost pile in the sequence), we can obtain a sequence of piles whose order is the
same as the original one without revealing any information about the order of the
input sequence.

Sub-protocol: 4-Neighbor Protocol [11]. Given pq commitments placed on a p X ¢ grid, a
prover P has a commitment in mind, which we call a target commitment. The prover
P wants to reveal the target commitment and another one that lies next to the target
commitment (without revealing their exact positions). Here, a verifier V' should be
convinced that the second commitment is a neighbor of the first one (without knowing
which one it is) as well as V should be able to confirm the colors of both the commitments.
To handle the case where the target commitment is at the edge of the grid, we place
commitments to red (as “dummy” commitments) in the left of the first column and
below the last row to prevent P from choosing a commitment that is not a neighbor.
7



Thus, the size of the expanded grid is (p + 1) x (¢ + 1). This sub-protocol proceeds as
follows.

1.

o.

P and V pick the (p+1)(¢g+1) commitments on the grid from left-to-right and top-
to-bottom to make a sequence of commitments: ’ ? H ? \ ] ? H ? \ ] ? H ? ‘ ’ ? H ? \ e ’ ? H ? \

P uses the chosen pile protocol to reveal the target commitment.

P and V pick all the four neighbors of the target commitment. Since a pile-shifting
shuffle is a cyclic reordering, the distance between commitments are kept (up to
a given modulo). That is, for a target commitment (not at any the edge), the
possible four neighbors are at distance one for the left or right one, and p + 1 for
the bottom or top one so that P and V' can determine the positions of all the four
neighbors.

Among these four neighbors, P chooses one commitment using the chosen pile
protocol and reveals it.

P and V end the second and first chosen pile protocols.

Forming white-polyomino. Assume that there is a grid having p x ¢ cells. P wants to
arrange white commitments on the grid such that they form a white-polyomino while
V' is convinced that the placement of commitments is surely a white-polyomino. The
sub-protocol proceeds as follows.

1.

3.

P and V place a commitment to black (i.e., @@) on every cell and commitments
to red as mentioned above so that they have (p + 1)(¢ + 1) commitments on the
board.

P uses the chosen pile protocol to choose one black commitment that P wants to
change into a white one.

(a) V swaps the two cards constituting the chosen commitment so that it becomes
a white commitment (recall the encoding (1)).

(b) P and V end the chosen pile protocol to return the commitments to their
original positions.

Notice that this step is optional for Nurimisaki and Kurdoko since white commit-
ments can be known to V' given the rules of each game.

P and V repeat the following steps exactly pg — 1 times.

(a) P chooses one white commitment as a target and one black commitment
among its neighbors using the 4-neighbor protocol; the neighbor is chosen
such that P wants to make it white.

(b) V reveals the target commitment. If it corresponds to white, then V' continues;
otherwise V' aborts.

(¢) V reveals the neighbor commitment (chosen by P). If it corresponds to black,
then P makes the neighbor white or keep it black (depending on P’s choice)
by executing the following steps; otherwise V' aborts.
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i. If P wants to change the commitment, P places face-down club-to-heart
pair below it; otherwise, P places a heart-to-club pair:

[2l2] = [2][2] or

ii. Regarding cards in the same column as a pile, V' applies a pile-shifting
shuffle to the sequence of piles:

< >
aal

iii. V reveals the two cards in the second row. If the revealed right card is @,
then V' swaps the two cards in the first row; otherwise V' does nothing.

(d) P and V end the 4-neighbor protocol.

V' is now convinced that all the white commitments represent a white-polyomino. There-
fore, this method allows a prover P to make a solution that only P has in mind, guar-
anteed to satisfy the connectivity constraint.

2.5. Sum inZ

We describe the protocol developed in [12] for adding elements in Z/27Z with a result
in Z.

Given n commitments x1, s, ..., 2, € Z/27Z along with one @ and @, the proto-
col produces their sum S = ", 2; in Z/(n+ 1)Z encoded in the Q-scheme without
revealing the value of z; for every i € {1,...,n}.

The idea is to compute the sum inductively; when starting by the two first commit-
ments to x1 and zs, they are transformed into z1 —r and x5 +r encoded in the O-scheme
and &-scheme, respectively, for a uniformly random value r € Z/3Z. Then xs + r is
revealed (no information about x4 is revealed because r is random), and x; — r is shifted
by zs + r positions to encode (z1 — 1) + (23 + r) = x1 + x2. Note that this result is in
Z/(n+ 1)Z (or simply Z because the result is less than or equal to p) for elements x1, xo
in Z/nZ.

The protocol is now formally described. First notice that a black commitment is
assumed to be equal to 1 and a white commitment is equal to 0 (according to Eqs. (1)
and (2)). Consider first two commitments to x; and zo (either 0 or 1):

2]zl #[0] — (2] 2]7).

x1 x2 T1+re

1. Swap the two cards of the commitment to x; and add a @ face down to the right.
Those three cards represent z; in the O-scheme in Z/3Z:

—
pud

- [2]7]2].

-~ & [ p—
T Ty



2. Add a @ on the right of the commitment to x5. Those three cards represent x5 in

the &-scheme in Z/3Z:
- :
== O [ p——
T2 x2
3. Obtain three cards representing z; +r and those representing xs —r for a uniformly
random value r € Z/3Z as follows.

(a) Place in reverse order the three cards obtained in Step 2 below the three cards
obtained in Step 1:

T

HEHHEHE

T 2

(b) Apply a pile shifting shuffle as follows:

@IAIE) -
:
2—xo+T

For a uniformly random value r € Z/3Z, we obtain three cards representing
x1 + r and those representing 2 — xo + 7.

(¢) Rearrange the three cards representing 2 — x5 + 7 to obtain those representing
To — T

HEHHHE

x1+T To—T

4. Reveal the three cards representing xo — 7, and shift to the right the three cards
representing x1 4+ to obtain those representing x; + x2 in the O-scheme; apply the
same routine for the remaining elements to compute the final sum.

Notice that we described the protocol for a result in Z/3Z but it is easily adaptable
for a result in, let say, Z/qZ.

3. ZKP Protocol for Nurimisaki

In this section, we present our ZKP protocol for Nurimisaki. Hereinafter, we consider
an instance of Nurimisaki as a rectangular grid of size p X q.

3.1. Setup phase

The verifier V' and the prover P place black commitments on all the cell of the p x ¢
grid and place red commitments (“dummy” commitments) around the grid so that we
have (p+1)(¢ + 1) commitments.
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3.2. Connectivity phase

P and V change the commitments of one Misaki cell to white (chosen arbitrarily).
This allows to remove the Step 2 of Forming white-polyomino in Sect. 2.4. The remaining
protocol is then processed, a white-polyomino is formed according to P’s solution. Now,
V reveals all the commitments corresponding to Misaki to check that they are indeed
white. After this phase, V is convinced that white commitments are connected (rule 1).

3.8. Verification Phase

The verifier V' is now checking that the other rules are satisfied.

No 2 x 2 square (rule 5). We use an adapted verification phase of the one in [11] for
checking that 2 x 2 squares are not composed of only white (black) commitments. Note
that for an initial grid p x ¢, there are (p — 1)(¢ — 1) possible squares of size 2 x 2. Thus
P and V consider each of those squares (in any order) and apply the following:

1. P chooses a white commitment using the chosen-pile protocol (Sect. 2.4), and
reveals it. After putting back the commitments in their initial position, P chooses
a black commitment with the chosen-pile protocol, and reveals it 3.

2. If there are exactly a white commitment and a black commitment revealed at the
previous step, V' continues; otherwise, abort.

Misaki (rule 2 and 3). V wants to check that each Misaki cell (which is a cell with a
circle) has only one of its neighbours white and others black. Moreover, when a Misaki
has a number in it, V wants to check that the straight line formed by white cells starting
from the Misaki cell has the corresponding number of white cells.

P and V first consider Misaki cells with a number. For each Misaki cell (not at a
border) with a number ¢ on it, apply the following:

1. P and V add black commitments (i.e., “dummy” commitments) at the border of
the grid. This ensures that we delimit correctly the number of white commitments
in a straight line.

2. For each of the four neighbours, P and V form a pile composed of 41 commitments
for each direction. Let p1, p2, ps, and py denote the four piles. We show an example
where i = 2 as follows.

i ]

2 ~—~

P2
1 2 3
LTI T~ 7] @ [z]
1

~~ ~~
p1 ? |||| Pp3

~~
[ D4

2

3We apply twice the chosen-pile protocol to avoid leak. Indeed, if the commitments are not adjacent
(i.e., in diagonal), the pile-shifting shuffle of the chosen-pile protocol keeps the order of commitments.
So non-adjacent commitments will be noticed after the pile-shifting shuffle.
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3. P and V place numbered cards above the piles and turn them face-down as follows:

HipH NENE N E N E e

~ ~ =~ = ~ ~ =~ =
P1 b2 p3 Ppa P1 p2 p3 Pa

4. P and V shuffle the piles and reveal the first commitment of each pile. If there is
exactly one commitment corresponding to white then V' continues. Otherwise, V'
aborts.

5. V reveals the next i commitments of the pile with the first white commitment.
If there are only white commitments for the first ¢ — 1 commitments and a black
commitment for the last one, then V' continues; otherwise, aborts.

6. P and V turn all the revealed cards face-down and shuffle the piles again.

7. P and V reveal the four numbered cards to know which piles are p1, pa2, p3, and
ps. Then, they place the four piles back to their original positions.

After this step, V is convinced that Misaki cells with a number are well-formed. In
the case where there is no number, the first step consists of forming a pile with only
one commitment. Hence, V is convinced that Misaki cells without a number satisfy only
rule 2 but not rule 3 since any number of white cells could form the straight line.*

No circle, no Misaki (rule 4). V needs to check that every white cell without a circle is
not a Misaki, meaning that any white cell of the grid has at least two of its neighbours
white. This rule is somewhat challenging to verify without leaking information on the
solution because the number and location of white cells are part of the solution (and
must not be publicly revealed).

If the targeted cell is black then there is nothing to verify since any configurations
could occur. Yet, if the targeted cell is white then there are at least (but it could be
more) two neighbours that are white. The idea is to set the value of targeted cell being
4 if it is white and 0 if it is black. Then we add the neighbours to it (white is 0, and
black is 1). If the cell is black then the sum is always less than or equal to 4 (which
is permitted by the rules to have all black). But if the cell is white then the permitted
value for the sum is less than or equal to 6 (a Misaki is equal to 7) for a targeted cell
that is not at a border.

For a given cell, called a targeted cell ¢;, we look at its neighbors (up to 4). The idea
of verifying that a white cell is not a Misaki is to first sum the four neighbors (where a
white cell is equal to 0 and a black cell is 1). Then by choosing another encoding, the
targeted cell can be equal to 4 for white and 0 for black. Finally, adding the sum of the
neighbors with ¢; gives at most 4 for black ¢; (which is permitted by the rules) and at
most 6 for white ¢; in a valid configuration and 7 or 8 for invalid configuration.

4Note that we described the protocol for Misaki cell not at the border of the grid. If a Misaki cell is
at a border (but not a corner) then the 4-neighbours becomes the 3-neighbours and the protocol is the
same (there will be only three piles instead of four). For Misaki cells at a corner, P and V consider the
2-neighbours (thus only two piles).
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. Copy all the commitments using the copy protocol (Sect. 2.3). The number of

copies for a p x ¢ grid is 2(2pq — p — ¢); we leave the detailed computations in
Appendix A.

. Sum the four neighbours by considering that a white commitment is equal to 0 and

a black commitment is equal to 1. The result is given in the O-scheme (i.e., there
are four @s and one @ at position corresponding to the result of the sum).

For the targeted cell, add three @s in the middle of the commitment as:

white: [O] - [PIO][O]#] = 4.
black: [&]9] - [&]I[O]T]T] = 0.

White is now 4 and black is 0 in the &-scheme.

Sum the result of the two previous steps (the sum of the four neighbours and the
inner cell). The result is encoded in the O-scheme.

Reveal the last and penultimate cards. If a @ appears then abort; otherwise,
continue.

4. Security Proofs for Nurimisaki

Our protocol needs to verify three security properties given as theorems. In all theo-

rems,

we use the standard physical security assumptions but only implicitly. Indeed, we

assume that:

cards are indistinguishable when face down (represented as ;

envelopes enforce non-malleability of commitments, which ensure the integrity of
the cards and their order in sequence;

shuffles are assumed to be perfect in the sense that both parties (P and V') loose
track of the initial sequence.

the last two assumptions are composable, meaning that shuffling envelopes guar-
antees the integrity of the commitments (inside envelopes) and outputs a sequence
with indices re-labeled as a random permutation.

Theorem 1 (Completeness). If P knows the solution of a Nurimisaki grid, then P
can convince V.

PROOF. First, notice that P convinces V in the sense that the protocol does not abort,
which means that all the rules are satisfied. The protocol can be split in two: (1) the
connectivity and (2) the verification phases.

(1

) Since P knows the solution, the white cells are connected and hence P can always

choose a black commitment at step 2 to swap it to white. Notice that there exists a proof
for the connectivity in [11].
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(2) The verification of 2 x 2 square will not abort since if P has the solution then for
any given 2 x 2 square there always exist a white commitment and a black commitment.
For the Misaki rule, each Misaki cell has three of its neighbors black and one white; thus,
the first commitment of piles p1, p2, ps, p4 will reveal exactly three black and one white
commitments. Then, when looking at pile p; of the first commitment corresponding to
white, the number of white commitments corresponds to the number in the inner cell.
Thus the protocol will continue. Finally, the non-Misaki rule is verified. Since P has the
solution, any white cell (with no circle in it) has at least two white neighbors. Thus if
the inner cell is white then the sum will start to 4 and the maximal value is 6 because
a solution has at least two whites so at most two black commitments (of value 1 in this
step). Therefore, the protocol will continue and hence V' will be convinced that P has
the solution. O

Theorem 2 (Soundness). If P does not provide a solution of the p x q Nurimisaki
grid, P is not able to convince V.

PROOF. Suppose that P does not know the solution; then, at least one of the rules is not
verified. If the white cells are not connected then P cannot choose a black commitment
at step 2, and hence V will detect it. Notice that there is also the proof of this phase
in [11].

If P does not have the solution, then one of the verification phases will fail. We
apply a case distinction for those verifications. Assume first that there is a block of
2 x 2 square composed of only white (black) commitments, then P cannot choose, during
the chosen-pile protocol, two distinct commitments (i.e., a black and a white) thus the
revealed commitments will attest to V that P does not have the solution. Second, assume
that a Misaki cell is not well-formed in the sense that either (1) the number of white
neighbours is not equal to 1 or that (2) the number of white cells in straight line does not
correspond to the number of Misaki cells. For (1) the neighbours are revealed (after a
shuffle) so V' will notice the number of white commitments; for (2) all the commitments
next to the white neighbour are revealed thus V will also notice if there is a flaw. The
last verification is for white cells which are not Misaki. It is equivalent of saying that
any white cell (without a circle in it) has at least two white neighbours. If a white cell
has only one white neighbour then during the sum process, then ¢; = 4 (because the
central cell is white) and the total for its neighbours is 3 (because there are three black
commitments and one white). The final sum is then equal to 7, since V' will look at the
last and penultimate card of the sum (corresponding to a sum equal to 8 and 7) then V'
will detect that a white card is a Misaki. Notice that a sum equals to 8 means the white
cell is surrounded by four black cells. It is not possible since white cells are connected.[]

Theorem 3 (Zero-knowledge). V learns nothing about P’s solution of the given grid
G.

PROOF. We use the same proof technique as in [1], namely the description of an effi-
cient simulator which simulates the interaction between an honest prover and a cheating
verifier. The goal is to produce an indistinguishable interaction from the verifier’s view
(with the prover). Notice that the simulator does not have the solution but it can swap
cards during shuffles as used in [1].
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Setup:
P and V prepare the grid.

Connectivity:

P constructs a shape according to the solution. Protocol: How to form a white polyomino
V only knows that the figure P constructed is connected (rule 1 is verified). (Sect. 2.4)

V reveals the colors of numbered cells (rule 3 checked).

Verification:

V verifies the remaining rules:

e rule 2: each pair of adjacent cells is checked using a disjunction

(white= 1 and black= 0).

e rule 4: each numbered cell is checked; for each direction (north, south, east, west),
consecutive white cells from the number remain white, and any white cell becomes
black as soon as there is a black cell encountered. For this, we use a conjunction as
(a,b) = (a,a A b) (reading from the number to the edge).

Protocol: Five-card trick (Sect. 2.2),
Our subprotocol (Sect. 5.1)

Figure 3: Overview of our protocol for Kurodoko.

Informally, the verifier cannot distinguish between two protocols, one that is run with
the actual solution and one with random commitments. The simulator acts as follows:
The simulator constructs a random connected white polyomino. During the 2 x 2 square
verification, the simulator will swap cards to choose white and black commitments. For
the Misaki verification, the simulator swaps three commitments to black for three piles
and one to white for the last pile. The latter will also be modified by the simulator to
contain the correct numbers of white commitments (and the last commitment to black).
During the non-Misaki verification, when the sum is computed, the simulator swaps the
cards to always put @ cards in position 7 and 8 (for the cell not at the edge, but the
latter is done the same way).

The simulated and real proofs are indistinguishable, and hence, V' learns nothing
from the connectivity and verification phases. Finally, we conclude that the protocol is
zero-knowledge. (Il

5. ZKP Protocol for Kurodoko

In this section, we construct a ZKP protocol for Kurodoko. Before describing our
protocol, we first give a roadmap explaining the high-level steps in Fig. 3. We consider
a p X q rectangular grid.

The most challenging part is the verification of rule 4 because the number of white
cells from a numbered cell for each direction must be secret (although the total number is
given as public information). Ruangwises and Itoh [31] also argued that the verification
of the mathematical meaning of numbers is challenging if they must be secret.

Our idea is depicted in Fig. 4: we consider each direction of a given numbered cell
(north, east, south, and east) and keep white commitments until reaching a black com-
mitment; then next commitments are turned black (reading from the numbered cell to
the edge). The last step is to shuffle all the commitments in the four directions and
reveal to check if the number of white commitments corresponds to the numbered cell.
Note that since the operations in the verification process is destructive i.e., we cannot
put back the commitments in their original state, we need to copy commitments sharing
numbered cell’s directions.
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Figure 4: Overview of the preparation for verifying the numbered cell rule.

So, reading from the numbered cell to an edge, we apply an AND operator on each
two consecutive cells where black means a value of 0 and white means 1, as depicted in
Fig. 5. We show a subprotocol to achieve this in Sect. 5.1.
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Figure 5: Changing the consecutive cells from left to right where a,b € {0, 1} represents the colors of
the left and right cells, respectively.

5.1. Subprotocol

Remember that we want to obtain (a,aAb) from (a,b) € {0,1}? while keeping inputs.
Given commitments to a,b € {0,1}, we propose a new subprotocol that outputs com-
mitments to a and a A b while keeping input commitments to a and b. Our subprotocol
employs the existing protocol presented by Nishida et al. [32], which outputs commit-
ments to a Ab and b. To output two commitments to a, we employ the Mizuki—Sone copy
protocol [29] introduced in Sect. 2.3 and combine it with Nishida et al.’s protocol [32].
In other words, our subprotocol executes both protocols simultinaously.

Given commitments to a and b along with six cards, our subprotocol outputs a com-
mitment to a A b, two commitments to a, and a commitment to b:

eI - D

a b a/Ab a a

It proceeds as follows.
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1. Turn all the cards face-down and rearrange the commitments as follows:

HH
——
a
2] 7]
0
27
0

HHEHH
TY

2. Apply a pile-shifting shuffle as follows:
2] | [
HENaE
2]
HEUHBE
3. Reveal the top-most two cards to obtain two commitments to a and a commitment

to a A b as follows:
[&]9] MEY
2] 7] HEH

— —~—

a a
HE i
p— ——

a a
HHBEH HHHEH
= = N S

a/Ab anb anb aNb

Note that the commitment next to that of a A b represents @ A b [32].
4. Remove the two commitments to a and rearrange the remaining cards as follows:
HH
——
a/Ab
HH
—
anb
HH
N

0

5. Apply a pile-shifting shuffle as in Step 2.
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6. Reveal the top-most two cards to obtain commitments to b and a A b as follows:

][9] (] %]

or n
b b
aAb anb
a

Note that the commitment to @ A b becomes a commitment to aAb@ aAb=1"b (or

b) by shuffling in Step 5 and revealing the top-most two cards in Step 6 [32].

5.2. Setup phase

Both P and V place black commitments on all the cells of the grid. They also place
“dummy” commitments (namely, red commitments) around the grid so that the grid is
now of size (p +1) x (¢ + 1).

5.8. Connectivity phase

P and V apply the protocol given in Sect. 2.4 with the removal of Step 2 of Forming
white-polyomino from Sect. 2.4 by swapping to white each commitment of numbered cell.
A white-polyomino is formed according to P’s solution. Now, V' is convinced that the
white commitments form a connected shape.

Now, V reveals the commitment corresponding to every numbered cell (which is
public information). They must be white, otherwise V' aborts. At this point, rule 3 is
checked.

5.4. Verification phase

There are two rules to check; first V' verifies that no black cells are touching (hori-
zontally or vertically). For this, V' considers each pair of adjacent cell and compute the
five-card trick of Sect. 2.2 applied to OR. If any output is 1 (meaning that there are two
black cells) then V' aborts. Note that this verfication is the same as the Lonely Black
verification of [33].

The last rule to check is the rule 4, concerning the numbered cells, as follows.

1. P and V repeat the following steps for each numbered cell:

(a) Consider the cells on the four directions (north, east, south, and west) and
apply our subprotocol proposed in Sect. 5.1 to each direction reading from the
numbered cell to the edge, so that black commitments form as the right figure
in Fig. 4.

(b) P and V take the p + ¢ — 1 commitments and shuffle them. If the number of
white commitments corresponds to the numbered cell then continue; otherwise
abort.

2. If the previous step ends without aborting then V is convinced that rule 4 is fulfilled.
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6. Security Proofs for Kurodoko

Our protocol for Kurodoko needs to verify three security properties given as theorems.
Notice that we use the same security assumptions given in Sect.4

Theorem 4 (Completeness). If P knows the solution of a Kurodoko grid, then P can
convince V.

PROOF. First, notice that P convinces V in the sense that the protocol does not abort,
which means that all the rules are satisfied. The protocol can be split in two: (1) the
connectivity and (2) the verification phases.

(1) We use exactly the same technique as for Nurimisaki and [11] which proves the
connectivity constraint.

(2) Because our subprotocol presented in Sect. 5.1 restores input commitments, we
can consider the verification for each numbered cell as independent. So proving the
completeness for one numbered cell is sufficient to prove the remaining ones. Since P
knows the solution, the correct number of white commitments are placed around the
numbered cell. The subprotocol allows to keep the white commitments close to the
numbered cell and swap them if a black commitment split up them. Notice that we give
all the cases in Fig. 5. This ensures that for each direction, the correct number of white
commitments are kept regarding the numbered cell. ([

Theorem 5 (Soundness). If P does not provide a solution of the p x ¢ Kurodoko grid,
P is not able to convince V.

PROOF. Suppose that P does not know the solution; then, at least one of the rules is not
verified. If the white cells are not connected then P cannot choose a black commitment
at step 2; and hence, V' will detect it. Notice that there is also the proof of this phase
in [11].

The verification phase is now analysed; first rule 2: we apply the same technique as
in [33] so the proof also holds in our case. Second, we consider rule 4 and show that
the protocol will abort at the revealing phase. Here the correctness of the verification is
directly given by the correctness of the subprotocol since one more white commitment
will keep it white and one less will swap it to black. Since all the commitments for the
four directions are revealed then the protocol will abort.

Notice that rule 3 is checked by revealing directly the commitments so the proof is
trivial. (I

Theorem 6 (Zero-knowledge). V learns nothing about P’s solution of the given grid.

PROOF. We use the same proof technique as in [1], namely the description of an effi-
cient simulator which simulates the interaction between an honest prover and a cheating
verifier.

The simulator behaves as in [33] for the connectivity rule while we need to express it
for the verification steps. The construction is simple since the last step for the numbered
cell verification has a shuffle: the simulator only needs to put the correct number of white
commitments (the simulator can simply keep the numbered cells white to fulfill rule 3).

|
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7. Conclusion

We proposed physical ZKP protocols for Nurimisaki as well as for Kurodoko, that
use only cards and envelopes.

The most difficult part was to prove that a cell is not a Misaki without leaking their
color. Of course, we combined this part with the rest of the verifications that are stated
by other rules. This new approach clearly demonstrates that showing that some cells do
not have some properties is often more difficult than proving an explicit property without
leaking any information.
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Appendix A. Number of copies

The number of calls to copy protocol can be expressed given the size of the grid p x g.
Indeed, we can split the cells in three categories: (1) cells at a corner, (2) cells at a border
but not at a corner and (3) cells at the middle of the grid. First, notice that the copy
protocol is called for the same number of neighbors the cell has. Thus, the copy protocol
is run, given each type of cell:

corner: 2,
border: 3,
middle: 4.

Thus, by computing the total number of cells for each type, we can find the total
number of calls to the copy protocol. The number of cell for each category, for a p x ¢
grid, is:

corner: 4,
border: 2(p —2) +2(¢ —2) =2(p+q —4),
middle: (p —2)(q — 2).
Finally, the total number of calls to the copy protocol NV, is:

Ne=2x443x2(p+q—4)+4x(p—2)(¢—2)
=8+ 6p+ 6g— 24+ 4pqg — 8p — 8q + 16
=2(2pg —p—q).

22



	Introduction
	Preliminaries
	Pile-shifting Shuffle
	Input-preserving Five-card Trick
	Mizuki–Sone Copy Protocol
	How to Form a White Polyomino
	Sum in Z

	ZKP Protocol for Nurimisaki
	Setup phase
	Connectivity phase
	Verification Phase

	Security Proofs for Nurimisaki
	ZKP Protocol for Kurodoko 
	Subprotocol
	Setup phase
	Connectivity phase
	Verification phase

	Security Proofs for Kurodoko
	Conclusion
	Number of copies

